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Algebraic Numbers
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Summary. This article provides definitions and examples upon an integral
element of unital commutative rings. An algebraic number is also treated as
consequence of a concept of “integral”. Definitions for an integral closure, an
algebraic integer and a transcendental numbers [14], [1], [10] and [7] are included
as well. As an application of an algebraic number, this article includes a formal
proof of a ring extension of rational number field Q induced by substitution of
an algebraic number to the polynomial ring of Q[x] turns to be a field.
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1. Preliminaries

From now on i, j denote natural numbers and A, B denote rings.
Now we state the propositions:

(1) Let us consider rings L1, L2, L3. Suppose L1 is a subring of L2 and L2
is a subring of L3. Then L1 is a subring of L3.

(2) FQ is a subfield of CF.
(3) FQ is a subring of CF.
(4) ZR is a subring of CF.
Let us consider elements x, y of B and elements x1, y1 of A. Now we state

the propositions:

(5) If A is a subring of B and x = x1 and y = y1, then x+ y = x1 + y1.

(6) If A is a subring of B and x = x1 and y = y1, then x · y = x1 · y1.
Let c be a complex. Observe that c(∈ CF) reduces to c.
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2. Extended Evaluation Function

Let A, B be rings, p be a polynomial over A, and x be an element of B. The
functor ExtEval(p, x) yielding an element of B is defined by

(Def. 1) there exists a finite sequence F of elements of B such that it =
∑
F and

lenF = len p and for every element n of N such that n ∈ domF holds
F (n) = p(n−′ 1)(∈ B) · powerB(x, n−′ 1).

Now we state the proposition:

(7) Let us consider an element n of N, rings A, B, and an element z of A.
Suppose A is a subring of B. Then powerB(z(∈ B), n) = powerA(z, n)(∈
B). The theorem is a consequence of (6).

Let us consider elements x1, x2 of A. Now we state the propositions:

(8) If A is a subring of B, then x1(∈ B) + x2(∈ B) = (x1 + x2)(∈ B). The
theorem is a consequence of (5).

(9) If A is a subring of B, then x1(∈ B) · x2(∈ B) = (x1 · x2)(∈ B). The
theorem is a consequence of (6).

(10) Let us consider a finite sequence F of elements of A, and a finite sequence
G of elements of B. If A is a subring of B and F = G, then (

∑
F )(∈ B) =∑

G.
Proof: Define P[natural number] ≡ for every finite sequence F of ele-
ments ofA for every finite sequenceG of elements ofB such that lenF = $1
and F = G holds (

∑
F )(∈ B) =

∑
G. P[0] by [13, (43)]. For every natural

number n such that P[n] holds P[n + 1] by [4, (4)], [5, (3)], [4, (59)], [3,
(11)]. For every natural number n, P[n] from [3, Sch. 2]. �

(11) Let us consider a natural number n, an element x of A, and a polynomial
p over A. Suppose A is a subring of B. Then p(n−′ 1)(∈ B) · powerB(x(∈
B), n −′ 1) = (p(n −′ 1) · powerA(x, n −′ 1))(∈ B). The theorem is a con-
sequence of (9) and (7).

(12) Let us consider an element x of A, and a polynomial p over A. Suppose
A is a subring of B. Then ExtEval(p, x(∈ B)) = (eval(p, x))(∈ B).
Proof: Consider F1 being a finite sequence of elements of B such that
ExtEval(p, x(∈ B)) =

∑
F1 and lenF1 = len p and for every element n

of N such that n ∈ domF1 holds F1(n) = p(n −′ 1)(∈ B) · powerB(x(∈
B), n−′ 1). Consider F2 being a finite sequence of elements of A such that
eval(p, x) =

∑
F2 and lenF2 = len p and for every element n of N such

that n ∈ domF2 holds F2(n) = p(n −′ 1) · powerA(x, n −′ 1). F1 = F2 by
[12, (29)], [5, (3)], (19). �

(13) Let us consider an element x of B. Then ExtEval(0. A, x) = 0B.
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(14) Let us consider non degenerated rings A, B, and an element x of B. If
A is a subring of B, then ExtEval(1. A, x) = 1B.

(15) Let us consider an element x of B, and polynomials p, q over A. Suppose
A is a subring ofB. Then ExtEval(p+q, x) = ExtEval(p, x)+ExtEval(q, x).
The theorem is a consequence of (8).

(16) Let us consider polynomials p, q over A. Suppose A is a subring of B
and len p > 0 and len q > 0. Let us consider an element x of B. Then
ExtEval(Leading-Monomial p ∗ Leading-Monomial q, x) = (p(len p −′ 1) ·
q(len q −′ 1))(∈ B) · powerB(x, len p+ len q −′ 2). The theorem is a conse-
quence of (13).

(17) Let us consider a polynomial p over A, and an element x of B. Suppose A
is a subring of B. Then ExtEval(Leading-Monomial p, x) = p(len p−′ 1)(∈
B) · powerB(x, len p−′ 1). The theorem is a consequence of (13).

Let us consider a commutative ring B, polynomials p, q over A, and an ele-
ment x of B. Now we state the propositions:

(18) SupposeA is a subring ofB. Then ExtEval(Leading-Monomial p∗Leading-
Monomial q, x) = ExtEval(Leading-Monomial p, x)·ExtEval(Leading-Mono-
mial q, x). The theorem is a consequence of (16), (9), (17), and (13).

(19) Suppose A is a subring of B. Then ExtEval(Leading-Monomial p∗q, x) =
ExtEval(Leading-Monomial p, x) · ExtEval(q, x).
Proof: Set p = Leading-Monomial p1. Define P[natural number] ≡ for
every polynomial q over A such that len q = $1 holds ExtEval(p ∗ q, x) =
ExtEval(p, x) · ExtEval(q, x). For every natural number k such that for
every natural number n such that n < k holds P[n] holds P[k] by [9, (16)],
[8, (31)], (15), (18). For every natural number n, P[n] from [3, Sch. 4]. �

(20) IfA is a subring ofB, then ExtEval(p∗q, x) = ExtEval(p, x)·ExtEval(q, x).
Proof: Define P[natural number] ≡ for every polynomial p over A such
that len p = $1 holds ExtEval(p ∗ q, x) = ExtEval(p, x) ·ExtEval(q, x). For
every natural number k such that for every natural number n such that
n < k holds P[n] holds P[k] by [9, (16)], [8, (32)], (15), (19). For every
natural number n, P[n] from [3, Sch. 4]. �

(21) Let us consider an element x of B, and an element z0 of A. Suppose
A is a subring of B. Then ExtEval(〈z0〉, x) = z0(∈ B). The theorem is
a consequence of (13).

(22) Let us consider an element x of B, and elements z0, z1 of A. Suppose A
is a subring of B. Then ExtEval(〈z0, z1〉, x) = z0(∈ B) + z1(∈ B) · x. The
theorem is a consequence of (13).
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3. Integral Element and Algebraic Numbers

Let A, B be rings and x be an element of B. We say that x is integral over
A if and only if

(Def. 2) there exists a polynomial f over A such that LC f = 1A and
ExtEval(f, x) = 0B.

Now we state the proposition:

(23) Let us consider a non degenerated ring A, and an element a of A. If
A is a subring of B, then a(∈ B) is integral over A. The theorem is
a consequence of (12).

Let A be a non degenerated ring and B be a ring. Assume A is a subring of
B. The integral closure over A in B yielding a non empty subset of B is defined
by the term

(Def. 3) {z, where z is an element of B : z is integral over A}.

Let c be a complex. We say that c is algebraic if and only if

(Def. 4) there exists an element x of CF such that x = c and x is integral over
FQ.

Let x be an element of CF. Note that x is algebraic if and only if the condition
(Def. 5) is satisfied.

(Def. 5) x is integral over FQ.

Let c be a complex. We say that c is algebraic integer if and only if

(Def. 6) there exists an element x of CF such that x = c and x is integral over
ZR.

Let x be an element of CF. Observe that x is algebraic integer if and only if
the condition (Def. 7) is satisfied.

(Def. 7) x is integral over ZR.

Let x be a complex. We introduce the notation x is transcendental as an
antonym for x is algebraic.

Note that every complex which is rational is also algebraic and there exists
a complex which is algebraic and there exists an element of CF which is algebraic
and every complex which is integer is also algebraic integer and there exists
a complex which is algebraic integer and there exists an element of CF which is
algebraic integer.

Let A, B be rings and x be an element of B. The functor AnnPoly(x,A)
yielding a non empty subset of PolyRing(A) is defined by the term

(Def. 8) {p, where p is a polynomial over A : ExtEval(p, x) = 0B}.

Now we state the propositions:
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(24) Let us consider rings A, B, an element w of B, and elements x, y of
PolyRing(A). Suppose A is a subring of B and x, y ∈ AnnPoly(w,A).
Then x+ y ∈ AnnPoly(w,A). The theorem is a consequence of (15).

(25) Let us consider a commutative ring B, an element z of B, and elements
p, x of PolyRing(A). Suppose A is a subring of B and x ∈ AnnPoly(z,A).
Then p · x ∈ AnnPoly(z,A). The theorem is a consequence of (20).

(26) Let us consider a commutative ring B, an element w of B, and elements
p, x of PolyRing(A). Suppose A is a subring of B and x ∈ AnnPoly(w,A).
Then x · p ∈ AnnPoly(w,A). The theorem is a consequence of (20).

(27) Let us consider a non degenerated ring A, a non degenerated commuta-
tive ring B, and an element w of B. Suppose A is a subring of B. Then
AnnPoly(w,A) is a proper ideal of PolyRing(A).
Proof: AnnPoly(w,A) is closed under addition. AnnPoly(w,A) is left
ideal. AnnPoly(w,A) is right ideal. AnnPoly(w,A) is proper by [8, (37)],
(14). �

4. Properties of Polynomial Ring over Principal Ideal Domain

From now on K, L denote fields.
Now we state the propositions:

(28) Let us consider fields K, L, and an element w of L. Suppose K is
a subring of L. Then there exists an element g of PolyRing(K) such that
{g}–ideal = AnnPoly(w,K). The theorem is a consequence of (27).

(29) Let us consider fields K, L, and an element z of L. Suppose z is integral
over K. Then AnnPoly(z,K) 6= {0PolyRing(K)}.
Proof: Consider f being a polynomial over K such that LC f = 1K and
ExtEval(f, z) = 0L. f /∈ {0PolyRing(K)} by [2, (47), (64)], [11, (7)]. �

(30) Let us consider a field K, and an element p of PolyRing(K). Suppose
p 6= 0.K. Then p is a non zero element of the carrier of PolyRing(K).

Let us consider fields K, L and an element w of L. Now we state the propo-
sitions:

(31) If K is a subring of L, then AnnPoly(w,K) is quasi-prime. The theorem
is a consequence of (20).

(32) If K is a subring of L and w is integral over K, then AnnPoly(w,K) is
prime. The theorem is a consequence of (31) and (27).

(33) Let us consider fields K, L, and an element z of L. Suppose K is a sub-
ring of L and z is integral over K. Then there exists an element f of
PolyRing(K) such that
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(i) f 6= 0.K, and

(ii) {f}–ideal = AnnPoly(z,K), and

(iii) f = NormPoly f .

The theorem is a consequence of (28), (29), and (30).

(34) Let us consider fields K, L, an element z of L, and elements f , g of
PolyRing(K). Suppose z is integral overK and {f}–ideal = AnnPoly(z,K)
and f = NormPoly f and {g}–ideal = AnnPoly(z,K) and g = NormPoly g.
Then f = g. The theorem is a consequence of (29) and (30).

Let K, L be fields and z be an element of L. Assume K is a subring of L and
z is integral over K. The minimal polynomial of z over K yielding an element
of the carrier of PolyRing(K) is defined by

(Def. 9) it 6= 0.K and {it}–ideal = AnnPoly(z,K) and it = NormPoly it .

Assume K is a subring of L and z is integral over K. The degree of algebraic
number z over K yielding an element of N is defined by the term

(Def. 10) deg(the minimal polynomial of z over K).

Let A, B be rings and x be an element of B. The functor HomExtEval(x,A)
yielding a function from PolyRing(A) into B is defined by

(Def. 11) for every polynomial p over A, it(p) = ExtEval(p, x).

Let x be an element of CF. Note that HomExtEval(x,FQ) is unity-preserving,
additive, and multiplicative.

Now we state the propositions:

(35) Let us consider an element x of CF.
Then CF is (PolyRing(FQ))-homomorphic.

(36) Let us consider an element x of B, and an object z.
If z ∈ rng HomExtEval(x,A), then z ∈ B.

Let x be an element of CF. The functor FQ(x) yielding a subset of CF is
defined by the term

(Def. 12) rng HomExtEval(x,FQ).

Let us note that FQ(x) is non empty.
Let us consider elements x, z1, z2 of CF. Now we state the propositions:

(37) If z1, z2 ∈ FQ(x), then z1 + z2 ∈ FQ(x). The theorem is a consequence
of (3) and (15).

(38) If z1, z2 ∈ FQ(x), then z1 · z2 ∈ FQ(x). The theorem is a consequence of
(3) and (20).

(39) Let us consider an element x of CF, and an element a of FQ. Then
a ∈ FQ(x). The theorem is a consequence of (3) and (21).
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Let x be an element of CF. The functor FQ-add(x) yielding a binary opera-
tion on FQ(x) is defined by the term

(Def. 13) +C � FQ(x).

The functor FQ-mult(x) yielding a binary operation on FQ(x) is defined by
the term

(Def. 14) ·C � FQ(x).

Let us consider an element x of CF and elements z, w of FQ(x). Now we
state the propositions:

(40) (FQ-add(x))(z, w) = z + w.

(41) (FQ-mult(x))(z, w) = z · w.

(42) Let us consider an element x of CF. Then 1CF(∈ FQ(x)) = 1CF . The
theorem is a consequence of (3) and (39).

(43) (−1FQ)(∈ CF) = −1CF . The theorem is a consequence of (3).

Let x be an element of CF. The functor Q[x] yielding a strict, non empty
double loop structure is defined by the term

(Def. 15) 〈FQ(x),FQ-add(x),FQ-mult(x), 1CF(∈ FQ(x)), 0CF(∈ FQ(x))〉.
Now we state the proposition:

(44) Let us consider an element x of CF. Then Q[x] is a ring.
Proof: Reconsider Z = 〈FQ(x),FQ-add(x),FQ-mult(x), 1CF(∈ FQ(x)),
0CF(∈ FQ(x))〉 as a non empty double loop structure. For every elements
v, w of Z, v +w = w + v. For every elements u, v, w of Z, (u+ v) +w =
u + (v + w). For every element v of Z, v + 0Z = v. Every element of Z
is right complementable by (36), [6, (9)], (39), (43). For every elements
a, b, v of Z, (a + b) · v = a · v + b · v. For every elements a, v, w of Z,
a · (v+w) = a · v+ a ·w and (v+w) · a = v · a+w · a. For every elements
a, b, v of Z, (a · b) · v = a · (b · v). For every element v of Z, v · 1Z = v and
1Z · v = v. �

Let x be an element of CF. One can verify that Q[x] is Abelian, add-
associative, right zeroed, right complementable, associative, well unital, and
distributive.

Let z be an element of CF. One can verify that Q[z] is integral domain-like,
commutative, and non degenerated.

Now we state the proposition:

(45) Let us consider an element x of CF. Then Q×Q ⊆ FQ(x)×FQ(x) ⊆ C×
C. The theorem is a consequence of (39).

Let us consider an element x of CF. Now we state the propositions:

(46) The addition of FQ = (the addition of Q[x]) � Q. The theorem is a con-
sequence of (45).
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(47) The multiplication of FQ = (the multiplication of Q[x]) � Q. The the-
orem is a consequence of (45).

(48) FQ is a subring of Q[x]. The theorem is a consequence of (46), (47), (42),
(3), and (39).

Let us consider elements f , g of PolyRing(K). Now we state the propositions:

(49) Suppose f 6= 0PolyRing(K) and {f}–ideal is prime and g /∈ {f}–ideal.
Then {f, g}–ideal = the carrier of PolyRing(K).

(50) Suppose f 6= 0PolyRing(K) and {f}–ideal is prime and g /∈ {f}–ideal.
Then {f}–ideal and {g}–ideal are co-prime. The theorem is a consequence
of (49).

(51) Let us consider an element x of CF, and an element a of Q[x]. Then there
exists an element g of PolyRing(FQ) such that a = (HomExtEval(x,FQ))(g).

Let us consider elements x, a of CF. Now we state the propositions:

(52) Suppose a 6= 0CF and a ∈ the carrier of Q[x]. Then there exists an ele-
ment g of PolyRing(FQ) such that

(i) g /∈ AnnPoly(x,FQ), and

(ii) a = (HomExtEval(x,FQ))(g).

The theorem is a consequence of (51).

(53) Suppose x is algebraic and a 6= 0CF and a ∈ the carrier of Q[x]. Then
there exist elements f , g of PolyRing(FQ) such that

(i) {f}–ideal = AnnPoly(x,FQ), and

(ii) g /∈ AnnPoly(x,FQ), and

(iii) a = (HomExtEval(x,FQ))(g), and

(iv) {f}–ideal and {g}–ideal are co-prime.

The theorem is a consequence of (28), (3), (52), (32), (29), and (50).

(54) Suppose x is algebraic and a 6= 0CF and a ∈ the carrier of Q[x]. Then
there exists an element b of CF such that

(i) b ∈ the carrier of Q[x], and

(ii) a · b = 1CF .

The theorem is a consequence of (53), (3), (14), (15), and (20).

(55) Let us consider an element x of CF. If x is algebraic, then Q[x] is a field.
The theorem is a consequence of (54), (41), and (42).
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