

Chebyshev Distance

Roland Coghetto Rue de la Brasserie 5 7100 La Louvière, Belgium

Summary. In [21], Marco Riccardi formalized that $\mathbb{R}N$ -basis n is a basis (in the algebraic sense defined in [26]) of \mathcal{E}_T^n and in [20] he has formalized that \mathcal{E}_T^n is second-countable, we build (in the topological sense defined in [23]) a denumerable base of \mathcal{E}_T^n .

Then we introduce the *n*-dimensional intervals (interval in *n*-dimensional Euclidean space, pavé (borné) de \mathbb{R}^n [16], semi-intervalle (borné) de \mathbb{R}^n [22]). We conclude with the definition of Chebyshev distance [11].

MSC: 54E35 03B35

Keywords: second-countable; intervals; Chebyshev distance

MML identifier: SRINGS_5, version: 8.1.04 5.36.1267

1. Preliminaries

From now on n denotes a natural number, r, s denote real numbers, x, y denote elements of \mathcal{R}^n , p, q denote points of $\mathcal{E}^n_{\mathrm{T}}$, and e denotes a point of \mathcal{E}^n .

Now we state the propositions:

(1) |x - y| = |y - x|.

- (2) Let us consider a natural number *i*. If $i \in \text{Seg } n$, then $|x|(i) \in \mathbb{R}$.
- (3) Let us consider elements x, y of \mathbb{R} , and extended reals x_1, y_1 . If $x \leq x_1$ and $y \leq y_1$, then $x + y \leq x_1 + y_1$.
- (4) Let us consider real numbers a, c, and an extended real number b. Suppose a < b and $[a, b] \subseteq [a, c]$. Then b is a real number.
- (5) Let us consider a non empty set D, and a non empty subset D_1 of D. Then $D_1^n \subseteq D^n$.

121

(6) Let us consider a non empty set X, and a function f. Suppose $f = \text{Seg } n \longmapsto X$. Then f is a non-empty, n-element finite sequence.

Let n be a natural number. The functor $\mathbb{R}(n)$ yielding a non-empty, nelement finite sequence is defined by the term

(Def. 1) Seg $n \mapsto \mathbb{R}$.

Now we state the propositions:

- (7) $\mathbb{R}(n) = \operatorname{Seg} n \longmapsto \operatorname{the carrier of } \mathbb{R}^1.$
- (8) $\prod (\operatorname{Seg} n \longmapsto \mathbb{R}) = \mathcal{R}^n.$
- (9) $\prod \mathbb{R}(n) = \mathcal{R}^n$.
- (10) Let us consider a set X. Then $\prod (\text{Seg } n \longmapsto X) = X^n$.
- (11) Let us consider a non empty set D, and an n-tuple x of D. Then $x \in D^{\operatorname{Seg} n}$.
- (12) Let us consider a subset O_1 of \mathcal{E}^n_T , and a subset O_2 of $(\mathcal{E}^n)_{top}$. If $O_1 = O_2$, then O_1 is open iff O_2 is open.
- (13) Suppose e = p. Then the set of all OpenHypercube $(e, \frac{1}{m})$ where m is a non zero element of \mathbb{N} = the set of all OpenHypercube $(p, \frac{1}{m})$ where m is a non zero element of \mathbb{N} .
- (14) If $q \in \text{OpenHypercube}(p, r)$, then $p \in \text{OpenHypercube}(q, r)$.
- (15) If $q \in \text{OpenHypercube}(p, \frac{r}{2})$, then $\text{OpenHypercube}(q, \frac{r}{2}) \subseteq \text{OpenHypercube}(p, r)$.

Let x be an element of $\mathbb{R} \times \mathbb{R}$. The functors: $(x)_1$ and $(x)_2$ yield elements of \mathbb{R} . Let n be a natural number and x be an element of $\mathcal{R}^n \times \mathcal{R}^n$. The functors: $(x)_1$ and $(x)_2$ yield elements of \mathcal{R}^n . Now we state the proposition:

(16) Let us consider an *n*-element finite sequence f of elements of $\mathbb{R} \times \mathbb{R}$. Then there exists an element x of $\mathcal{R}^n \times \mathcal{R}^n$ such that for every natural number i such that $i \in \text{Seg } n$ holds $(x)_1(i) = (f_i)_1$ and $(x)_2(i) = (f_i)_2$.

2. The Set of n-Tuples of Rational Numbers

Let us consider n. The functor Q^n yielding a set of finite sequences of \mathbb{Q} is defined by the term

(Def. 2)
$$\mathbb{Q}^n$$
.

Now we state the proposition:

(17)
$$Q^0 = \{0\}.$$

One can check that \mathcal{Q}^0 is trivial.

Let us consider n. One can check that \mathcal{Q}^n is non empty and every element of \mathcal{Q}^n is *n*-element and \mathcal{Q}^n is countable. Let n be a positive natural number. Let us note that \mathcal{Q}^n is infinite and \mathcal{Q}^n is denumerable.

Now we state the proposition:

(18) \mathcal{Q}^n is a dense subset of $\mathcal{E}^n_{\mathrm{T}}$.

PROOF: Q^n is a subset of \mathcal{R}^n . Reconsider $R = Q^n$ as a subset of \mathcal{E}^n_T . For every subset Q of \mathcal{E}^n_T such that $Q \neq \emptyset$ and Q is open holds R meets Q by [10, (67)], (12), [15, (23)], [13, (39)]. \Box

Let us consider n. One can check that \mathcal{Q}^n is countable and dense as a subset of $\mathcal{E}^n_{\mathrm{T}}$.

3. A Countable Base of an n-Dimensional Euclidean Space

(VERSION 1: [20]):

Let n be a natural number. Let us observe that there exists a basis of $\mathcal{E}^n_{\mathrm{T}}$ which is countable.

Let us consider n and e. Note that OpenHypercubes e is countable.

The functor OpenHypercubes- $\mathbb{Q}(n)$ yielding a non empty set is defined by the term

(Def. 3) {OpenHypercubes q, where q is a point of $\mathcal{E}^n : q \in \mathcal{Q}^n$ }.

Let q be an element of \mathcal{Q}^n . The functor [@]q yielding a point of \mathcal{E}^n is defined by the term

(Def. 4) q.

Let q be an object. Assume $q \in Q^n$. The functor $\operatorname{object2Q}(q,n)$ yielding an element of Q^n is defined by the term

(Def. 5) q.

Let us note that OpenHypercubes- $\mathbb{Q}(n)$ is countable and \bigcup OpenHypercubes- $\mathbb{Q}(n)$ is countable.

Now we state the propositions:

- (19) \bigcup OpenHypercubes- $\mathbb{Q}(n)$ is an open family of subsets of $\mathcal{E}_{\mathrm{T}}^{n}$. The theorem is a consequence of (12).
- (20) Let us consider a non empty, open subset O of $\mathcal{E}_{\mathrm{T}}^{n}$. Then there exists an element p of \mathcal{Q}^{n} such that $p \in O$. The theorem is a consequence of (18).
- (21) Let us consider a family \mathcal{B} of subsets of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose $\mathcal{B} = \bigcup$ OpenHypercubes- $\mathbb{Q}(n)$. Then \mathcal{B} is quasi basis. PROOF: F is quasi basis by (12), [15, (23)], [10, (67)], (20). \Box

Let us consider n. Observe that $\bigcup \operatorname{OpenHypercubes-} \mathbb{Q}(n)$ is non empty.

The functor OpenHypercubesQUnion(n) yielding a countable, open family of subsets of \mathcal{E}_{T}^{n} is defined by the term

(Def. 6) \bigcup OpenHypercubes- $\mathbb{Q}(n)$.

Now we state the proposition:

(22) OpenHypercubes \mathbb{Q} Union $(n) = \{ OpenHypercube<math>(q, \frac{1}{m}),$

where q is a point of \mathcal{E}^n, m is a positive natural number $: q \in \mathcal{Q}^n$.

(VERSION 2):

Let n be a natural number. Observe that there exists a basis of $\mathcal{E}^n_{\mathrm{T}}$ which is countable.

Now we state the propositions:

- (23) OpenHypercubes \mathbb{Q} Union(n) is a countable basis of $\mathcal{E}^n_{\mathrm{T}}$.
- (24) Let us consider an open subset O of $\mathcal{E}^n_{\mathcal{T}}$. Then there exists a subset Y of OpenHypercubes \mathbb{Q} Union(n) such that
 - (i) Y is countable, and
 - (ii) $O = \bigcup Y$.

The theorem is a consequence of (21).

Let us consider an open, non empty subset O of $\mathcal{E}^n_{\mathrm{T}}$. Now we state the propositions:

(25) There exists a subset Y of OpenHypercubes QUnion(n) such that

- (i) Y is not empty, and
- (ii) $O = \bigcup Y$, and
- (iii) there exists a function g from \mathbb{N} into Y such that for every object x, $x \in O$ iff there exists an object y such that $y \in \mathbb{N}$ and $x \in g(y)$.

The theorem is a consequence of (24).

- (26) There exists a sequence s of OpenHypercubesQUnion(n) such that for every object $x, x \in O$ iff there exists an object y such that $y \in \mathbb{N}$ and $x \in s(y)$. The theorem is a consequence of (25).
- (27) There exists a sequence s of OpenHypercubes \mathbb{Q} Union(n) such that $O = \bigcup s$. The theorem is a consequence of (26).

4. The Set of All Left Open Real Bounded Intervals

The set of all left open real bounded intervals yielding a family of subsets of $\mathbb R$ is defined by the term

(Def. 7) the set of all]a, b] where a, b are real numbers.

Let us note that the set of all left open real bounded intervals is non empty. Now we state the propositions:

- (28) The set of all left open real bounded intervals $\subseteq \{I, \text{ where } I \text{ is a subset} of \mathbb{R} : I \text{ is left open interval}\}.$
- (29) The set of all left open real bounded intervals is \cap -closed and \setminus_{fp} -closed and has the empty element and countable cover.
- (30) The set of all left open real bounded intervals is a semiring of \mathbb{R} .

5. The Set of All Right Open Real Bounded Intervals

The set of all right open real bounded intervals yielding a family of subsets of $\mathbb R$ is defined by the term

(Def. 8) the set of all [a, b] where a, b are real numbers.

Observe that the set of all right open real bounded intervals is non empty. Now we state the propositions:

- (31) The set of all right open real bounded intervals $\subseteq \{I, \text{ where } I \text{ is a subset} of \mathbb{R} : I \text{ is right open interval}\}.$
- (32) The set of all right open real bounded intervals has the empty element.
- (33) (i) the set of all right open real bounded intervals is \cap -closed, and
 - (ii) the set of all right open real bounded intervals is f_{p} -closed and has the empty element.

The theorem is a consequence of (31), (32), and (4).

- (34) The set of all right open real bounded intervals has countable cover. PROOF: Define $\mathcal{F}[\text{object}, \text{object}] \equiv \$_1$ is an element of \mathbb{N} and $\$_2 \in \text{the set}$ of all right open real bounded intervals and there exists a real number xsuch that $x = \$_1$ and $\$_2 = [-x, x[$. For every object x such that $x \in \mathbb{N}$ there exists an object y such that $y \in \text{the set}$ of all right open real bounded intervals and $\mathcal{F}[x, y]$. Consider f being a function such that dom $f = \mathbb{N}$ and rng $f \subseteq$ the set of all right open real bounded intervals and for every object x such that $x \in \mathbb{N}$ holds $\mathcal{F}[x, f(x)]$ from [7, Sch. 6]. rng f is countable by [27, (4)], [14, (58)]. rng f is a cover of \mathbb{R} by [2, (2)], [12, (8)], [3, (13)], [17, (45)]. \Box
- (35) The set of all right open real bounded intervals is a semiring of \mathbb{R} .

6. FINITE PRODUCT OF LEFT OPEN INTERVALS

In the sequel n denotes a non zero natural number.

Let n be a non zero natural number. The functor LeftOpenIntervals(n) yielding a classical semiring family of $\mathbb{R}(n)$ is defined by the term

(Def. 9) Seg $n \mapsto$ (the set of all left open real bounded intervals).

Now we state the propositions:

- (36) LeftOpenIntervals $(n) = \text{Seg } n \mapsto \text{the set of all } [a, b]$ where a, b are real numbers.
- (37) MeasurableRectangleLeftOpenIntervals(n) is a semiring of \mathcal{R}^n . The theorem is a consequence of (8).

Let us consider an object x.

Let us assume that $x \in \text{MeasurableRectangleLeftOpenIntervals}(n)$. Now we state the propositions:

- (38) There exists a subset y of \mathcal{R}^n such that
 - (i) x = y, and
 - (ii) for every natural number i such that $i \in \text{Seg } n$ there exist real numbers a, b such that for every element t of \mathcal{R}^n such that $t \in y$ holds $t(i) \in]a, b]$.

The theorem is a consequence of (37).

(39) There exists a subset y of \mathcal{R}^n and there exists an *n*-element finite sequence f of elements of $\mathbb{R} \times \mathbb{R}$ such that x = y and for every element t of \mathcal{R}^n , $t \in y$ iff for every natural number i such that $i \in \text{Seg } n$ holds $t(i) \in](f_i)_1, (f_i)_2].$

PROOF: MeasurableRectangle LeftOpenIntervals(n) is a family of subsets of \mathcal{R}^n . Reconsider y = x as a subset of \mathcal{R}^n . Consider g being a function such that $x = \prod g$ and $g \in \prod$ LeftOpenIntervals(n). Define $\mathcal{P}[$ natural number, set $] \equiv$ there exists an element x of $\mathbb{R} \times \mathbb{R}$ such that $\$_2 = x$ and $g(\$_1) =](x)_1, (x)_2]$. For every natural number i such that $i \in \text{Seg } n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that $\mathcal{P}[i, d]$. There exists a finite sequence f_1 of elements of $\mathbb{R} \times \mathbb{R}$ such that len $f_1 = n$ and for every natural number i such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, f_{1i}]$ from [25, Sch. 1]. Consider f_1 being a finite sequence of elements of $\mathbb{R} \times \mathbb{R}$ such that len $f_1 = n$ and for every natural number i such that $i \in \text{Seg } n$ there exists an element x of $\mathbb{R} \times \mathbb{R}$ such that $f_{1i} = x$ and $g(i) =](x)_1, (x)_2]$. For every natural number isuch that $i \in \text{Seg } n$ holds $g(i) =](f_{1i})_1, (f_{1i})_2]$. For every element t of \mathcal{R}^n such that $t \in y$ for every natural number i such that $i \in \text{Seg } n$ holds $t(i) \in](f_{1i})_1, (f_{1i})_2]$. For every element t of \mathcal{R}^n such that $f \in \text{Seg } n$ holds $g(i) =](f_{1i})_1, (f_{1i})_2]$. For every natural number *i* such that $i \in \text{Seg } n$ holds $t(i) \in](f_{1i})_1, (f_{1i})_2]$ holds $t \in y$ by [6, (93)]. \Box

(40) There exists a subset y of \mathcal{R}^n and there exist elements a, b of \mathcal{R}^n such that x = y and for every object $s, s \in y$ iff there exists an element t of \mathcal{R}^n such that s = t and for every natural number i such that $i \in \text{Seg } n$ holds $t(i) \in [a(i), b(i)]$. The theorem is a consequence of (39) and (16).

Now we state the proposition:

(41) Let us consider a set x. Suppose $x \in$ MeasurableRectangleLeftOpenIntervals(n). Then there exist elements a, b of \mathcal{R}^n such that for every element t of $\mathcal{R}^n, t \in x$ iff for every natural number i such that $i \in \text{Seg } n$ holds $t(i) \in]a(i), b(i)]$. The theorem is a consequence of (39) and (16).

7. FINITE PRODUCT OF RIGHT OPEN INTERVALS

Let n be a non zero natural number. The functor RightOpenIntervals(n) yielding a classical semiring family of $\mathbb{R}(n)$ is defined by the term

```
(Def. 10) Seg n \mapsto (the set of all right open real bounded intervals).
```

From now on n denotes a non zero natural number.

Now we state the propositions:

- (42) RightOpenIntervals $(n) = \text{Seg } n \mapsto \text{the set of all } [a, b]$ where a, b are real numbers.
- (43) MeasurableRectangleRightOpenIntervals(n) is a semiring of \mathcal{R}^n . The theorem is a consequence of (8).

Let us consider an object x.

Let us assume that $x \in \text{MeasurableRectangleRightOpenIntervals}(n)$. Now we state the propositions:

- (44) There exists a subset y of \mathcal{R}^n such that
 - (i) x = y, and
 - (ii) for every natural number i such that $i \in \text{Seg } n$ there exist real numbers a, b such that for every element t of \mathcal{R}^n such that $t \in y$ holds $t(i) \in [a, b]$.

The theorem is a consequence of (43).

(45) There exists a subset y of \mathcal{R}^n and there exists an n-element finite sequence f of elements of $\mathbb{R} \times \mathbb{R}$ such that x = y and for every element t of \mathcal{R}^n , $t \in y$ iff for every natural number i such that $i \in \text{Seg } n$ holds $t(i) \in [(f_i)_1, (f_i)_2].$

PROOF: MeasurableRectangleRightOpenIntervals(n) is a family of subsets of \mathcal{R}^n . Reconsider y = x as a subset of \mathcal{R}^n . Consider g being a function

such that $x = \prod g$ and $g \in \prod$ RightOpenIntervals(n). Define \mathcal{P} [natural number, set] \equiv there exists an element x of $\mathbb{R} \times \mathbb{R}$ such that $\$_2 = x$ and $g(\$_1) = [(x)_1, (x)_2[$. For every natural number i such that $i \in \text{Seg } n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that $\mathcal{P}[i, d]$. There exists a finite sequence f_1 of elements of $\mathbb{R} \times \mathbb{R}$ such that len $f_1 = n$ and for every natural number i such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, f_{1i}]$ from [25, Sch. 1]. Consider f_1 being a finite sequence of elements of $\mathbb{R} \times \mathbb{R}$ such that len $f_1 = n$ and for every natural number i such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, 1]$ from [25, Sch. 1]. Consider f_1 being a finite sequence of elements of $\mathbb{R} \times \mathbb{R}$ such that len $f_1 = n$ and for every natural number i such that $i \in \text{Seg } n$ there exists an element x of $\mathbb{R} \times \mathbb{R}$ such that $f_{1i} = x$ and $g(i) = [(x)_1, (x)_2[$. For every natural number i such that $i \in \text{Seg } n$ holds $g(i) = [(f_{1i})_1, (f_{1i})_2[$. For every element t of \mathcal{R}^n such that $t \in y$ for every natural number i such that $i \in \text{Seg } n$ holds $t(i) \in [(f_{1i})_1, (f_{1i})_2[$. For every natural number i such that $i \in \text{Seg } n$ holds $t(i) \in [(f_{1i})_1, (f_{1i})_2[$ holds $t \in y$ by [6, (93)]. \Box

(46) There exists a subset y of \mathcal{R}^n and there exist elements a, b of \mathcal{R}^n such that x = y and for every object $s, s \in y$ iff there exists an element t of \mathcal{R}^n such that s = t and for every natural number i such that $i \in \text{Seg } n$ holds $t(i) \in [a(i), b(i)]$. The theorem is a consequence of (45) and (16).

Now we state the proposition:

(47) Let us consider a set x. Suppose $x \in$ MeasurableRectangleRightOpenIntervals(n). Then there exist elements a, b of \mathcal{R}^n such that for every element t of $\mathcal{R}^n, t \in x$ iff for every natural number i such that $i \in \text{Seg } n$ holds $t(i) \in [a(i), b(i)]$. The theorem is a consequence of (45) and (16).

8. *n*-Dimensional Product of Subset Family

In the sequel n denotes a natural number, X denotes a set, and S denotes a family of subsets of X.

Let us consider n and X. The functor $\operatorname{Product}(n, X)$ yielding a set is defined by

(Def. 11) for every object $f, f \in it$ iff there exists a function g such that $f = \prod g$ and $g \in \prod (\text{Seg } n \longmapsto X)$.

Now we state the propositions:

- (48) Product $(n, X) \subset 2^{(\bigcup \bigcup (\operatorname{Seg} n \longmapsto X))^{\operatorname{dom}(\operatorname{Seg} n \longmapsto X)}}$
- (49) Product(n, S) is a family of subsets of $\prod(\text{Seg } n \longmapsto X)$. PROOF: Reconsider $S_1 = \text{Product}(n, S)$ as a subset of $2^{(\bigcup \bigcup(\text{Seg } n \longmapsto S))^{\text{dom}(\text{Seg } n \longmapsto S)}}$. $S_1 \subseteq 2^{\prod(\text{Seg } n \longmapsto X)}$ by [1, (9)], [24, (13), (7)], [9, (77), (81)]. \square

- (50) Let us consider a non empty family S of subsets of X. Then $\operatorname{Product}(n, S) =$ the set of all $\prod f$ where f is an n-tuple of S. PROOF: $\operatorname{Product}(n, S) \subseteq$ the set of all $\prod f$ where f is an n-tuple of S by (10), [6, (131)]. the set of all $\prod f$ where f is an n-tuple of $S \subseteq \operatorname{Product}(n, S)$ by [6, (131)], (10). \Box
- (51) Let us consider a non zero natural number *n*. Then $\operatorname{Product}(n, X) \subseteq 2^{(\bigcup X)^{\operatorname{Seg} n}}$.

Let us consider a non zero natural number n, a non empty set X, and a non empty family S of subsets of X.

Let us assume that $S \neq \{\emptyset\}$. Now we state the propositions:

- (52) Product $(n, S) \subseteq 2^{X^{\text{Seg } n}}$. The theorem is a consequence of (51) and (5).
- (53) $\bigcup \operatorname{Product}(n, S) \subseteq X^{\operatorname{Seg} n}$. The theorem is a consequence of (52).

Let n be a natural number and X be a non empty set. Let us note that Product(n, X) is non empty.

Now we state the proposition:

(54) Let us consider a non empty set X, a non empty family S of subsets of X, and a subset x of $X^{\text{Seg }n}$. Then x is an element of Product(n, S) if and only if there exists an n-tuple s of S such that for every element t of $X^{\text{Seg }n}$, for every natural number i such that $i \in \text{Seg } n$ holds $t(i) \in s(i)$ iff $t \in x$.

9. The Set of All Closed Real Bounded Intervals

The set of all closed real bounded intervals yielding a family of subsets of \mathbb{R} is defined by the term

(Def. 12) the set of all [a, b] where a, b are real numbers.

Now we state the proposition:

(55) The set of all closed real bounded intervals = $\{I, \text{ where } I \text{ is a subset of } \mathbb{R} : I \text{ is closed interval} \}.$

Let us note that the set of all closed real bounded intervals is non empty. Now we state the propositions:

- (56) The set of all closed real bounded intervals is \cap -closed and has the empty element and countable cover. PROOF: The set of all closed real bounded intervals is \cap -closed. There exists a countable subset X of the set of all closed real bounded intervals such that X is a cover of \mathbb{R} by [27, (4)], [14, (58)], [2, (2)], [12, (8)]. \Box
- (57) Let us consider a natural number n. Then $\text{Seg } n \mapsto (\text{the set of all closed real bounded intervals})$ is an *n*-element finite sequence.

10. The Set of All Open Real Bounded Intervals

The set of all open real bounded intervals yielding a family of subsets of \mathbb{R} is defined by the term

(Def. 13) the set of all [a, b] where a, b are real numbers.

Now we state the proposition:

(58) The set of all open real bounded intervals $\subseteq \{I, \text{ where } I \text{ is a subset of } \mathbb{R} : I \text{ is open interval}\}.$

Let us observe that the set of all open real bounded intervals is non empty. Now we state the propositions:

- (59) The set of all open real bounded intervals is \cap -closed and has the empty element and countable cover. PROOF: The set of all open real bounded intervals is \cap -closed. There exists a countable subset X of the set of all open real bounded intervals such that X is a cover of \mathbb{R} by [27, (4)], [14, (58)], [2, (2)], [12, (8)]. \Box
- (60) Let us consider a natural number n. Then $\text{Seg } n \longmapsto$ (the set of all open real bounded intervals) is an n-element finite sequence.

11. *n*-Dimensional Subset Family of \mathbb{R}

From now on n denotes a natural number and S denotes a family of subsets of \mathbb{R} .

Now we state the proposition:

(61) Product(n, S) is a family of subsets of \mathcal{R}^n . The theorem is a consequence of (49) and (8).

Let us consider n and S. One can check that the functor $\operatorname{Product}(n, S)$ yields a family of subsets of \mathcal{R}^n . Now we state the propositions:

(62) Let us consider a non empty family S of subsets of \mathbb{R} , and a subset x of \mathcal{R}^n . Then x is an element of $\operatorname{Product}(n, S)$ if and only if there exists an n-tuple s of S such that for every element t of \mathcal{R}^n , for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in s(i)$ iff $t \in x$.

PROOF: If x is an element of $\operatorname{Product}(n, S)$, then there exists an n-tuple s of S such that for every element t of \mathcal{R}^n , for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in s(i)$ iff $t \in x$ by [6, (93)]. If there exists an n-tuple s of S such that for every element t of \mathcal{R}^n , for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in s(i)$ iff $t \in x$, then x is an element of $\operatorname{Product}(n, S)$ by [6, (93)]. \Box

(63) Let us consider a non zero natural number n, and an n-tuple s of the set of all closed real bounded intervals. Then there exist elements a, b of \mathcal{R}^n such that for every natural number i such that $i \in \text{Seg } n$ holds s(i) = [a(i), b(i)].

PROOF: $s \in (\text{the set of all closed real bounded intervals})^{\text{Seg }n}$. Consider f being a function such that s = f and dom f = Seg n and rng $f \subseteq \text{the set}$ of all closed real bounded intervals. Define $\mathcal{P}[\text{object}, \text{object}] \equiv \text{there exists}$ an element f of $\mathbb{R} \times \mathbb{R}$ such that $f = \$_2$ and $s(\$_1) = [(f)_1, (f)_2]$. For every natural number i such that $i \in \text{Seg }n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that $i \in \text{Seg }n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that $i \in \text{Seg }n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that $\ln f = n$ and for every natural number i such that $i \in \text{Seg }n$ holds $\mathcal{P}[i, f_i]$ from [25, Sch. 1]. Consider z being an element of $\mathcal{R}^n \times \mathcal{R}^n$ such that for every natural number i such that $i \in \text{Seg }n$ holds $(z)_1(i) = (f_i)_1$ and $(z)_2(i) = (f_i)_2$. Reconsider $a = (z)_1, b = (z)_2$ as an element of \mathcal{R}^n . For every natural number i such that $i \in \text{Seg }n$ holds s(i) = [a(i), b(i)]. \Box

(64) Let us consider a non zero natural number n, and an element x of Product(n, the set of all closed real bounded intervals). Then there exist elements a, b of \mathcal{R}^n such that for every element t of $\mathcal{R}^n, t \in x$ iff for every natural number i such that $i \in \text{Seg } n$ holds $t(i) \in [a(i), b(i)]$. The theorem is a consequence of (62) and (63).

Let us consider a non zero natural number n, a subset x of \mathcal{R}^n , and elements a, b of \mathcal{R}^n . Now we state the propositions:

(65) Suppose for every element t of \mathcal{R}^n , $t \in x$ iff for every natural number i such that $i \in \text{Seg } n$ holds $t(i) \in [a(i), b(i)]$. Then x is an element of Product(n, the set of all closed real bounded intervals).

PROOF: Define $\mathcal{P}[\text{object}, \text{object}] \equiv$ there exists a natural number n such that $\$_1 = n$ and $\$_2 = [a(n), b(n)]$. For every natural number i such that $i \in \text{Seg } n$ there exists an element d of the set of all closed real bounded intervals such that $\mathcal{P}[i, d]$. There exists a finite sequence g of elements of the set of all closed real bounded intervals such that $\mathcal{P}[i, d]$. There exists a finite sequence g of elements of the set of all closed real bounded intervals such that len g = n and for every natural number i such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, g_i]$ from [25, Sch. 1]. Consider g being a finite sequence of elements of the set of all closed real bounded intervals such that len g = n and for every natural number i such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, g_i]$. For every natural number i such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, g_i]$. For every natural number i such that $i \in \text{Seg } n$ holds g(i) = [a(i), b(i)]. There exists a function g such that $x = \prod g$ and $g \in \prod(\text{Seg } n \longmapsto (\text{the set of all closed real bounded intervals}))$ by [4, (89)], [24, (13), (7)], [1, (9)]. \Box

(66) Suppose for every element t of \mathcal{R}^n , $t \in x$ iff for every natural number

i such that $i \in \text{Seg } n$ holds $t(i) \in [a(i), b(i)]$. Then x is an element of Product(n, the set of all left open real bounded intervals).

PROOF: Define $\mathcal{P}[\text{object}, \text{object}] \equiv$ there exists a natural number n such that $\$_1 = n$ and $\$_2 =]a(n), b(n)]$. For every natural number i such that $i \in \text{Seg } n$ there exists an element d of the set of all left open real bounded intervals such that $\mathcal{P}[i, d]$. There exists a finite sequence g of elements of the set of all left open real bounded intervals such that $\mathcal{P}[i, d]$. There exists a finite sequence g of elements of the set of all left open real bounded intervals such that e = n and for every natural number i such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, g_i]$ from [25, Sch. 1]. Consider g being a finite sequence of elements of the set of all left open real bounded intervals such that e = n and for every natural number i such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, g_i]$. For every natural number i such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, g_i]$. For every natural number i such that $i \in \text{Seg } n$ holds g(i) =]a(i), b(i)]. There exists a function g such that $x = \prod g$ and $g \in \prod(\text{Seg } n \longmapsto (\text{the set of all left open real bounded intervals})$ by [4, (89)], [24, (13), (7)], [1, (9)]. \Box

(67) Suppose for every element t of \mathcal{R}^n , $t \in x$ iff for every natural number i such that $i \in \text{Seg } n$ holds $t(i) \in [a(i), b(i)]$. Then x is an element of Product(n, the set of all right open real bounded intervals). PROOF: Define $\mathcal{P}[\text{object}, \text{object}] \equiv \text{there exists a natural number } n$ such that $\$_1 = n$ and $\$_2 = [a(n), b(n)]$. For every natural number i such that $i \in \text{Seg } n$ there exists an element d of the set of all right open real bounded intervals such that $\mathcal{P}[i, d]$. There exists a finite sequence g of elements of the set of all right open real bounded intervals such that $\mathcal{P}[i, d]$. There exists a finite sequence g of elements of the set of all right open real bounded intervals such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, g_i]$ from [25, Sch. 1]. Consider g being a finite sequence of elements of the set of all right open real bounded intervals such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, g_i]$. For every natural number i such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, g_i]$. For every natural number i such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, g_i]$. For every natural number i such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, g_i]$. For every natural number i such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, g_i]$. For every natural number i such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, g_i]$. For every natural number i such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, g_i]$. For every natural number i such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, g_i]$. For every natural number i such that $i \in \text{Seg } n$ holds g(i) = [a(i), b(i)]. There exists a function g such that $x = \prod g$ and $g \in \prod(\text{Seg } n \longmapsto$ (the set of all right open real bounded intervals)) by [4, (89)], [24, (13), (7)], [1, (9)]. \Box

Now we state the propositions:

(68) Let us consider a non zero natural number n, and an n-tuple s of the set of all left open real bounded intervals. Then there exist elements a, b of \mathcal{R}^n such that for every natural number i such that $i \in \text{Seg } n$ holds s(i) =]a(i), b(i)].

PROOF: $s \in (\text{the set of all left open real bounded intervals})^{\text{Seg }n}$. Consider f being a function such that s = f and dom f = Seg n and rng $f \subseteq$ the set of all left open real bounded intervals. Define $\mathcal{P}[\text{object, object}] \equiv$ there exists an element f of $\mathbb{R} \times \mathbb{R}$ such that $f = \$_2$ and $s(\$_1) =](f)_1, (f)_2]$. For every natural number i such that $i \in \text{Seg }n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that $i \in \text{Seg }n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that $\mathcal{P}[i, d]$ by [7, (3)]. Consider f being a finite sequence of

elements of $\mathbb{R} \times \mathbb{R}$ such that len f = n and for every natural number i such that $i \in \text{Seg } n$ holds $\mathcal{P}[i, f_i]$ from [25, Sch. 1]. Consider z being an element of $\mathcal{R}^n \times \mathcal{R}^n$ such that for every natural number i such that $i \in \text{Seg } n$ holds $(z)_1(i) = (f_i)_1$ and $(z)_2(i) = (f_i)_2$. Reconsider $a = (z)_1, b = (z)_2$ as an element of \mathcal{R}^n . For every natural number i such that $i \in \text{Seg } n$ holds s(i) = [a(i), b(i)]. \Box

- (69) Let us consider a non zero natural number n, and an element x of $\operatorname{Product}(n, \text{the set of all left open real bounded intervals})$. Then there exist elements a, b of \mathcal{R}^n such that for every element t of $\mathcal{R}^n, t \in x$ iff for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in [a(i), b(i)]$. The theorem is a consequence of (62) and (68).
- (70) Let us consider a non zero natural number n, and an n-tuple s of the set of all right open real bounded intervals. Then there exist elements a, b of \mathcal{R}^n such that for every natural number i such that $i \in \text{Seg } n$ holds s(i) = [a(i), b(i)].

PROOF: $s \in (\text{the set of all right open real bounded intervals})^{\text{Seg }n}$. Consider f being a function such that s = f and dom f = Seg n and rng $f \subseteq \text{the set}$ of all right open real bounded intervals. Define $\mathcal{P}[\text{object}, \text{object}] \equiv \text{there}$ exists an element f of $\mathbb{R} \times \mathbb{R}$ such that $f = \$_2$ and $s(\$_1) = [(f)_1, (f)_2[$. For every natural number i such that $i \in \text{Seg }n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that $\mathcal{P}[i, d]$ by [7, (3)]. Consider f being a finite sequence of elements of $\mathbb{R} \times \mathbb{R}$ such that len f = n and for every natural number i such that $i \in \text{Seg }n$ holds $\mathcal{P}[i, f_i]$ from [25, Sch. 1]. Consider z being an element of $\mathcal{R}^n \times \mathcal{R}^n$ such that for every natural number i such that $i \in \text{Seg }n$ holds $(z)_1(i) = (f_i)_1$ and $(z)_2(i) = (f_i)_2$. Reconsider $a = (z)_1, b = (z)_2$ as an element of \mathcal{R}^n . For every natural number i such that $i \in \text{Seg }n$ holds s(i) = [a(i), b(i)[. \Box

(71) Let us consider a non zero natural number n, and an element x of $\operatorname{Product}(n, \text{the set of all right open real bounded intervals})$. Then there exist elements a, b of \mathcal{R}^n such that for every element t of $\mathcal{R}^n, t \in x$ iff for every natural number i such that $i \in \operatorname{Seg} n$ holds $t(i) \in [a(i), b(i)]$. The theorem is a consequence of (62) and (70).

12. CLOSED/OPEN/LEFT-OPEN/RIGHT-OPEN – HYPER INTERVAL

From now on n denotes a natural number and a, b, c, d denote elements of \mathcal{R}^n .

Let us consider n, a, and b. The functor ClosedHyperInterval(a, b) yielding a subset of \mathcal{R}^n is defined by (Def. 14) for every object $x, x \in it$ iff there exists an element y of \mathcal{R}^n such that x = y and for every natural number i such that $i \in \text{Seg } n$ holds $y(i) \in [a(i), b(i)]$.

The functor OpenHyperInterval(a, b) yielding a subset of \mathcal{R}^n is defined by

(Def. 15) for every object $x, x \in it$ iff there exists an element y of \mathcal{R}^n such that x = y and for every natural number i such that $i \in \text{Seg } n$ holds $y(i) \in]a(i), b(i)[$.

The functor LeftOpenHyperInterval(a, b) yielding a subset of \mathcal{R}^n is defined by

(Def. 16) for every object $x, x \in it$ iff there exists an element y of \mathcal{R}^n such that x = y and for every natural number i such that $i \in \text{Seg } n$ holds $y(i) \in]a(i), b(i)]$.

The functor RightOpenHyperInterval(a, b) yielding a subset of \mathcal{R}^n is defined by

(Def. 17) for every object $x, x \in it$ iff there exists an element y of \mathcal{R}^n such that x = y and for every natural number i such that $i \in \text{Seg } n$ holds $y(i) \in [a(i), b(i)]$.

Now we state the proposition:

(72) ClosedHyperInterval $(a, a) = \{a\}$. PROOF: ClosedHyperInterval $(a, a) \subseteq \{a\}$ by [6, (124)]. $\{a\} \subseteq$ ClosedHyperInterval(a, a). \Box

Let us consider n and a. Let us observe that ClosedHyperInterval(a, a) is trivial.

Now we state the proposition:

- (73) (i) OpenHyperInterval $(a, b) \subseteq LeftOpenHyperInterval<math>(a, b)$, and
 - (ii) OpenHyperInterval $(a, b) \subseteq$ RightOpenHyperInterval(a, b), and
 - (iii) LeftOpenHyperInterval $(a, b) \subseteq$ ClosedHyperInterval(a, b), and
 - (iv) RightOpenHyperInterval $(a, b) \subseteq$ ClosedHyperInterval(a, b).

Let us consider n, a, and b. We say that $a \leq b$ if and only if

(Def. 18) for every natural number *i* such that $i \in \text{Seg } n$ holds $a(i) \leq b(i)$.

One can verify that the predicate is reflexive.

Now we state the propositions:

- (74) If $a \leq b \leq c$, then $a \leq c$.
- (75) If $a \leq c$ and $d \leq b$, then ClosedHyperInterval $(c, d) \subseteq$ ClosedHyperInterval(a, b).
- (76) If $a \leq b$, then ClosedHyperInterval(a, b) is not empty. The theorem is a consequence of (75) and (72).

Let us consider n, a, and b. We say that a < b if and only if

(Def. 19) for every natural number i such that $i \in \text{Seg } n$ holds a(i) < b(i).

Now we state the propositions:

- (77) If a < b < c, then a < c.
- (78) If b < a and n is not zero, then ClosedHyperInterval(a, b) is empty.
- (79) $n \mapsto r$ is an element of \mathcal{R}^n . PROOF: Set $f = n \mapsto r$. $f \in \mathbb{R}^{\text{Seg } n}$ by [6, (112), (93)]. \Box

Let us consider n and r. Note that the functor $n \mapsto r$ yields an element of \mathcal{R}^n . One can check that the functor $\langle r \rangle$ yields an element of \mathcal{R}^1 . Now we state the propositions:

- (80) Let us consider a non zero natural number n, and a point e of \mathcal{E}^n . Then there exists an element a of \mathcal{R}^n such that
 - (i) a = e, and
 - (ii) OpenHypercube(e, r) = OpenHyperInterval $(a n \mapsto r, a + n \mapsto r)$.

PROOF: Reconsider a = e as an element of \mathcal{R}^n . Reconsider p = e as a point of $\mathcal{E}^n_{\mathrm{T}}$. Consider e_0 being a point of \mathcal{E}^n such that $p = e_0$ and OpenHypercube $(e_0, r) =$ OpenHypercube(p, r). OpenHypercube $(e, r) \subseteq$ OpenHyperInterval $(a - n \mapsto r, a + n \mapsto r)$ by [8, (27)], [6, (57)], [8, (11)], [18, (4)]. OpenHyperInterval $(a - n \mapsto r, a + n \mapsto r) \subseteq$ OpenHypercube(e, r)by [10, (22)], [8, (27)], [6, (57)], [8, (11)]. \Box

- (81) Let us consider a point p of $\mathcal{E}_{\mathrm{T}}^n$. Then there exists an element a of \mathcal{R}^n such that
 - (i) a = p, and
 - (ii) ClosedHypercube(p, b) = ClosedHyperInterval(a b, a + b).

PROOF: Reconsider a = p as an element of \mathcal{R}^n . ClosedHypercube $(p, b) \subseteq$ ClosedHyperInterval(a-b, a+b) by [10, (22)], [8, (11), (27)]. ClosedHyperInterval $(a - b, a + b) \subseteq$ ClosedHypercube(p, b) by [10, (22)], [8, (11), (27)]. \Box

13. Correspondance between Interval and 1-Dimensional Hyper Interval

Let us consider a real number x. Now we state the propositions:

(82) $x \in [r, s]$ if and only if $1 \mapsto x \in \text{ClosedHyperInterval}(\langle r \rangle, \langle s \rangle).$

PROOF: Set $a_1 = \langle r \rangle$. Set $b_1 = \langle s \rangle$. For every real number x such that $x \in [r, s]$ holds $1 \mapsto x \in$ ClosedHyperInterval (a_1, b_1) by [4, (2)], [24, (7)]. For every real number x such that $1 \mapsto x \in$ ClosedHyperInterval (a_1, b_1) holds $x \in [r, s]$ by [24, (7)]. \Box

- (83) $x \in]r, s[$ if and only if $1 \mapsto x \in \text{OpenHyperInterval}(\langle r \rangle, \langle s \rangle).$ PROOF: Set $a_1 = \langle r \rangle$. Set $b_1 = \langle s \rangle$. For every real number x such that $x \in]r, s[$ holds $1 \mapsto x \in \text{OpenHyperInterval}(a_1, b_1)$ by [4, (2)], [24, (7)].For every real number x such that $1 \mapsto x \in \text{OpenHyperInterval}(a_1, b_1)$ holds $x \in]r, s[$ by $[24, (7)]. \square$
- (84) $x \in [r, s]$ if and only if $1 \mapsto x \in \text{LeftOpenHyperInterval}(\langle r \rangle, \langle s \rangle)$. PROOF: Set $a_1 = \langle r \rangle$. Set $b_1 = \langle s \rangle$. For every real number x such that $x \in [r, s]$ holds $1 \mapsto x \in \text{LeftOpenHyperInterval}(a_1, b_1)$ by [4, (2)], [24, (7)]. For every real number x such that $1 \mapsto x \in \text{LeftOpenHyperInterval}(a_1, b_1)$ holds $x \in [r, s]$ by [24, (7)]. \Box
- (85) $x \in [r, s[$ if and only if $1 \mapsto x \in$ RightOpenHyperInterval $(\langle r \rangle, \langle s \rangle)$. PROOF: Set $a_1 = \langle r \rangle$. Set $b_1 = \langle s \rangle$. For every real number x such that $x \in [r, s[$ holds $1 \mapsto x \in$ RightOpenHyperInterval (a_1, b_1) by [4, (2)], [24, (7)]. For every real number x such that $1 \mapsto x \in$ RightOpenHyperInterval (a_1, b_1) holds $x \in [r, s[$ by [24, (7)]. \Box

14. Correspondance between Measurable Rectangle and Product

From now on n denotes a non zero natural number. Now we state the propositions:

(86) Let us consider an *n*-tuple *s* of the set of all open real bounded intervals. Then there exist elements *a*, *b* of \mathcal{R}^n such that for every natural number *i* such that $i \in \text{Seg } n$ holds s(i) =]a(i), b(i)[.

PROOF: $s \in (\text{the set of all open real bounded intervals})^{\text{Seg }n}$. Consider f being a function such that s = f and dom f = Seg n and $\text{rng } f \subseteq \text{the set}$ of all open real bounded intervals. Define $\mathcal{P}[\text{object}, \text{object}] \equiv \text{there exists}$ an element f of $\mathbb{R} \times \mathbb{R}$ such that $f = \$_2$ and $s(\$_1) =](f)_1, (f)_2[$. For every natural number i such that $i \in \text{Seg }n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that $i \in \text{Seg }n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that p[i, d] by [7, (3)]. Consider f being a finite sequence of elements of $\mathbb{R} \times \mathbb{R}$ such that $\ln f = n$ and for every natural number i such that $i \in \text{Seg }n$ holds $\mathcal{P}[i, f_i]$ from [25, Sch. 1]. Consider z being an element of $\mathcal{R}^n \times \mathcal{R}^n$ such that for every natural number i such that $i \in \text{Seg }n$ holds $(z)_1(i) = (f_i)_1$ and $(z)_2(i) = (f_i)_2$. Reconsider $a = (z)_1, b = (z)_2$ as an element of \mathcal{R}^n . For every natural number i such that $i \in \text{Seg }n$ holds s(i) =]a(i), b(i)[. \Box

(87) Let us consider an element x of $\operatorname{Product}(n, \text{the set of all open real bounded intervals})$. Then there exist elements a, b of \mathcal{R}^n such that for every element t of $\mathcal{R}^n, t \in x$ iff for every natural number i such that

 $i \in \text{Seg } n \text{ holds } t(i) \in]a(i), b(i)[$. The theorem is a consequence of (62) and (86).

(88) Let us consider an *n*-tuple *s* of the set of all left open real bounded intervals. Then there exist elements *a*, *b* of \mathcal{R}^n such that for every natural number *i* such that $i \in \text{Seg } n$ holds s(i) = [a(i), b(i)].

PROOF: $s \in (\text{the set of all left open real bounded intervals})^{\text{Seg }n}$. Consider f being a function such that s = f and dom f = Seg n and $\text{rng } f \subseteq \text{the set}$ of all left open real bounded intervals. Define $\mathcal{P}[\text{object, object}] \equiv \text{there}$ exists an element f of $\mathbb{R} \times \mathbb{R}$ such that $f = \$_2$ and $s(\$_1) =](f)_1, (f)_2]$. For every natural number i such that $i \in \text{Seg }n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that p[i,d] by [7, (3)]. Consider f being a finite sequence of elements of $\mathbb{R} \times \mathbb{R}$ such that len f = n and for every natural number i such that $i \in \text{Seg }n$ holds $\mathcal{P}[i, f_i]$ from [25, Sch. 1]. Consider z being an element of $\mathcal{R}^n \times \mathcal{R}^n$ such that for every natural number i such that $i \in \text{Seg }n$ holds $(z)_1(i) = (f_i)_1$ and $(z)_2(i) = (f_i)_2$. Reconsider $a = (z)_1, b = (z)_2$ as an element of \mathcal{R}^n . For every natural number i such that $i \in \text{Seg }n$ holds s(i) =]a(i), b(i)]. \Box

- (89) Let us consider an element x of Product(n, the set of all left open real bounded intervals). Then there exist elements <math>a, b of \mathcal{R}^n such that for every element t of $\mathcal{R}^n, t \in x$ iff for every natural number i such that $i \in \text{Seg } n$ holds $t(i) \in [a(i), b(i)]$. The theorem is a consequence of (62) and (88).
- (90) Let us consider an *n*-tuple *s* of the set of all right open real bounded intervals. Then there exist elements *a*, *b* of \mathcal{R}^n such that for every natural number *i* such that $i \in \text{Seg } n$ holds s(i) = [a(i), b(i)].

PROOF: $s \in (\text{the set of all right open real bounded intervals})^{\text{Seg }n}$. Consider f being a function such that s = f and dom f = Seg n and rng $f \subseteq \text{the set}$ of all right open real bounded intervals. Define $\mathcal{P}[\text{object}, \text{object}] \equiv \text{there}$ exists an element f of $\mathbb{R} \times \mathbb{R}$ such that $f = \$_2$ and $s(\$_1) = [(f)_1, (f)_2[$. For every natural number i such that $i \in \text{Seg }n$ there exists an element d of $\mathbb{R} \times \mathbb{R}$ such that p[i, d] by [7, (3)]. Consider f being a finite sequence of elements of $\mathbb{R} \times \mathbb{R}$ such that len f = n and for every natural number i such that $i \in \text{Seg }n$ holds $\mathcal{P}[i, f_i]$ from [25, Sch. 1]. Consider z being an element of $\mathcal{R}^n \times \mathcal{R}^n$ such that for every natural number i such that $i \in \text{Seg }n$ holds $(z)_1(i) = (f_i)_1$ and $(z)_2(i) = (f_i)_2$. Reconsider $a = (z)_1, b = (z)_2$ as an element of \mathcal{R}^n . For every natural number i such that $i \in \text{Seg }n$ holds s(i) = [a(i), b(i)[. \Box

(91) Let us consider an element x of Product(n, the set of all right open real bounded intervals). Then there exist elements <math>a, b of \mathcal{R}^n such that

for every element t of \mathcal{R}^n , $t \in x$ iff for every natural number i such that $i \in \text{Seg } n$ holds $t(i) \in [a(i), b(i)]$. The theorem is a consequence of (62) and (90).

- (92) MeasurableRectangleLeftOpenIntervals(n) = Product(n, the set of all left open real bounded intervals). The theorem is a consequence of (40) and (66).
- (93) MeasurableRectangleRightOpenIntervals(n) = Product(n, the set of all right open real bounded intervals). The theorem is a consequence of (46) and (67).

15. Chebyshev Distance

In the sequel n denotes a non zero natural number and x, y, z denote elements of \mathcal{R}^n .

Let us consider *n*. The functor $D^n_{\text{Chebyshev}}$ yielding a function from $\mathcal{R}^n \times \mathcal{R}^n$ into \mathbb{R} is defined by

(Def. 20) for every elements x, y of \mathcal{R}^n , $it(x, y) = \sup \operatorname{rng}|x - y|$.

Now we state the propositions:

(94) (i) the set of all |x(i) - y(i)| where *i* is an element of Seg *n* is realmembered, and

(ii) the set of all |x(i) - y(i)| where *i* is an element of Seg $n = \operatorname{rng}|x - y|$. PROOF: Set S = the set of all |x(i) - y(i)| where *i* is an element of Seg *n*. $S \subseteq \operatorname{rng}|x - y|$ by [8, (27)], [6, (124)]. For every object *t* such that $t \in \operatorname{rng}|x - y|$ holds $t \in S$ by [6, (124)], [8, (27)]. \Box

- (95) There exists an extended real-membered set S such that
 - (i) S = the set of all |x(i) y(i)| where *i* is an element of Seg *n*, and
 - (ii) $(D^n_{\text{Chebyshev}})(x, y) = \sup S.$

The theorem is a consequence of (94).

- (96) $(D^n_{\text{Chebyshev}})(x, y) = |x y|(\text{max-diff-index}(x, y)).$ PROOF: $(D^n_{\text{Chebyshev}})(x, y) \leq |x - y|(\text{max-diff-index}(x, y))$ by [15, (5)]. \Box
- (97) $(D_{\text{Chebyshev}}^n)(x, y) = 0$ if and only if x = y. PROOF: Consider S being an extended real-membered set such that S =the set of all |x(i) - y(i)| where *i* is an element of Seg *n* and $(D_{\text{Chebyshev}}^n)(x, y) = \sup S. S = \{0\}$ by [19, (2)], [3, (53)], [4, (1)]. \Box
- (98) $(D^n_{\text{Chebyshev}})(x, y) = (D^n_{\text{Chebyshev}})(y, x)$. The theorem is a consequence of (1).

- (99) $(D_{\text{Chebyshev}}^n)(x,y) \leq (D_{\text{Chebyshev}}^n)(x,z) + (D_{\text{Chebyshev}}^n)(z,y).$ PROOF: Reconsider $s_1 = \sup \operatorname{rng}|x-y|, s_2 = \sup \operatorname{rng}|x-z|, s_3 = \sup \operatorname{rng}|z-y|$ as a real number. $s_1 \leq s_2 + s_3$ by [8, (27)], [5, (56)], [6, (124)], (2). \Box
- (100) $D_{\text{Chebyshev}}^n$ is a metric of \mathcal{R}^n . The theorem is a consequence of (97), (98), and (99).
- $(101) \quad \rho^2([0,0],[1,1]) = \sqrt{2}.$
- (102) $(D_{\text{Chebyshev}}^2)([0,0],[1,1]) = 1.$ PROOF: Consider S being an extended real-membered set such that S =the set of all |[0,0](i) - [1,1](i)| where i is an element of Seg 2 and $(D_{\text{Chebyshev}}^2)([0,0],[1,1]) = \sup S. S = \{|0-1|\}$ by $[4, (2), (44)]. \square$

Let us consider elements x, y of \mathcal{R}^1 . Now we state the propositions:

(103) $(D^1_{\text{Chebyshev}})(x, y) = |x(1) - y(1)|.$ PROOF: Consider S being an extended real-membered set such that S =the set of all |x(i) - y(i)| where i is an element of Seg 1 and $(D^1_{\text{Chebyshev}})(x, y) = \sup S. S = \{|x(1) - y(1)|\}$ by [4, (2)]. \Box

(104)
$$\rho^1(x,y) = |x(1) - y(1)|$$

Now we state the propositions:

- (105) $\rho^1 = D^1_{\text{Chebvshev}}$. The theorem is a consequence of (104) and (103).
- (106) $\rho^2 \neq D_{\text{Chebyshev}}^2$. The theorem is a consequence of (101) and (102).

Let n be a non zero natural number. The functor $L_{\infty}(n)$ yielding a strict metric space is defined by the term

(Def. 21) $\langle \mathcal{R}^n, D^n_{\text{Chebyshev}} \rangle$.

Let us observe that $L_{\infty}(n)$ is non empty.

The functor $\mathcal{E}_{\infty}^{n}(n)$ yielding a strict real linear topological structure is defined by

(Def. 22) the topological structure of $it = (\mathsf{L}_{\infty}(n))_{top}$ and the RLS structure of $it = \mathbb{R}_{\mathbb{R}}^{\text{Seg } n}$.

Now we state the proposition:

(107) The RLS structure of $\mathcal{E}_{\mathrm{T}}^n$ = the RLS structure of $\mathcal{E}_{\infty}^n(n)$.

Let n be a non zero natural number. Let us note that $\mathcal{E}_{\infty}^{n}(n)$ is non empty. Now we state the propositions:

- (108) Let us consider an element x of \mathcal{R}^0 . Then
 - (i) Intervals(x, r) is empty, and
 - (ii) $\prod \text{Intervals}(x, r) = \{\emptyset\}.$
- (109) If $r \leq 0$, then $\prod \text{Intervals}(x, r)$ is empty.

In the sequel p denotes an element of $L_{\infty}(n)$.

Let *n* be a non zero natural number and *p* be an element of $L_{\infty}(n)$. The functor [@]*p* yielding an element of \mathcal{R}^n is defined by the term

(Def. 23) p.

Now we state the propositions:

(110) Ball $(p, r) = \prod$ Intervals $({}^{@}p, r)$. The theorem is a consequence of (109), (95), and (96).

(111) Let us consider a point e of \mathcal{E}^n . If e = p, then Ball(p, r) =OpenHypercube(e, r). The theorem is a consequence of (110).

Let n be a non zero natural number, p be an element of $L_{\infty}(n)$, and r be a negative real number. Let us note that $\overline{\text{Ball}}(p,r)$ is empty.

Now we state the propositions:

- (112) Let us consider an object t. Then $t \in \overline{\text{Ball}}(p, r)$ if and only if there exists a function f such that t = f and dom f = Seg n and for every natural number i such that $i \in \text{Seg } n$ holds $f(i) \in [(\begin{array}{c} p)(i) - r, (\begin{array}{c} p)(i) + r].$ The theorem is a consequence of (95).
- (113) Let us consider a point p of $\mathcal{E}_{\mathrm{T}}^{n}$, and an element q of $\mathsf{L}_{\infty}(n)$. Suppose q = p. Then $\overline{\mathrm{Ball}}(q, r) = \mathrm{ClosedHypercube}(p, n \mapsto r)$. PROOF: For every object x such that $x \in \overline{\mathrm{Ball}}(q, r)$ holds $x \in \mathrm{ClosedHypercube}(p, n \mapsto r)$ by (112), [6, (57), (93)], [10, (22)]. For every object x such that $x \in \mathrm{ClosedHypercube}(p, n \mapsto r)$ holds $x \in \overline{\mathrm{Ball}}(q, r)$ by [10, (22)], [6, (131), (124), (57)]. \Box
- (114) Ball(p, r) = OpenHyperInterval $(^{@}p n \mapsto r, ^{@}p + n \mapsto r)$. The theorem is a consequence of (80) and (110).
- (115) $\overline{\text{Ball}}(p,r) = \text{ClosedHyperInterval}({}^{@}p n \mapsto r, {}^{@}p + n \mapsto r).$ The theorem is a consequence of (81) and (113).

References

- [1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [2] Grzegorz Bancerek. On powers of cardinals. Formalized Mathematics, 3(1):89–93, 1992.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [8] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.

- [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.
- [11] Michel Marie Deza and Elena Deza. Encyclopedia of distances. Springer, 2009.
- [12] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. *Formalized Mathematics*, 9(3):495–500, 2001.
- [13] Adam Grabowski. On the subcontinua of a real line. *Formalized Mathematics*, 11(3): 313–322, 2003.
- [14] Adam Grabowski. On the Borel families of subsets of topological spaces. Formalized Mathematics, 13(4):453–461, 2005.
- [15] Artur Korniłowicz. The correspondence between *n*-dimensional Euclidean space and the product of *n* real lines. Formalized Mathematics, 18(1):81-85, 2010. doi:10.2478/v10037-010-0011-0.
- [16] Jean Mawhin. Analyse: fondements, techniques, évolution. De Boeck, 1992.
- [17] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [18] Karol Pak. Tietze extension theorem for *n*-dimensional spaces. Formalized Mathematics, 22(1):11–19, 2014. doi:10.2478/forma-2014-0002.
- [19] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263–264, 1990.
- [20] Marco Riccardi. The definition of topological manifolds. Formalized Mathematics, 19(1): 41–44, 2011. doi:10.2478/v10037-011-0007-4.
- [21] Marco Riccardi. Planes and spheres as topological manifolds. Stereographic projection. Formalized Mathematics, 20(1):41–45, 2012. doi:10.2478/v10037-012-0006-0.
- [22] Jean Schmets. Analyse mathematique. Notes de cours, Université de Liège, 337 pages, 2004.
- [23] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233–236, 1996.
- [24] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.
- [25] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [26] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847–850, 1990.
- [27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received December 31, 2015