Introduction to Stochastic Finance: Random Variables and Arbitrage Theory

Peter Jaeger
Siegmund-Schacky-Str. 18a
80993 Munich, Germany

Summary. Using the Mizar system [1], [5], we start to show, that the Call-Option, the Put-Option and the Straddle (more generally defined as in the literature) are random variables ([4], p. 15), see (Def. 1) and (Def. 2). Next we construct and prove the simple random variables ([2], p. 14) in (Def. 8).

In the third section, we introduce the definition of arbitrage opportunity, see (Def. 12). Next we show, that this definition can be characterized in a different way (Lemma 1.3. in [4], p. 5), see (17). In our formalization for Lemma 1.3 we make the assumption that φ is a sequence of real numbers (there are only finitely many valued of interest, the values of φ in R^d). For the definition of almost sure with probability 1 see p. 6 in [2]. Last we introduce the risk-neutral probability (Definition 1.4, p. 6 in [4]), here see (Def. 16).

We give an example in real world: Suppose you have some assets like bonds (riskless assets). Then we can fix our price for these bonds with x for today and $x \cdot (1 + r)$ for tomorrow, r is the interest rate. So we simply assume, that in every possible market evolution of tomorrow we have a determinated value. Then every probability measure of Ω_{fut1} is a risk-neutral measure, see (21). This example shows the existence of some risk-neutral measure. If you find more than one of them, you can determine – with an additional condition to the probability measures – whether a market model is arbitrage free or not (see Theorem 1.6. in [4], p. 6.)

A short graph for (21):
Suppose we have a portfolio with many (in this example infinitely many) assets. For asset d we have the price $\pi(d)$ for today, and the price $\pi(d) \cdot (1 + r)$ for tomorrow with some interest rate $r > 0$.

Let G be a sequence of random variables on Ω_{fut1}, Borel sets. So you have many functions $f_k : \{1, 2, 3, 4\} \to R$ with $G(k) = f_k$ and f_k is a random variable of Ω_{fut1}, Borel sets. For every f_k we have $f_k(w) = \pi(k) \cdot (1 + r)$ for $w \in \{1, 2, 3, 4\}$.
Only one scenario: \[
\{ w_{21} = \{1, 2\}, w_{22} = \{3, 4\}, \]
for all \(d \in \mathbb{N} \) holds \(\pi(d) \)
\[
\begin{cases}
 f_d(w) = G(d)(w) = \pi(d) \cdot (1 + r), \\
 w \in w_{21} \text{ or } w \in w_{22}, \\
 r > 0 \text{ is the interest rate.}
\end{cases}
\]

Here, every probability measure of \(\Omega_{fut1} \) is a risk-neutral measure.

MSC: 28A05 03B35

Keywords: random variable; arbitrage theory; risk-neutral measure

MML identifier: FINANCE6 version: 8.1.07 5.47.1318

1. Put-Option, Call-Option and Straddle are Random Variables

From now on \(\Omega \) denotes a non empty set and \(F \) denotes a \(\sigma \)-field of subsets of \(\Omega \).

Now we state the propositions:

1. \(]0, +\infty[\) is an element of the Borel sets.
2. Let us consider a random variable \(R \) of \(F \) and the Borel sets, an element \(K \) of \(\mathbb{R} \), and a function \(g \) from \(\Omega \) into \(\mathbb{R} \). Suppose \(g = \chi_{(R-(\Omega \mapsto K))^{-1}(\{0, +\infty\}, \Omega)} \). Then \(\text{Call-Option}(R, K) = g \cdot (R - (\Omega \mapsto K)) \).
3. Let us consider a random variable \(R \) of \(F \) and the Borel sets, and a real number \(K \). Then \((\Omega \mapsto K) - R \) is a random variable of \(F \) and the Borel sets.
4. Let us consider an element \(A \) of \(F \). Then \(\chi_{A, \Omega} \) is a random variable of \(F \) and the Borel sets.
5. \(\chi_{\Omega, \Omega} \) is random variable on \(F \) and the Borel sets. The theorem is a consequence of (4).
6. Let us consider random variables \(f, R \) of \(F \) and the Borel sets, and a real number \(K \). Then \((f - R)^{-1}(\{0, +\infty\}) \) is an element of \(F \). The theorem is a consequence of (1).

Let us consider \(\Omega \) and \(F \). Let \(R \) be a random variable of \(F \) and the Borel sets and \(K \) be a real number. Let us note that the functor \(\text{Call-Option}(R, K) \) yields a random variable of \(F \) and the Borel sets. The functor \(\text{Put-Option}(R, K) \) yielding a function from \(\Omega \) into \(\mathbb{R} \) is defined by

(Def. 1) for every element \(w \) of \(\Omega \), if \(((\Omega \mapsto K) - R)(w) \geq 0 \), then \(it(w) = ((\Omega \mapsto K) - R)(w) \) and if \(((\Omega \mapsto K) - R)(w) < 0 \), then \(it(w) = 0 \).
Now we state the proposition:

(7) Let us consider a random variable R of F and the Borel sets, a real number K, and a function g from Ω into \mathbb{R}. Suppose $g = \chi_{((\Omega \mapsto -\rightarrow K) - R)^{-1}([0, +\infty]), \Omega}$. Then \(\text{Put-Option}(R, K) = g \cdot (\Omega \mapsto K - R) \).

Let us consider Ω and F. Let R be a random variable of F and the Borel sets and K be a real number. Note that the functor $\text{Put-Option}(R, K)$ yields a random variable of F and the Borel sets.

2. Simple Random Variables

Let us consider Ω and F. Let R be a random variable of F and the Borel sets and K be a real number. The functor $\text{Straddle}(R, K)$ yielding a random variable of F and the Borel sets is defined by the term

(Def. 2) $\text{Put-Option}(R, K) + \text{Call-Option}(R, K)$.

Now we state the proposition:

(8) Let us consider a random variable R of F and the Borel sets, a real number K, and an element w of Ω. Then \((\text{Straddle}(R, K))(w) = |(R - (\Omega \mapsto K))(w)|\).

Let us consider Ω and F. The functors: the set of constants F and the set of χ_F yielding sets are defined by terms

(Def. 3) \{ f, where f is a function from Ω into \mathbb{R} : f is random variable on F and the Borel sets and constant \},

(Def. 4) \{ $\chi_{A, \Omega}$, where A is an element of F : $\chi_{A, \Omega}$ is random variable on F and the Borel sets \},

respectively. Let X be a set. We say that X is F-random membered if and only if

(Def. 5) for every object x such that $x \in X$ there exists a function f from Ω into \mathbb{R} such that $f = x$ and f is random variable on F and the Borel sets.

Observe that the set of constants F is non empty and the set of χ_F is non empty and the set of constants F is F-random membered and the set of χ_F is F-random membered and there exists a set which is F-random membered and non empty.

Let D be an F-random membered, non empty set, C_1 be a sequence of D, and n be a natural number. The change type of C_1 and n yielding a random variable of F and the Borel sets is defined by the term

(Def. 6) $C_1(n)$.

Let C_2 be a sequence of D and w be an element of Ω. The change all types of C_2 and w yielding a function from \mathbb{N} into \mathbb{R} is defined by
(Def. 7) for every natural number n, $it(n) = (\text{the change type of } C_2 \text{ and } n)(w)$.

Let D_1, D_2 be F-random membered, non empty sets, C_1 be a sequence of D_1, C_2 be a sequence of D_2, and n be a natural number. The simple RV of C_1, C_2 and n yielding a function from Ω into \mathbb{R} is defined by

(Def. 8) for every element w of Ω, $it(w) = (\sum_{\alpha=0}^{\kappa} ((\text{the change all types of } C_2 \text{ and } w) \cdot (\text{the change all types of } C_1 \text{ and } w))(\alpha))_{\kappa \in \mathbb{N}}(n)$.

Observe that the simple RV of C_1, C_2 and n yields a random variable of F and the Borel sets.

3. Arbitrage Theory: Definition and Alternative Representation

From now on ϕ denotes a sequence of real numbers and π denotes a price function.

Let us consider Ω and F. Let q be a natural number and G be a sequence of the set of random variables on F and the Borel sets. The change element to functions G and q yielding a real-valued random variable on F is defined by the term

(Def. 9) $G(q)$.

Let us consider ϕ. Let n be a natural number. The functors: the first AO-set of ϕ, Ω, F, G and n and the second AO-set of ϕ, Ω, F, G and n yielding elements of F are defined by terms

(Def. 10) (the RV-portfolio value for future extension of ϕ, F, G and n)$^{-1}([0, +\infty[)$,
(Def. 11) (the RV-portfolio value for future extension of ϕ, F, G and n)$^{-1}([0, +\infty[)$,
respectively. Let P be a probability on F and π be a price function. We say that there exists an AO w.r.t. P, G, π and n if and only if

(Def. 12) there exists a sequence ϕ of real numbers such that the buy portfolio extension of ϕ, π, and $n \leq 0$ and $P(\text{the first } AO\text{-set of } \phi, \Omega, F, G \text{ and } n) = 1$ and $P(\text{the second } AO\text{-set of } \phi, \Omega, F, G \text{ and } n) > 0$.

Let r be a real number. The first RV of r yielding an element of the set of random variables on Ω_{now} and the Borel sets is defined by the term

(Def. 13) $\{1, 2, 3, 4\} \mapsto -\rightarrow r$.

Let π be a price function and d be a natural number. The first RV of π, r and d yielding an element of the set of random variables on Ω_{fut1} and the Borel sets is defined by the term

(Def. 14) the first RV of $\pi(d) \cdot (1 + r)$.

Now we state the propositions:

(9) There exists a sequence G of the set of random variables on Ω_{now} and the Borel sets such that
Let us consider a probability P on Ω_{now}, and a sequence G of the set of random variables on Ω_{now} and the Borel sets. Suppose $G(0) = \{1, 2, 3, 4\} \mapsto 1$ and $G(1) = \{1, 2, 3, 4\} \mapsto 5$ and for every natural number k such that $k > 1$ holds $G(k) = \{1, 2, 3, 4\} \mapsto 0$. Then there exists a price function π such that there exists an \mathcal{AO} w.r.t. P, G, π and 1.

Proof: Define \mathcal{U} (natural number) $= (\$1 = 0 \mapsto$ the first \mathcal{RV} of 1, $(\$1 = 1 \mapsto$ the first \mathcal{RV} of 5, the first \mathcal{RV} of 0)). Consider f being a sequence of the set of random variables on Ω_{now} and the Borel sets such that for every element d of \mathbb{N}, $f(d) = \mathcal{U}(d)$. $f(0) = (0 = 0 \mapsto$ the first \mathcal{RV} of 1, $(0 = 1 \mapsto$ the first \mathcal{RV} of 5, the first \mathcal{RV} of 0)). $f(1) = (1 = 0 \mapsto$ the first \mathcal{RV} of 1, $(1 = 1 \mapsto$ the first \mathcal{RV} of 5, the first \mathcal{RV} of 0)). For every natural number k such that $k > 1$ holds $f(k) = \{1, 2, 3, 4\} \mapsto 0$. □

Let us consider a natural number n, a real number r, and a sequence G of the set of random variables on F and the Borel sets. Then $\{w$, where w is an element of Ω : the portfolio value for future extension of n, φ, F, G and $w \geq 0\} = \{\text{the } \mathcal{RV}\text{-portfolio value for future extension of } \varphi, F, G\text{ and } n\}^{-1}([0, +\infty[)$. The theorem is a consequence of (1).

Let us consider natural numbers d, d_1, a real number r, and a sequence G of the set of random variables on F and the Borel sets.

Suppose $d_1 = d - 1$. Then $\{w$, where w is an element of Ω : the portfolio value for future of d, φ, F, G and $w \geq (1 + r) \cdot (\text{the buy portfolio of } \varphi, \pi, \text{ and } d)\} = ((\text{the } \mathcal{RV}\text{-portfolio value for future of } \varphi, F, G \text{ and } d_1) - (\Omega \mapsto (1 + r) \cdot (\text{the buy portfolio of } \varphi, \pi, \text{ and } d)))^{-1}([0, +\infty[)$.
\[d_1 - (\Omega \mapsto (1 + r) \cdot \text{(the buy portfolio of } \varphi, \pi, \text{ and } d_1))^{-1}([0, +\infty[). \] For every object \(x, x \in S_1 \) iff \(x \in S_2. \)

(13) \((\text{The } \mathcal{R} \mathcal{V}-\text{portfolio value for future of } \varphi, F, G \text{ and } d_1) - (\Omega \mapsto (1 + r) \cdot \text{(the buy portfolio of } \varphi, \pi, \text{ and } d_1))^{-1}([0, +\infty[) \) is an event of \(F. \)

(14) Let us consider a natural number \(d, \) a real number \(r, \) and a sequence \(G \) of the set of random variables on \(F \) and the Borel sets. Then \(\{w, \text{ where } w \text{ is an element of } \Omega : \text{ the portfolio value for future extension of } d, \varphi, F, G \text{ and } w > 0\} \) = \((\text{the } \mathcal{R} \mathcal{V}-\text{portfolio value for future extension of } \varphi, F, G \text{ and } d)^{-1}([0, +\infty[). \) The theorem is a consequence of (1).

Let us consider natural numbers \(d, d_1, \) a real number \(r, \) and a sequence \(G \) of the set of random variables on \(F \) and the Borel sets.

(15) Suppose \(d_1 = d - 1. \) Then \(\{w, \text{ where } w \text{ is an element of } \Omega : \text{ the portfolio value for future of } d, \varphi, F, G \text{ and } w > (1 + r) \cdot \text{(the buy portfolio of } \varphi, \pi, \text{ and } d_1) - (\Omega \mapsto (1 + r) \cdot \text{(the buy portfolio of } \varphi, \pi, \text{ and } d_1)\})^{-1}([0, +\infty[). \) \)

(16) \((\text{The } \mathcal{R} \mathcal{V}-\text{portfolio value for future of } \varphi, F, G \text{ and } d_1) - (\Omega \mapsto (1 + r) \cdot \text{(the buy portfolio of } \varphi, \pi, \text{ and } d_1))^{-1}([0, +\infty[) \) is an event of \(F. \)

(17) Let us consider a price function \(\pi, \) and natural numbers \(d, d_1. \) Suppose \(d > 0 \) and \(d_1 = d - 1. \) Let us consider a probability \(P \) on \(F, \) and a real number \(r. \) Suppose \(r > -1. \) Let us consider a sequence \(G \) of the set of random variables on \(F \) and the Borel sets. Suppose the element of \(F, \) the Borel sets, \(G, \) and \(0 = \Omega \mapsto 1 + r. \) Then there exists an \(\mathcal{A} \mathcal{O} \) w.r.t. \(P, G, \pi \) and \(d \) if and only if there exists a sequence \(\varphi_1 \) of real numbers such that \(P(\text{(the } \mathcal{R} \mathcal{V}-\text{portfolio value for future of } \varphi_1, F, G \text{ and } d_1) - (\Omega \mapsto (1 + r) \cdot \text{(the buy portfolio of } \varphi_1, \pi, \text{ and } d_1)\})^{-1}([0, +\infty[) = 1 \) and \(P(\text{(the } \mathcal{R} \mathcal{V}-\text{portfolio value for future of } \varphi_1, F, G \text{ and } d_1) - (\Omega \mapsto (1 + r) \cdot \text{(the buy portfolio of } \varphi_1, \pi, \text{ and } d_1)\})^{-1}([0, +\infty[) > 0. \)

\text{Proof: If there exists an } \mathcal{A} \mathcal{O} \text{ w.r.t. } P, G, \pi \text{ and } d, \text{ then there exists a sequence } \varphi_1 \text{ of real numbers such that } P(\text{(the } \mathcal{R} \mathcal{V}-\text{portfolio value for future of } \varphi_1, F, G \text{ and } d_1) - (\Omega \mapsto (1 + r) \cdot \text{(the buy portfolio of } \varphi_1, \pi, \text{ and } d_1)\})^{-1}([0, +\infty[) = 1 \) and \(P(\text{(the } \mathcal{R} \mathcal{V}-\text{portfolio value for future of } \varphi_1, F, G \text{ and } d_1) - (\Omega \mapsto (1 + r) \cdot \text{(the buy portfolio of } \varphi_1, \pi, \text{ and } d_1)\})^{-1}([0, +\infty[) > 0. \) Define } \mathcal{U}(\text{natural number}) = (S_1 = 0 \rightarrow -(\text{the buy portfolio of } \varphi_1, \pi, \text{ and } d), \varphi_1(S_1))((\mathbb{R}). \text{ Consider } \varphi \text{ being a se-}

Brought to you by | Biblioteka Uniwersytecka w Białymstoku
Authenticated
Download Date | 8/20/18 8:11 AM
4. Risk-Neutral Probability Measure

Let us consider Ω and F. Let R be a real-valued random variable on F and r be a real number. The r-discounted value of R yielding a real-valued random variable on F is defined by the term \(R \cdot \frac{1}{1+r} \).

Let \(\pi \) be a price function and G be a sequence of the set of random variables on F and the Borel sets. We say that there exists a risk neutral measure w.r.t. G, \(\pi \) and \(r \) if and only if

\[
\text{(Def. 16)} \quad \text{there exists a probability } P \text{ on } F \text{ such that for every natural number } d, \quad \pi(d) = E_P\{\text{the } r\text{-discounted value of (the change element to functions } G \text{ and } d)\}.
\]

From now on \(P \) denotes a probability on \(\Omega_{fut1} \).

Now we state the propositions:

(18) Let us consider a real number \(r \). Suppose \(r > 0 \). Let us consider a price function \(\pi \), and a natural number \(d \). Then there exists a real-valued random variable \(f \) on \(\Omega_{fut1} \) such that

(i) \(f = \{1, 2, 3, 4\} \rightarrow \pi(d) \cdot (1 + r) \), and

(ii) \(f \) is integrable on \(P2M(P) \), and

(iii) \(f \) is simple function in \(\Omega_{fut1} \).

\textbf{Proof:} Set \(\Omega_2 = \{1, 2, 3, 4\} \). Define \(U(\text{element of } \Omega_2) = \pi(d) \cdot (1 + r)(\in \mathbb{R}) \). Consider \(f \) being a function from \(\Omega_2 \) into \(\mathbb{R} \) such that for every element \(d \) of \(\Omega_2 \), \(f(d) = U(d) \). Set \(g = \Omega_2 \rightarrow \pi(d) \cdot (1 + r)(\in \mathbb{R}) \). For every object \(x \) such that \(x \in \text{dom } f \) holds \(f(x) = g(x) \). \(f \) is integrable on \(P2M(P) \) by [6 (9), (3)], [3 (12)]. □

(19) Let us consider a natural number \(n \), and a real number \(r \). Suppose \(r > 0 \). Let us consider a price function \(\pi \), a natural number \(d \), and a real-valued random variable \(R \) on \(\Omega_{fut1} \). Suppose \(R = \{1, 2, 3, 4\} \rightarrow \pi(d) \cdot (1 + r) \) and \(R \) is integrable on \(P2M(P) \) and \(R \) is simple function in \(\Omega_{fut1} \). Then \(\pi(d) = E_P\{\text{the } r\text{-discounted value of } R\} \).
Let us consider a real number r. Suppose $r > 0$. Let us consider a price function π. Then there exists a sequence G of the set of random variables on Ω_{fut1} and the Borel sets such that for every natural number d, $G(d) = \{1, 2, 3, 4\} \mapsto \pi(d) \cdot (1 + r)$ and the change element to functions G and d is integrable on P2M(P) and the change element to functions G and d is simple function in Ω_{fut1}.

Proof: Define U(natural number) = the first RV of π, r and S_1. Consider g being a sequence of the set of random variables on Ω_{fut1} and the Borel sets such that for every element d of \mathbb{N}, $g(d) = U(d)$. There exists a real-valued random variable R on Ω_{fut1} such that $R = \{1, 2, 3, 4\} \mapsto \pi(d) \cdot (1 + r)(\in \mathbb{R})$ and R is integrable on P2M(P) and R is simple function in Ω_{fut1}. □

Let us consider a real number r. Suppose $r > 0$. Let us consider a price function π, and a sequence G of the set of random variables on Ω_{fut1} and the Borel sets. Suppose for every natural number d, $G(d) = \{1, 2, 3, 4\} \mapsto \pi(d) \cdot (1 + r)$ and the change element to functions G and d is integrable on P2M(P) and the change element to functions G and d is simple function in Ω_{fut1}. Then

(i) there exists a risk neutral measure w.r.t. G, π and r, and

(ii) for every natural number s, $\pi(s) = E_P\{\text{the } r\text{-discounted value of } G(s)\}$.

The theorem is a consequence of (19).

References

Received March 27, 2018