

Group of Homography in Real Projective Plane

Roland Coghetto Rue de la Brasserie 5 7100 La Louvière, Belgium

Summary. Using the Mizar system [2], we formalized that homographies of the projective real plane (as defined in [5]), form a group.

Then, we prove that, using the notations of Borsuk and Szmielew in [3]

"Consider in space \mathbb{RP}^2 points P_1, P_2, P_3, P_4 of which three points are not collinear and points Q_1, Q_2, Q_3, Q_4 each three points of which are also not collinear. There exists one homography h of space \mathbb{RP}^2 such that $h(P_i) = Q_i$ for i = 1, 2, 3, 4."

(Existence Statement 52 and Existence Statement 53) [3]. Or, using notations of Richter [11]

"Let [a], [b], [c], [d] in \mathbb{RP}^2 be four points of which no three are collinear and let [a'], [b'], [c'], [d'] in \mathbb{RP}^2 be another four points of which no three are collinear, then there exists a 3×3 matrix M such that [Ma] = [a'], [Mb] = [b'], [Mc] = [c'], and [Md] = [d']"

Makarios has formalized the same results in Isabelle/Isar (the collineations form a group, lemma statement52-existence and lemma statement 53-existence) and published it in Archive of Formal Proofs^1 [10], [9].

MSC: 51N15 03B35

Keywords: projectivity; projective transformation; real projective plane; group of homography

MML identifier: $\texttt{ANPROJ_9}, \ \text{version: 8.1.05 5.40.1289}$

¹http://isa-afp.org/entries/Tarskis_Geometry.shtml

1. Preliminaries

From now on *i*, *n* denote natural numbers, *r* denotes a real number, r_1 denotes an element of \mathbb{R}_F , *a*, *b*, *c* denote non zero elements of \mathbb{R}_F , *u*, *v* denote elements of \mathcal{E}_T^3 , p_1 denotes a finite sequence of elements of \mathbb{R}^1 , p_3 , u_4 denote finite sequences of elements of \mathbb{R}_F , *N* denotes a square matrix over \mathbb{R}_F of dimension 3, *K* denotes a field, and *k* denotes an element of *K*.

Now we state the propositions:

- (1) $I_{\mathbb{R}_{\mathbb{P}}}^{3\times3} = \langle \langle 1, 0, 0 \rangle, \langle 0, 1, 0 \rangle, \langle 0, 0, 1 \rangle \rangle.$
- (2) $r_1 \cdot N = r_1 \cdot I_{\mathbb{R}_F}^{3 \times 3} \cdot N.$
- (3) If $r \neq 0$ and u is not zero, then $r \cdot u$ is not zero. PROOF: $r \cdot u \neq 0_{\mathcal{E}^3_T}$ by [4, (52), (49)]. \Box

Let us consider elements a_{11} , a_{12} , a_{13} , a_{21} , a_{22} , a_{23} , a_{31} , a_{32} , a_{33} of \mathbb{R}_{F} and a square matrix A over \mathbb{R}_{F} of dimension 3. Now we state the propositions:

- (4) Suppose $A = \langle \langle a_{11}, a_{12}, a_{13} \rangle, \langle a_{21}, a_{22}, a_{23} \rangle, \langle a_{31}, a_{32}, a_{33} \rangle \rangle$. Then
 - (i) $\text{Line}(A, 1) = \langle a_{11}, a_{12}, a_{13} \rangle$, and
 - (ii) $\text{Line}(A, 2) = \langle a_{21}, a_{22}, a_{23} \rangle$, and
 - (iii) Line $(A, 3) = \langle a_{31}, a_{32}, a_{33} \rangle$.
- (5) Suppose $A = \langle \langle a_{11}, a_{12}, a_{13} \rangle, \langle a_{21}, a_{22}, a_{23} \rangle, \langle a_{31}, a_{32}, a_{33} \rangle \rangle$. Then
 - (i) $A_{\Box,1} = \langle a_{11}, a_{21}, a_{31} \rangle$, and
 - (ii) $A_{\Box,2} = \langle a_{12}, a_{22}, a_{32} \rangle$, and
 - (iii) $A_{\Box,3} = \langle a_{13}, a_{23}, a_{33} \rangle$.

The theorem is a consequence of (4).

- (6) Let us consider elements a_{11} , a_{12} , a_{13} , a_{21} , a_{22} , a_{23} , a_{31} , a_{32} , a_{33} , b_{11} , b_{12} , b_{13} , b_{21} , b_{22} , b_{23} , b_{31} , b_{32} , b_{33} of $\mathbb{R}_{\rm F}$, and square matrices A, B over $\mathbb{R}_{\rm F}$ of dimension 3. Suppose $A = \langle \langle a_{11}, a_{12}, a_{13} \rangle, \langle a_{21}, a_{22}, a_{23} \rangle, \langle a_{31}, a_{32}, a_{33} \rangle \rangle$ and $B = \langle \langle b_{11}, b_{12}, b_{13} \rangle, \langle b_{21}, b_{22}, b_{23} \rangle, \langle b_{31}, b_{32}, b_{33} \rangle \rangle$. Then $A \cdot B = \langle \langle a_{11} \cdot b_{11} + a_{12} \cdot b_{21} + a_{13} \cdot b_{31}, a_{11} \cdot b_{12} + a_{12} \cdot b_{22} + a_{13} \cdot b_{32}, a_{11} \cdot b_{13} + a_{12} \cdot b_{23} + a_{13} \cdot b_{33} \rangle,$ $\langle a_{21} \cdot b_{11} + a_{22} \cdot b_{21} + a_{23} \cdot b_{31}, a_{21} \cdot b_{12} + a_{22} \cdot b_{22} + a_{23} \cdot b_{32}, a_{21} \cdot b_{13} + a_{22} \cdot b_{23} + a_{23} \cdot b_{33} \rangle, \langle a_{31} \cdot b_{11} + a_{32} \cdot b_{21} + a_{33} \cdot b_{31}, a_{31} \cdot b_{12} + a_{32} \cdot b_{22} + a_{33} \cdot b_{32}, a_{31} \cdot b_{13} + a_{32} \cdot b_{23} + a_{33} \cdot b_{33} \rangle \rangle$. The theorem is a consequence of (4) and (5).
- (7) Let us consider elements a_{11} , a_{12} , a_{13} , a_{21} , a_{22} , a_{23} , a_{31} , a_{32} , a_{33} , b_1 , b_2 , b_3 of $\mathbb{R}_{\rm F}$, a matrix A over $\mathbb{R}_{\rm F}$ of dimension 3×3 , and a matrix B over $\mathbb{R}_{\rm F}$ of dimension 3×1 . Suppose $A = \langle \langle a_{11}, a_{12}, a_{13} \rangle, \langle a_{21}, a_{22}, a_{23} \rangle, \langle a_{31}, a_{32}, a_{33} \rangle \rangle$ and $B = \langle \langle b_1 \rangle, \langle b_2 \rangle, \langle b_3 \rangle \rangle$. Then $A \cdot B = \langle \langle a_{11} \cdot b_1 + a_{12} \cdot b_2 + a_{13} \cdot b_3 \rangle$,

 $\langle a_{21} \cdot b_1 + a_{22} \cdot b_2 + a_{23} \cdot b_3 \rangle, \langle a_{31} \cdot b_1 + a_{32} \cdot b_2 + a_{33} \cdot b_3 \rangle \rangle$. The theorem is a consequence of (4).

(8) Let us consider non zero elements a, b, c of \mathbb{R}_{F} , and square matrices M_1 , M_2 over \mathbb{R}_{F} of dimension 3. Suppose $M_1 = \langle \langle a, 0, 0 \rangle, \langle 0, b, 0 \rangle, \langle 0, 0, c \rangle \rangle$ and $M_2 = \langle \langle \frac{1}{a}, 0, 0 \rangle, \langle 0, \frac{1}{b}, 0 \rangle, \langle 0, 0, \frac{1}{c} \rangle \rangle$. Then

(i)
$$M_1 \cdot M_2 = I_{\mathbb{R}_F}^{3 \times 3}$$
, and

(ii) $M_2 \cdot M_1 = I_{\mathbb{R}_F}^{3 \times 3}$.

The theorem is a consequence of (1).

- (9) Let us consider non zero elements a, b, c of \mathbb{R}_{F} . Then $\langle \langle a, 0, 0 \rangle, \langle 0, b, 0 \rangle, \langle 0, 0, c \rangle \rangle$ is an invertible square matrix over \mathbb{R}_{F} of dimension 3. The theorem is a consequence of (8).
- (10) (i) [1, 0, 0] is not zero, and
 - (ii) [0, 1, 0] is not zero, and
 - (iii) [0, 0, 1] is not zero, and

(iv) [1, 1, 1] is not zero.

(11) (i)
$$[1,0,0] \neq 0_{\mathcal{E}^3_m}$$
, and

- (ii) $[0, 1, 0] \neq 0_{\mathcal{E}^3_{T}}$, and
- (iii) $[0, 0, 1] \neq 0_{\mathcal{E}^3_T}$, and
- (iv) $[1, 1, 1] \neq 0_{\mathcal{E}^3_{\mathrm{T}}}$.

PROOF: $[1, 0, 0] \neq [0, 0, 0]$ by [7, (2)]. $[0, 1, 0] \neq [0, 0, 0]$ by [7, (2)]. $[0, 0, 1] \neq [0, 0, 0]$ by [7, (2)]. $[1, 1, 1] \neq [0, 0, 0]$ by [7, (2)]. \Box

- (12) (i) $e_1 \neq 0_{\mathcal{E}^3_T}$, and
 - (ii) $e_2 \neq 0_{\mathcal{E}^3_{\mathcal{T}}}$, and

(iii) $e_3 \neq 0_{\mathcal{E}^3_{\mathrm{T}}}$. PROOF: $[1, 0, 0] \neq [0, 0, 0]$ by [7, (2)]. $[0, 1, 0] \neq [0, 0, 0]$ by [7, (2)]. $[0, 0, 1] \neq [0, 0, 0]$ by [7, (2)]. \Box

Let n be a natural number. Note that $I_{\mathbb{R}_{\mathrm{F}}}^{n \times n}$ is invertible.

Let M be an invertible square matrix over \mathbb{R}_{F} of dimension n. One can verify that M^{\sim} is invertible.

Let K be a field and N_1 , N_2 be invertible square matrices over K of dimension n. One can check that $N_1 \cdot N_2$ is invertible.

2. Group of Homography

From now on N, N_1 , N_2 denote invertible square matrices over \mathbb{R}_{F} of dimension 3 and P, P_1 , P_2 , P_3 denote points of the projective space over $\mathcal{E}_{\mathrm{T}}^3$.

Now we state the propositions:

(13) (The homography of N_1)((the homography of N_2)(P)) =

(the homography of $N_1 \cdot N_2$)(P).

PROOF: Consider u_{12} , v_{12} being elements of \mathcal{E}_{T}^{3} , u_{8} being a finite sequence of elements of \mathbb{R}_{F} , p_{12} being a finite sequence of elements of \mathbb{R}^1 such that P = the direction of u_{12} and u_{12} is not zero and $u_{12} = u_8$ and $p_{12} = N_1 \cdot N_2 \cdot u_8$ and $v_{12} = M2F(p_{12})$ and v_{12} is not zero and (the homography of $N_1 \cdot N_2$)(P) = the direction of v_{12} . Consider u_2, v_2 being elements of \mathcal{E}_{T}^{3} , u_{6} being a finite sequence of elements of \mathbb{R}_{F} , p_{2} being a finite sequence of elements of \mathbb{R}^1 such that P = the direction of u_2 and u_2 is not zero and $u_2 = u_6$ and $p_2 = N_2 \cdot u_6$ and $v_2 = M2F(p_2)$ and v_2 is not zero and (the homography of N_2)(P) = the direction of v_2 . Consider u_1, v_1 being elements of \mathcal{E}_{T}^{3} , u_{7} being a finite sequence of elements of \mathbb{R}_{F} , p_{1} being a finite sequence of elements of \mathbb{R}^1 such that (the homography of N_2)(P) = the direction of u_1 and u_1 is not zero and $u_1 = u_7$ and $p_1 = N_1 \cdot u_7$ and $v_1 = v_1 \cdot u_7$ $M2F(p_1)$ and v_1 is not zero and (the homography of N_1)((the homography of $N_2(P)$ = the direction of v_1 . Consider a being a real number such that $a \neq 0$ and $u_2 = a \cdot u_{12}$. Consider b being a real number such that $b \neq 0$ and $u_1 = b \cdot v_2$. $v_1 = \langle (N_1 \cdot \langle u_7 \rangle^T)_{1,1}, (N_1 \cdot \langle u_7 \rangle^T)_{2,1}, (N_1 \cdot \langle u_7 \rangle^T)_{3,1} \rangle$ by [1, (1), (40)]. $v_2 = \langle (N_2 \cdot \langle u_6 \rangle^{\mathrm{T}})_{1,1}, (N_2 \cdot \langle u_6 \rangle^{\mathrm{T}})_{2,1}, (N_2 \cdot \langle u_6 \rangle^{\mathrm{T}})_{3,1} \rangle$ by [1, (1), (40)]. $v_{12} = \langle (N_1 \cdot N_2 \cdot \langle u_8 \rangle^{\mathrm{T}})_{1,1}, (N_1 \cdot N_2 \cdot \langle u_8 \rangle^{\mathrm{T}})_{2,1}, (N_1 \cdot N_2 \cdot \langle u_8 \rangle^{\mathrm{T}})_{3,1} \rangle$ by [1, (1), (40)]. Reconsider $v_6 = v_2$ as a finite sequence of elements of \mathbb{R}_{F} . Reconsider $i_4 = \frac{1}{h}$ as a real number. $v_6 = i_4 \cdot u_1$ by [4, (49), (52)]. Reconsider $l_{11} = \text{Line}(N_2, 1)(1), \ l_{12} = \text{Line}(N_2, 1)(2), \ l_{13} = \text{Line}(N_2, 1)(3),$ $l_{21} = \text{Line}(N_2, 2)(1), \ l_{22} = \text{Line}(N_2, 2)(2), \ l_{23} = \text{Line}(N_2, 2)(3), \ l_{31} =$ $Line(N_2,3)(1), l_{32} = Line(N_2,3)(2), l_{33} = Line(N_2,3)(3)$ as an element of \mathbb{R}_{F} . $N_{2\square,1} = \langle l_{11}, l_{21}, l_{31} \rangle$ and $N_{2\square,2} = \langle l_{12}, l_{22}, l_{32} \rangle$ and $N_{2\square,3} = \langle l_{13}, l_{23}, l_{32} \rangle$ l_{33} by [1, (1), (45)]. The direction of v_1 = the direction of v_{12} by [5, (7)], [1, (45)], [5, (93)], [7, (8)].

(14) (The homography of $I_{\mathbb{R}_{\mathrm{F}}}^{3\times 3})(P) = P$.

(15) (i) (the homography of N)((the homography of N~)(P)) = P, and
(ii) (the homography of N~)((the homography of N)(P)) = P.

The theorem is a consequence of (13) and (14).

(16) If (the homography of N) $(P_1) =$ (the homography of N) (P_2) , then $P_1 = P_2$. The theorem is a consequence of (15).

(17) Let us consider a non zero element a of \mathbb{R}_{F} . Suppose $a \cdot I_{\mathbb{R}_{\mathrm{F}}}^{3 \times 3} = N$. Then (the homography of N)(P) = P.

The functor EnsHomography3 yielding a set is defined by the term

(Def. 1) the set of all the homography of N where N is an invertible square matrix over \mathbb{R}_{F} of dimension 3.

One can check that EnsHomography3 is non empty.

Let h_1 , h_2 be elements of EnsHomography3. The functor $h_1 \circ h_2$ yielding an element of EnsHomography3 is defined by

(Def. 2) there exist invertible square matrices N_1 , N_2 over \mathbb{R}_F of dimension 3 such that h_1 = the homography of N_1 and h_2 = the homography of N_2 and it = the homography of $N_1 \cdot N_2$.

Now we state the propositions:

- (18) Let us consider elements h_1 , h_2 of EnsHomography3. Suppose $h_1 =$ the homography of N_1 and $h_2 =$ the homography of N_2 . Then the homography of $N_1 \cdot N_2 = h_1 \circ h_2$. The theorem is a consequence of (13).
- (19) Let us consider elements x, y, z of EnsHomography3. Then $(x \circ y) \circ z = x \circ (y \circ z)$. The theorem is a consequence of (18).

The functor BinOpHomography3 yielding a binary operation on EnsHomography3 is defined by

(Def. 3) for every elements h_1 , h_2 of EnsHomography3, $it(h_1, h_2) = h_1 \circ h_2$. The functor GroupHomography3 yielding a strict multiplicative magma is defined by the term

(Def. 4) (EnsHomography3, BinOpHomography3).
 Note that GroupHomography3 is non empty, associative, and group-like.
 Now we state the propositions:

- (20) $\mathbf{1}_{\text{GroupHomography3}}$ = the homography of $I_{\mathbb{R}_{\mathrm{F}}}^{3\times3}$.
- (21) Let us consider elements h, g of GroupHomography3, and invertible square matrices N, N_{10} over $\mathbb{R}_{\rm F}$ of dimension 3. Suppose h = the homography of N and g = the homography of N_{10} and $N_{10} = N^{\sim}$. Then $g = h^{-1}$. The theorem is a consequence of (20).

3. Main Results

The functors: Dir100, Dir010, Dir001, and Dir111 yielding points of the projective space over \mathcal{E}_{T}^{3} are defined by terms

- (Def. 5) the direction of [1, 0, 0],
- (Def. 6) the direction of [0, 1, 0],

- (Def. 7) the direction of [0, 0, 1],
- (Def. 8) the direction of [1, 1, 1],

respectively. Now we state the proposition:

- (22) (i) $\operatorname{Dir}100 \neq \operatorname{Dir}010$, and
 - (ii) $\text{Dir}100 \neq \text{Dir}001$, and
 - (iii) $\text{Dir}100 \neq \text{Dir}111$, and
 - (iv) $\text{Dir}010 \neq \text{Dir}001$, and
 - (v) $\text{Dir}010 \neq \text{Dir}111$, and
 - (vi) $\text{Dir}001 \neq \text{Dir}111$.

Let a be a non zero element of \mathbb{R}_{F} . Let us consider N. Note that $a \cdot N$ is invertible as a square matrix over \mathbb{R}_{F} of dimension 3.

- (23) Let us consider a non zero element a of \mathbb{R}_{F} . Then (the homography of $a \cdot N_1$)(P) = (the homography of N_1)(P). The theorem is a consequence of (2), (13), and (17).
- (24) Suppose P_1 , P_2 and P_3 are not collinear. Then there exists an invertible square matrix N over \mathbb{R}_F of dimension 3 such that
 - (i) (the homography of N) $(P_1) = \text{Dir}100$, and
 - (ii) (the homography of N)(P_2) = Dir010, and
 - (iii) (the homography of N)(P_3) = Dir001.

PROOF: Consider u_1 being an element of \mathcal{E}_T^3 such that u_1 is not zero and P_1 = the direction of u_1 . Consider u_2 being an element of \mathcal{E}_T^3 such that u_2 is not zero and P_2 = the direction of u_2 . Consider u_3 being an element of \mathcal{E}_T^3 such that u_3 is not zero and P_3 = the direction of u_3 . Reconsider $p_3 = u_1$, $q_1 = u_2$, $r_2 = u_3$ as a finite sequence of elements of \mathbb{R}_F . Consider N being a square matrix over \mathbb{R}_F of dimension 3 such that N is invertible and $N \cdot p_3 = F2M(e_1)$ and $N \cdot q_1 = F2M(e_2)$ and $N \cdot r_2 = F2M(e_3)$. (The homography of $N)(P_1) = \text{Dir100}$ by [8, (22), (1)], [6, (22)], [5, (75)]. (The homography of $N)(P_3) = \text{Dir001}$ by [8, (22), (1)], [6, (22)], [5, (75)]. (D

- (25) Let us consider non zero elements a, b, c of \mathbb{R}_{F} . Suppose $N = \langle \langle a, 0, 0 \rangle$, $\langle 0, b, 0 \rangle, \langle 0, 0, c \rangle \rangle$. Then
 - (i) (the homography of N)(Dir100) = Dir100, and
 - (ii) (the homography of N)(Dir010) = Dir010, and
 - (iii) (the homography of N)(Dir001) = Dir001.

PROOF: (The homography of N)(Dir100) = Dir100 by (12), [8, (22), (1)], [7, (8), (2)]. (The homography of N)(Dir010) = Dir010 by (12), [8, (22), (1)], [7, (8), (2)]. (The homography of N)(Dir001) = Dir001 by (12), [8, (22), (1)], [7, (8), (2)]. \Box

Let us consider a point P of the projective space over $\mathcal{E}^3_{\mathrm{T}}$.

- (26) There exist elements a, b, c of \mathbb{R}_{F} such that
 - (i) P = the direction of [a, b, c], and
 - (ii) $a \neq 0$ or $b \neq 0$ or $c \neq 0$.
- (27) Suppose Dir100, Dir010 and P are not collinear and Dir100, Dir001 and P are not collinear and Dir010, Dir001 and P are not collinear. Then there exist non zero elements a, b, c of \mathbb{R}_{F} such that P = the direction of [a, b, c]. The theorem is a consequence of (26).
- (28) Let us consider non zero elements a, b, c, i_1, i_2, i_3 of \mathbb{R}_F , a point P of the projective space over \mathcal{E}^3_T , and an invertible square matrix N over \mathbb{R}_F of dimension 3. Suppose P = the direction of [a, b, c] and $i_1 = \frac{1}{a}$ and $i_2 = \frac{1}{b}$ and $i_3 = \frac{1}{c}$ and $N = \langle \langle i_1, 0, 0 \rangle, \langle 0, i_2, 0 \rangle, \langle 0, 0, i_3 \rangle \rangle$. Then (the homography of N)(P) = the direction of [1, 1, 1].

PROOF: Consider u, v being elements of \mathcal{E}_{T}^{3} , u_{4} being a finite sequence of elements of \mathbb{R}_{F} , p being a finite sequence of elements of \mathbb{R}^{1} such that P = the direction of u and u is not zero and $u = u_{4}$ and $p = N \cdot u_{4}$ and v =M2F(p) and v is not zero and (the homography of N)(P) = the direction of v. [a, b, c] is not zero by [7, (4)], [1, (78)]. Consider d being a real number such that $d \neq 0$ and $u = d \cdot [a, b, c]$. Reconsider $d_{1} = d \cdot a, d_{2} = d \cdot b, d_{3} = d \cdot c$ as an element of \mathbb{R}_{F} . $v = [i_{1} \cdot d_{1}, i_{2} \cdot d_{2}, i_{3} \cdot d_{3}]$ by [1, (45)]. \Box

- (29) Let us consider a point P of the projective space over $\mathcal{E}_{\mathrm{T}}^3$. Suppose Dir100, Dir010 and P are not collinear and Dir100, Dir001 and P are not collinear and Dir010, Dir001 and P are not collinear. Then there exist non zero elements a, b, c of \mathbb{R}_{F} such that for every invertible square matrix N over \mathbb{R}_{F} of dimension 3 such that $N = \langle \langle a, 0, 0 \rangle, \langle 0, b, 0 \rangle, \langle 0, 0, c \rangle \rangle$ holds (the homography of N)(P) = Dir111. The theorem is a consequence of (27) and (28).
- (30) Let us consider points P_1 , P_2 , P_3 , P_4 of the projective space over $\mathcal{E}_{\mathrm{T}}^3$. Suppose P_1 , P_2 and P_3 are not collinear and P_1 , P_2 and P_4 are not collinear and P_1 , P_3 and P_4 are not collinear and P_2 , P_3 and P_4 are not collinear. Then there exists an invertible square matrix N over \mathbb{R}_{F} of dimension 3 such that
 - (i) (the homography of N) $(P_1) = \text{Dir}100$, and
 - (ii) (the homography of N)(P_2) = Dir010, and

(iii) (the homography of N)(P_3) = Dir001, and

(iv) (the homography of N)(P_4) = Dir111.

The theorem is a consequence of (24), (29), (9), (25), and (13).

- (31) Let us consider points P_1 , P_2 , P_3 , P_4 , Q_1 , Q_2 , Q_3 , Q_4 of the projective space over \mathcal{E}_T^3 . Suppose P_1 , P_2 and P_3 are not collinear and P_1 , P_2 and P_4 are not collinear and P_1 , P_3 and P_4 are not collinear and P_2 , P_3 and P_4 are not collinear and Q_1 , Q_2 and Q_3 are not collinear and Q_1 , Q_2 and Q_4 are not collinear and Q_1 , Q_3 and Q_4 are not collinear and Q_2 , Q_3 and Q_4 are not collinear. Then there exists an invertible square matrix N over \mathbb{R}_F of dimension 3 such that
 - (i) (the homography of N) $(P_1) = Q_1$, and
 - (ii) (the homography of N) $(P_2) = Q_2$, and
 - (iii) (the homography of N) $(P_3) = Q_3$, and
 - (iv) (the homography of N) $(P_4) = Q_4$.

The theorem is a consequence of (30), (15), and (13).

References

- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [3] Karol Borsuk and Wanda Szmielew. Foundations of Geometry. North Holland, 1960.
- [4] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- Roland Coghetto. Homography in ℝP². Formalized Mathematics, 24(4):239–251, 2016. doi:10.1515/forma-2016-0020.
- [6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [7] Kanchun, Hiroshi Yamazaki, and Yatsuka Nakamura. Cross products and tripple vector products in 3-dimensional Euclidean space. *Formalized Mathematics*, 11(4):381–383, 2003.
- [8] Wojciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. Formalized Mathematics, 1(4):761–766, 1990.
- [9] Timothy James McKenzie Makarios. The independence of Tarski's Euclidean Axiom. Archive of Formal Proofs, October 2012.
- [10] Timothy James McKenzie Makarios. A mechanical verification of the independence of Tarski's Euclidean Axiom. Victoria University of Wellington, New Zealand, 2012. Master's thesis.
- [11] Jürgen Richter-Gebert. Perspectives on projective geometry: a guided tour through real and complex geometry. Springer Science & Business Media, 2011.

Received March 17, 2017