Differentiability of Polynomials over Reals

Artur Korniłowicz
Institute of Informatics
University of Białystok
Poland

Summary. In this article, we formalize in the Mizar system [3] the notion of the derivative of polynomials over the field of real numbers [4. To define it, we use the derivative of functions between reals and reals (9).

MSC: 26A24 03B35
Keywords: differentiation of real polynomials; derivative of real polynomials
MML identifier: POLYDIFF, version: 8.1.05 5.40.1286

1. Preliminaries

From now on c denotes a complex, r denotes a real number, m, n denote natural numbers, and f denotes a complex-valued function.

Now we state the propositions:
(1) $0+f=f$.
(2) $f-0=f$.

Let f be a complex-valued function. Observe that $0+f$ reduces to f and $f-0$ reduces to f.

Now we state the propositions:
(3) $c+f=(\operatorname{dom} f \longmapsto c)+f$.
(4) $f-c=f-(\operatorname{dom} f \longmapsto c)$.
(5) $c \cdot f=(\operatorname{dom} f \longmapsto c) \cdot f$.
(6) $f+(\operatorname{dom} f \longmapsto 0)=f$. The theorem is a consequence of (3).
(7) $\quad f-(\operatorname{dom} f \longmapsto 0)=f$. The theorem is a consequence of (4).
(8) $\square^{0}=\mathbb{R} \longmapsto 1$.

Proof: Reconsider $s=1$ as an element of $\mathbb{R} . \square^{0}=\mathbb{R} \longmapsto s$ by [8, (34)], [10, (7)].

2. Differentiability of Real Functions

One can check that every function from \mathbb{R} into \mathbb{R} which is differentiable is also continuous.

Let f be a differentiable function from \mathbb{R} into \mathbb{R}. The functor f^{\prime} yielding a function from \mathbb{R} into \mathbb{R} is defined by the term
(Def. 1) $\quad f_{\uparrow \mathbb{R}}^{\prime}$.
Now we state the propositions:
(9) Let us consider a function f from \mathbb{R} into \mathbb{R}. Then f is differentiable if and only if for every r, f is differentiable in r.
(10) Let us consider a differentiable function f from \mathbb{R} into \mathbb{R}. Then $f^{\prime}(r)=$ $f^{\prime}(r)^{1}$.
Let f be a function from \mathbb{R} into \mathbb{R}. Observe that f is differentiable if and only if the condition (Def. 2) is satisfied.
(Def. 2) for every r, f is differentiable in r.
Let us note that every function from \mathbb{R} into \mathbb{R} which is constant is also differentiable.

Now we state the proposition:
(11) Let us consider a constant function f from \mathbb{R} into \mathbb{R}. Then $f^{\prime}=\mathbb{R} \longmapsto 0$. Proof: Reconsider $z=0$ as an element of \mathbb{R}. $f^{\prime}=\mathbb{R} \longmapsto z$ by [9, (22)], [10, (7)].
One can verify that $\mathrm{id}_{\mathbb{R}}$ is differentiable as a function from \mathbb{R} into \mathbb{R}.
Now we state the proposition:
(12) $\quad \operatorname{id}_{\mathbb{R}}^{\prime}=\mathbb{R} \longmapsto 1$.

Proof: Set $f=\operatorname{id}_{\mathbb{R}}$. Reconsider $z=1$ as an element of $\mathbb{R} . f^{\prime}=\mathbb{R} \longmapsto z$ by [9, (17)], [10, (7)].
Let us consider n. One can verify that \square^{n} is differentiable.
Now we state the proposition:
(13) $\quad\left(\square^{n}\right)^{\prime}=n \cdot\left(\square^{n-1}\right)$.

From now on f, g denote differentiable functions from \mathbb{R} into \mathbb{R}.

[^0]Let us consider f and g. Let us observe that $f+g$ is differentiable as a function from \mathbb{R} into \mathbb{R} and $f-g$ is differentiable as a function from \mathbb{R} into \mathbb{R} and $f \cdot g$ is differentiable as a function from \mathbb{R} into \mathbb{R}.

Let us consider r. One can verify that $r+f$ is differentiable as a function from \mathbb{R} into \mathbb{R} and $r \cdot f$ is differentiable as a function from \mathbb{R} into \mathbb{R} and $f-r$ is differentiable as a function from \mathbb{R} into \mathbb{R} and $-f$ is differentiable as a function from \mathbb{R} into \mathbb{R} and f^{2} is differentiable as a function from \mathbb{R} into \mathbb{R}.

Now we state the propositions:
(14) $(f+g)^{\prime}=f^{\prime}+g^{\prime}$. The theorem is a consequence of (9) and (10).
(15) $(f-g)^{\prime}=f^{\prime}-g^{\prime}$. The theorem is a consequence of (9) and (10).
(16) $(f \cdot g)^{\prime}=g \cdot f^{\prime}+f \cdot g^{\prime}$. The theorem is a consequence of (9) and (10).
(17) $(r+f)^{\prime}=f^{\prime}$. The theorem is a consequence of (11), (3), (14), and (6).
(18) $(f-r)^{\prime}=f^{\prime}$. The theorem is a consequence of (11), (4), (15), and (7).
(19) $(r \cdot f)^{\prime}=r \cdot f^{\prime}$. The theorem is a consequence of (9) and (10).
(20) $(-f)^{\prime}=-f^{\prime}$.

3. Polynomials

In the sequel L denotes a non empty zero structure and x denotes an element of L.

Now we state the proposition:
(21) Let us consider a (the carrier of L)-valued function f, and an object a. Then Support $(f+\cdot(a, x)) \subseteq \operatorname{Support} f \cup\{a\}$. Proof: $a=z$ or $z \in \operatorname{Support} f$ by [2, (32), (30)].
Let us consider L and x. Let f be a finite-Support sequence of L and a be an object. Observe that $f+\cdot(a, x)$ is finite-Support as a sequence of L.

Now we state the proposition:
(22) Let us consider a polynomial p over L. If $p \neq \mathbf{0}$. L, then len $p-^{\prime} 1=$ len $p-1$.
Let L be a non empty zero structure and x be an element of L. Let us note that $\langle x\rangle$ is constant and $\left\langle x, 0_{L}\right\rangle$ is constant.

Now we state the proposition:
(23) Let us consider a non empty zero structure L, and a constant polynomial p over L. Then
(i) $p=\mathbf{0} . L$, or
(ii) $p=\langle p(0)\rangle$.

Let us consider L, x, and n. The functor $\operatorname{seq}(n, x)$ yielding a sequence of L is defined by the term
(Def. 3) 0. $L+\cdot(n, x)$.
Observe that $\operatorname{seq}(n, x)$ is finite-Support.
Now we state the propositions:
(24) $\quad(\operatorname{seq}(n, x))(n)=x$.
(25) If $m \neq n$, then $(\operatorname{seq}(n, x))(m)=0_{L}$.
(26) the length of $\operatorname{seq}(n, x)$ is at most $n+1$.
(27) If $x \neq 0_{L}$, then lenseq $(n, x)=n+1$.

Proof: Set $p=\operatorname{seq}(n, x)$. For every m such that the length of p is at most m holds $n+1 \leqslant m$ by (24), [1, (13)].
(28) $\operatorname{seq}\left(n, 0_{L}\right)=\mathbf{0} . L$. The theorem is a consequence of (24).
(29) Let us consider a right zeroed, non empty additive loop structure L, and elements x, y of L. Then $\operatorname{seq}(n, x)+\operatorname{seq}(n, y)=\operatorname{seq}(n, x+y)$. The theorem is a consequence of (24) and (25).
(30) Let us consider an add-associative, right zeroed, right complementable, non empty additive loop structure L, and an element x of L. Then $-\operatorname{seq}(n, x)=\operatorname{seq}(n,-x)$. The theorem is a consequence of (24) and (25).
(31) Let us consider an add-associative, right zeroed, right complementable, non empty additive loop structure L, and elements x, y of L. Then $\operatorname{seq}(n, x)-\operatorname{seq}(n, y)=\operatorname{seq}(n, x-y)$. The theorem is a consequence of (30) and (29).
Let L be a non empty zero structure and p be a sequence of L. Let us consider n. The functor $p \upharpoonright n$ yielding a sequence of L is defined by the term
(Def. 4) $p+\cdot\left(n, 0_{L}\right)$.
Let p be a polynomial over L. Let us note that $p \upharpoonright n$ is finite-Support.
Let us consider a non empty zero structure L and a sequence p of L. Now we state the propositions:
(32) $\quad(p \upharpoonright n)(n)=0_{L}$.
(33) If $m \neq n$, then $(p \upharpoonright n)(m)=p(m)$.

Now we state the proposition:
(34) Let us consider a non empty zero structure L. Then $\mathbf{0} . L \upharpoonright n=\mathbf{0} . L$. The theorem is a consequence of (32).
Let L be a non empty zero structure. Let us consider n. One can verify that $0 . L \upharpoonright n$ reduces to $0 . L$.

Let us consider a non empty zero structure L and a polynomial p over L. Now we state the propositions:
(35) If $n>\operatorname{len} p-^{\prime} 1$, then $p \upharpoonright n=p$. The theorem is a consequence of (32).
(36) If $p \neq \mathbf{0} . L$, then $\operatorname{len}\left(p \upharpoonright\left(\operatorname{len} p-{ }^{\prime} 1\right)\right)<\operatorname{len} p$.

Proof: Set $m=\operatorname{len} p-^{\prime} 1$. $m=\operatorname{len} p-1$. the length of $p \upharpoonright m$ is at most len p by [2, (32)], [7, (8)].
Now we state the proposition:
(37) Let us consider an add-associative, right zeroed, right complementable, non empty additive loop structure L, and a polynomial p over L. Then $p \upharpoonright\left(\operatorname{len} p-{ }^{\prime} 1\right)+$ Leading-Monomial $p=p$. The theorem is a consequence of (32).
Let L be a non empty zero structure and p be a constant polynomial over L. Observe that Leading-Monomial p is constant.

Now we state the proposition:
(38) Let us consider an add-associative, right zeroed, right complementable, distributive, unital, non empty double loop structure L, and elements x, y of L. Then $\operatorname{eval}(\operatorname{seq}(n, x), y)=(\operatorname{seq}(n, x))(n) \cdot \operatorname{power}(y, n)$. The theorem is a consequence of $(28),(27)$, and (25).

4. Differentiability of Polynomials over Reals

In the sequel p, q denote polynomials over \mathbb{R}_{F}.
Now we state the propositions:
(39) Let us consider an element r of \mathbb{R}_{F}. Then $\operatorname{power}(r, n)=r^{n}$.

Proof: Define \mathcal{P} [natural number] $\equiv \operatorname{power}\left(r, \$_{1}\right)=r^{\$_{1}}$. For every natural number $n, \mathcal{P}[n]$ from [1, Sch. 2].
(40) $\square^{n}=\operatorname{FPower}\left(1_{\mathbb{R}_{\mathrm{F}}}, n\right)$.

Proof: Reconsider $f=\operatorname{FPower}\left(1_{\mathbb{R}_{F}}, n\right)$ as a function from \mathbb{R} into \mathbb{R}. $\square^{n}=f$ by [8, (36)], (39).
Let us consider an element r of \mathbb{R}_{F}. Now we state the propositions:
(41) $\operatorname{FPower}(r, n+1)=\operatorname{FPower}(r, n) \cdot \operatorname{id}_{\mathbb{R}}$.
(42) $\operatorname{FPower}(r, n)$ is a differentiable function from \mathbb{R} into \mathbb{R}.

Proof: Define \mathcal{P} [natural number] $\equiv \operatorname{FPower}\left(r, \$_{1}\right)$ is a differentiable function from \mathbb{R} into $\mathbb{R} . \mathcal{P}[0]$ by [6, (66)]. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number $n, \mathcal{P}[n]$ from [1, Sch. 2]. \square
(43) power $(r, n)=\left(\square^{n}\right)(r)$. The theorem is a consequence of (40).

Let us consider p. The functor p^{\prime} yielding a sequence of \mathbb{R}_{F} is defined by
(Def. 5) for every natural number n, it $(n)=p(n+1) \cdot(n+1)$.
Note that p^{\prime} is finite-Support.
Now we state the propositions:
(44) If $p \neq \mathbf{0} \cdot \mathbb{R}_{\mathrm{F}}$, then len $p^{\prime}=\operatorname{len} p-1$.

Proof: Set $x=\operatorname{len} p-1$. Set $d=p^{\prime}$. the length of d is at most x by [7, (8)]. For every n such that the length of d is at most n holds $x \leqslant n$ by [11, (7)], [7, (10)], [1, (21)].
(45) If $p \neq \mathbf{0} \cdot \mathbb{R}_{F}$, then len $p=\operatorname{len} p^{\prime}+1$. The theorem is a consequence of (44).
(46) Let us consider a constant polynomial p over \mathbb{R}_{F}. Then $p^{\prime}=\mathbf{0} \cdot \mathbb{R}_{\mathrm{F}}$. The theorem is a consequence of (45).
(47) $(p+q)^{\prime}=p^{\prime}+q^{\prime}$.
(48) $(-p)^{\prime}=-p^{\prime}$.
(49) $(p-q)^{\prime}=p^{\prime}-q^{\prime}$. The theorem is a consequence of (47) and (48).
(50) Leading-Monomial $p^{\prime}=\mathbf{0} \cdot \mathbb{R}_{\mathrm{F}}+\cdot\left(\operatorname{len} p-^{\prime} 2, p\left(\operatorname{len} p-^{\prime} 1\right) \cdot\left(\operatorname{len} p-^{\prime} 1\right)\right)$. Proof: Set $l=$ Leading-Monomial p. Set $m=\operatorname{len} p-^{\prime} 1$. Set $k=\operatorname{len} p-^{\prime} 2$. Reconsider $a=p(m) \cdot m$ as an element of \mathbb{R}_{F}. Set $f=\mathbf{0} . F+\cdot(k, a) . l^{\prime}=f$ by [1, (53)], [2, (31), (32)], [10, (7)].
(51) Let us consider elements r, s of \mathbb{R}_{F}. Then $\langle r, s\rangle^{\prime}=\langle s\rangle$.

Let us consider p. The functor $\operatorname{Eval}(p)$ yielding a function from \mathbb{R} into \mathbb{R} is defined by the term
(Def. 6) Polynomial-Function $\left(\mathbb{R}_{F}, p\right)$.
Let us note that $\operatorname{Eval}(p)$ is differentiable.
Now we state the propositions:
(52) $\operatorname{Eval}\left(\mathbf{0} \cdot \mathbb{R}_{F}\right)=\mathbb{R} \longmapsto 0$.

Proof: $\operatorname{Eval}(\mathbf{0} . F)=\mathbb{R} \longmapsto 0(\in \mathbb{R})$ by [5, (17)], [10, (7)].
(53) Let us consider an element r of \mathbb{R}_{F}. Then $\operatorname{Eval}(\langle r\rangle)=\mathbb{R} \longmapsto r$.

Proof: $\operatorname{Eval}(\langle r\rangle)=\mathbb{R} \longmapsto r(\in \mathbb{R})$ by [6, (37)], [10, (7)].
(54) If p is constant, then $\operatorname{Eval}(p)^{\prime}=\mathbb{R} \longmapsto 0$. The theorem is a consequence of (23), (52), and (11).
(55) $\operatorname{Eval}(p+q)=\operatorname{Eval}(p)+\operatorname{Eval}(q)$.
(56) $\operatorname{Eval}(-p)=-\operatorname{Eval}(p)$.
(57) $\operatorname{Eval}(p-q)=\operatorname{Eval}(p)-\operatorname{Eval}(q)$. The theorem is a consequence of (55) and (56).
(58) $\operatorname{Eval}($ Leading-Monomial $p)=\operatorname{FPower}\left(p\left(\operatorname{len} p-^{\prime} 1\right)\right.$, len $\left.p-^{\prime} 1\right)$.

Proof: Set $l=$ Leading-Monomial p. Set $m=\operatorname{len} p-^{\prime} 1$. Reconsider $f=$ $\operatorname{FPower}(p(m), m)$ as a function from \mathbb{R} into $\mathbb{R} . \operatorname{Eval}(l)=f$ by [5, (22)].
(59) $\quad \operatorname{Eval}($ Leading-Monomial $p)=p\left(\operatorname{len} p-^{\prime} 1\right) \cdot\left(\square^{\operatorname{len} p-^{\prime} 1}\right)$.

Proof: Set $l=$ Leading-Monomial p. Set $m=\operatorname{len} p-^{\prime} 1$. Set $f=p(m)$. $\left(\square^{m}\right) . \operatorname{Eval}(l)=f$ by (39), [8, (36)], [5, (22)].
(60) Let us consider an element r of \mathbb{R}_{F}. Then $\operatorname{Eval}(\operatorname{seq}(n, r))=r \cdot\left(\square^{n}\right)$. The theorem is a consequence of (24), (43), and (38).
(61) $\operatorname{Eval}(p)^{\prime}=\operatorname{Eval}\left(p^{\prime}\right)$.

Proof: Define \mathcal{P} [natural number] \equiv for every p such that len $p \leqslant \$_{1}$ holds $\operatorname{Eval}(p)^{\prime}=\operatorname{Eval}\left(p^{\prime}\right) . \mathcal{P}[0]$ by [5, (5)], (46), (52), (54). If $\mathcal{P}[n]$, then $\mathcal{P}[n+1]$ by (36), [5, (3)], [1, (13)], (37). $\mathcal{P}[n]$ from [1, Sch. 2].
Let us consider p. Let us observe that $\operatorname{Eval}(p)^{\prime}$ is differentiable.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions Formalized Mathematics, 5(4):485-492, 1996.
[3] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi 10.1007/s10817-015-9345-1
[4] Kazimierz Kuratowski. Rachunek różniczkowy i catkowy - funkcje jednej zmiennej. Biblioteka Matematyczna. PWN - Warszawa (in polish), 1964.
[5] Robert Milewski. The evaluation of polynomials Formalized Mathematics, 9(2):391-395, 2001.
[6] Robert Milewski. Fundamental theorem of algebra Formalized Mathematics, 9(3):461470, 2001.
[7] Michał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring, Formalized Mathematics, $2(\mathbf{1}): 97-104,1991$.
[8] Konrad Raczkowski. Integer and rational exponents Formalized Mathematics, 2(1):125130, 1991.
[9] Konrad Raczkowski and Paweł Sadowski. Real function differentiability Formalized Mathematics, 1(4):797-801, 1990.
[10] Andrzej Trybulec. Binary operations applied to functions Formalized Mathematics, 1 (2):329-334, 1990.
[11] Michał J. Trybulec. Integers Formalized Mathematics, 1(3):501-505, 1990.
Received February 23, 2017

[^0]: ${ }^{1}$ Left-side $f^{\prime}(r)$ is the value of the derivative defined in this article for differentiable functions $f: \mathbb{R} \mapsto \mathbb{R}$, and right-side $f^{\prime}(r)$ is the value of the derivative defined for partial functions in 9 .

