

Introduction to Stopping Time in Stochastic Finance Theory

Peter Jaeger Siegmund-Schacky-Str. 18a 80993 Munich, Germany

Summary. We start with the definition of stopping time according to [4], p.283. We prove, that different definitions for stopping time can coincide. We give examples of stopping time using constant-functions or functions defined with the operator max or min (defined in [6], pp.37–38). Finally we give an example with some given filtration. Stopping time is very important for stochastic finance. A stopping time is the moment, where a certain event occurs ([7], p.372) and can be used together with stochastic processes ([4], p.283). Look at the following example: we install a function ST: $\{1,2,3,4\} \rightarrow \{0,1,2\} \cup \{+\infty\}$, we define:

a. ST(1)=1, ST(2)=1, ST(3)=2, ST(4)=2.

b. The set $\{0,1,2\}$ consists of time points: 0=now,1=tomorrow,2=the day after tomorrow.

We can prove:

c. {w, where w is Element of Ω : ST.w=0}= \emptyset & {w, where w is Element of Ω : ST.w=1}={1,2} & {w, where w is Element of Ω : ST.w=2}={3,4} and

ST is a stopping time.

We use a function Filt as Filtration of $\{0,1,2\}$, Σ where Filt $(0)=\Omega_{now}$, Filt $(1)=\Omega_{fut1}$ and Filt $(2)=\Omega_{fut2}$. From a.,b. and c. we know that:

d. {w, where w is Element of Ω : ST.w=0} in Ω_{now} and

{w, where w is Element of Ω : ST.w=1} in Ω_{fut1} and

{w, where w is Element of Ω : ST.w=2} in Ω_{fut2} .

The sets in d. are events, which occur at the time points 0(=now), 1(=to-morrow) or 2(=the day after tomorrow), see also [7], p.371. Suppose we have $ST(1)=+\infty$, then this means that for 1 the corresponding event never occurs.

As an interpretation for our installed functions consider the given adapted stochastic process in the article [5].

ST(1)=1 means, that the given element 1 in $\{1,2,3,4\}$ is stopped in 1 (=to-morrow). That tells us, that we have to look at the value $f_2(1)$ which is equal to 80. The same argumentation can be applied for the element 2 in $\{1,2,3,4\}$.

C 2017 University of Białystok CC-BY-SA License ver. 3.0 or later ISSN 1426-2630(Print), 1898-9934(Online)

101

ST(3)=2 means, that the given element 3 in $\{1,2,3,4\}$ is stopped in 2 (=the day after tomorrow). That tells us, that we have to look at the value $f_3(3)$ which is equal to 100.

ST(4)=2 means, that the given element 4 in $\{1,2,3,4\}$ is stopped in 2 (=the day after tomorrow). That tells us, that we have to look at the value $f_3(4)$ which is equal to 120.

In the real world, these functions can be used for questions like: when does the share price exceed a certain limit? (see [7], p.372).

MSC: 60G40 03B35

Keywords: stopping time; stochastic process

MML identifier: FINANCE4, version: 8.1.06 5.43.1297

1. Preliminaries

From now on Ω denotes a non empty set, Σ denotes a σ -field of subsets of Ω , and T denotes a natural number.

Now we state the proposition:

(1) Let us consider a non empty set X, an object t, and a function f. Suppose dom f = X. Then $\{w, where w \text{ is an element of } X : f(w) = t\} = \text{Coim}(f, t).$

PROOF: Set $A = \{w, \text{ where } w \text{ is an element of } X : f(w) = t\}$. $A \subseteq \text{Coim}(f,t)$ by [2, (1)]. Consider y being an object such that $\langle x, y \rangle \in f$ and $y \in \{t\}$. \Box

Let I be an extended real-membered set. The functor $I_{\{+\infty\}}$ yielding a subset of $\overline{\mathbb{R}}$ is defined by the term

(Def. 1)
$$I \cup \{+\infty\}$$
.

Let us note that $I_{\{+\infty\}}$ is non empty.

2. Definition of Stopping Time

Let T be a natural number. The functor $\bigcup_{t \in \mathbb{N}: 0 \leq t \leq T} \{t\}$ yielding a subset of \mathbb{R} is defined by the term

(Def. 2) $\{t, \text{ where } t \text{ is an element of } \mathbb{N} : 0 \leq t \leq T\}.$

Let us note that $\bigcup_{t \in \mathbb{N}: 0 \le t \le T} \{t\}$ is non empty.

The functor $T_{\{+\infty\}}$ yielding a subset of \mathbb{R} is defined by the term

(Def. 3) $\bigcup_{t \in \mathbb{N}: 0 \leq t \leq T} \{t\} \cup \{+\infty\}.$

Let us note that $T_{\{+\infty\}}$ is non empty.

In the sequel T_1 denotes an element of $T_{\{+\infty\}}$, MF denotes a filtration of $\bigcup_{t\in\mathbb{N}:0\leqslant t\leqslant T}\{t\}$ and Σ , and k, k_1 , k_2 denote functions from Ω into $T_{\{+\infty\}}$.

Let T be a natural number, F be a function, and R be a binary relation. We say that R is StoppingTime(F,T) if and only if

(Def. 4) for every element t of $\bigcup_{t \in \mathbb{N}: 0 \leq t \leq T} \{t\}$, $\operatorname{Coim}(R, t) \in F(t)$.

Let Ω be a non empty set, MF be a function, and k be a function from Ω into $T_{\{+\infty\}}$. Let us observe that k is StoppingTime(MF,T) if and only if the condition (Def. 5) is satisfied.

(Def. 5) for every element t of $\bigcup_{t \in \mathbb{N}: 0 \leq t \leq T} \{t\}$, $\{w, \text{ where } w \text{ is an element of } \Omega : k(w) = t\} \in MF(t).$

Now we state the proposition:

(2) k is StoppingTime(MF,T) if and only if for every element t of $\bigcup_{t\in\mathbb{N}:0\leqslant t\leqslant T}\{t\}, \{w, \text{ where } w \text{ is an element of } \Omega: k(w) \leqslant t\} \in MF(t).$ PROOF: If k is StoppingTime(MF,T), then for every element t of $\bigcup_{t\in\mathbb{N}:0\leqslant t\leqslant T}\{t\}, \{w, \text{ where } w \text{ is an element of } \Omega: k(w) \leqslant t\} \in MF(t) \text{ by } [1, (8), (12), (13)], [8, (21)].$ For every element t of $\bigcup_{t\in\mathbb{N}:0\leqslant t\leqslant T}\{t\}, \{w, \text{ where } w \text{ is an element of } \Omega: k(w) = t\} \in MF(t) \text{ by } [1, (13)], [8, (22), (24)], [1, (22)]. \square$

3. Examples of Stopping Times

Now we state the proposition:

(3) $\Omega \longmapsto T_1$ is StoppingTime(*MF*,*T*). PROOF: Set $c = \Omega \longmapsto T_1$. For every element t of $\bigcup_{t \in \mathbb{N}: 0 \leq t \leq T} \{t\}, \{w, \text{ where } w \text{ is an element of } \Omega : c(w) = t\} \in MF(t) \text{ by } [9, (7)], [8, (5), (4)]. \square$ Let us consider Ω, T, k_1 , and k_2 . The functor $\max(k_1, k_2)$ yielding a function

from Ω into $\overline{\mathbb{R}}$ is defined by

(Def. 6) for every element w of Ω , $it(w) = \max(k_1(w), k_2(w))$.

The functor $\min(k_1, k_2)$ yielding a function from Ω into $\overline{\mathbb{R}}$ is defined by

(Def. 7) for every element w of Ω , $it(w) = \min(k_1(w), k_2(w))$. Now we state the propositions:

(4) Suppose k_1 is StoppingTime(*MF*,*T*) and k_2 is StoppingTime(*MF*,*T*). Then there exists a function k_3 from Ω into $T_{\{+\infty\}}$ such that

(i)
$$k_3 = \max(k_1, k_2)$$
, and

(ii) k_3 is StoppingTime(MF,T).

PROOF: Set $k_3 = \max(k_1, k_2)$. k_3 is a function from Ω into $T_{\{+\infty\}}$ by [2, (3)], [3, (2)]. k_3 is StoppingTime(*MF*,*T*) by (2), [8, (19)]. \Box

(5) Suppose k_1 is StoppingTime(*MF*,*T*) and k_2 is StoppingTime(*MF*,*T*). Then there exists a function k_3 from Ω into $T_{\{+\infty\}}$ such that

(i) $k_3 = \min(k_1, k_2)$, and

(ii) k_3 is StoppingTime(MF,T).

PROOF: Set $k_3 = \min(k_1, k_2)$. k_3 is a function from Ω into $T_{\{+\infty\}}$ by [2, (3)], [3, (2)]. k_3 is StoppingTime(*MF*,*T*) by (2), [8, (3)]. \Box

Let t be an object. The special element of $t_{\{+\infty\}}$ yielding an element of $2_{\{+\infty\}}$ is defined by the term

(Def. 8) IFIN $(t, \{1, 2\}, 1, 2)$.

Now we state the proposition:

- (6) Suppose $\Omega = \{1, 2, 3, 4\}$. Let us consider a filtration MF of $\bigcup_{t \in \mathbb{N}: 0 \leq t \leq 2} \{t\}$ and Σ . Suppose $MF(0) = \Omega_{now}$ and $MF(1) = \Omega_{fut1}$ and $MF(2) = \Omega_{fut2}$. Then there exists a function S from Ω into $2_{\{+\infty\}}$ such that
 - (i) S is StoppingTime(MF,2), and
 - (ii) S(1) = 1, and
 - (iii) S(2) = 1, and
 - (iv) S(3) = 2, and
 - (v) S(4) = 2, and
 - (vi) $\{w, \text{ where } w \text{ is an element of } \Omega : S(w) = 0\} = \emptyset$, and
 - (vii) {w, where w is an element of $\Omega : S(w) = 1$ } = {1,2}, and
 - (viii) {w, where w is an element of $\Omega: S(w) = 2$ } = {3,4}.

PROOF: Define $\mathcal{U}(\text{element of }\Omega) = \text{the special element of } \$_{1\{+\infty\}}$. Consider f being a function from Ω into $2_{\{+\infty\}}$ such that for every element d of Ω , $f(d) = \mathcal{U}(d)$ from [3, Sch. 4]. f(1) = 1 and f(2) = 1 and f(3) = 2 and f(4) = 2. f is StoppingTime(MF,2) and $\{w$, where w is an element of Ω : $f(w) = 0\} = \emptyset$ and $\{w$, where w is an element of Ω : $f(w) = 1\} = \{1, 2\}$ and $\{w$, where w is an element of Ω : $f(w) = 2\} = \{3, 4\}$ by [1, (9)], [8, (4)], [5, (24)]. \Box

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.

- [3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [4] Hans Föllmer and Alexander Schied. Stochastic Finance: An Introduction in Discrete Time, volume 27 of Studies in Mathematics. de Gruyter, Berlin, 2nd edition, 2004.
- [5] Peter Jaeger. Modelling real world using stochastic processes and filtration. Formalized Mathematics, 24(1):1–16, 2016. doi:10.1515/forma-2016-0001.
- [6] Achim Klenke. Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, Heidelberg, 2006.
- [7] Jürgen Kremer. Einführung in die diskrete Finanzmathematik. Springer-Verlag, Berlin, Heidelberg, New York, 2006.
- [8] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [9] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2): 329–334, 1990.

Received June 27, 2017

The English version of this volume of Formalized Mathematics was financed under agreement 548/P-DUN/2016 with the funds from the Polish Minister of Science and Higher Education for the dissemination of science.