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On Multiset Ordering
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Summary. Formalization of a part of [11]. Unfortunately, not all is possible
to be formalized. Namely, in the paper there is a mistake in the proof of Lemma 3.
It states that there exists x ∈M1 such that M1(x) > N1(x) and (∀y ∈ N1)x 6≺ y.
It should be M1(x)  N1(x). Nevertheless we do not know whether x ∈ N1 or
not and cannot prove the contradiction. In the article we referred to [8], [9] and
[10].
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1. Preliminaries

Now we state the propositions:

(1) Let us consider natural numbersm, n. Then n = m−′ (m−′n)+(n−′m).

(2) Let us consider natural numbers n, m. Then m−′ n  m− n.
Let us consider natural numbers m, n, x, y. Now we state the propositions:

(3) If n = m −′ x + y, then m −′ n ¬ x and n −′ m ¬ y. The theorem is
a consequence of (2).

(4) If x ¬ m and n = m −′ x + y, then x −′ (m −′ n) = y −′ (n −′ m). The
theorem is a consequence of (3).

Now we state the propositions:

(5) Let us consider natural numbers k, x1, x2, y1, y2. Suppose x2 ¬ k and
x1 ¬ k −′ x2 + y2. Then

(i) x2 + (x1 −′ y2) ¬ k, and
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(ii) k −′ x2 + y2 −′ x1 + y1 = k −′ (x2 + (x1 −′ y2)) + (y2 −′ x1 + y1).

Proof: x2 + (x1 −′ y2) ¬ k by [12, (8)]. �

(6) Let us consider natural numbers x, y. If x+ y > 0, then x > 0 or y > 0.

From now on a, b denote objects and I, J denote sets.
Let us consider I. Let J be a non empty set. Let us note that every function

from I into J is total and there exists a relational structure which is asymmetric,
transitive, and non empty.

Let us consider I. One can verify that there exists a binary relation on I
which is asymmetric and transitive.

Let R be a transitive relational structure. Observe that the internal relation
of R is transitive.

Let R be an asymmetric relational structure. Let us observe that the internal
relation of R is asymmetric.

Let us consider I. Let p, q be I-valued finite sequences. Let us observe that
p a q is I-valued.

Now we state the proposition:

(7) Let us consider finite sequences p, q. Suppose p a q is I-valued. Then

(i) p is I-valued, and

(ii) q is I-valued.

Let us consider I. Let f be an I-valued finite sequence and n be a natural
number. Let us note that f�n is I-valued.

Now we state the propositions:

(8) Let us consider a finite sequence p. Suppose a ∈ rng p. Then there exist
finite sequences q, r such that p = (q a 〈a〉) a r.

(9) Let us consider finite sequences p, q. Then p ⊂ q if and only if len p < len q
and for every natural number i such that i ∈ dom p holds p(i) = q(i).

(10) Let us consider finite sequences p, q, r. Then r a p ⊂ r a q if and only if
p ⊂ q.
Proof: If r a p ⊂ r a q, then p ⊂ q by [4, (22)], (9), [15, (30)], [4, (28)]. �

Let R be an asymmetric, non empty relational structure and x, y be elements
of R. Let us observe that the predicate x ¬ y is asymmetric.

Now we state the proposition:

(11) Let us consider an asymmetric, non empty relational structure R, and
elements x, y of R. Then x ¬ y if and only if x < y.
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On multiset ordering 97

2. Relational Extension

Let us consider I.
A multiset of I is an element of I⊗. Observe that every multiset of I is

I-defined and natural-valued and every multiset of I is total.
Let m be a natural-valued function. Let us note that the functor supportm

is defined by the term

(Def. 1) m−1(N \ {0}).
Let us consider I. One can check that every multiset of I is finite-support.
Now we state the propositions:

(12) a is a multiset of I if and only if a is a bag of I.

(13) 1I⊗ = EmptyBag I.

Let R be a relational structure and x, y be elements of R. We say that x ≡ y
if and only if

(Def. 2) x 6¬ y and y 6¬ x.
Observe that the predicate is symmetric.

We consider relational multiplicative magmas which extend multiplicative
magmas and relational structures and are systems

〈〈a carrier, a multiplication, an internal relation〉〉

where the carrier is a set, the multiplication is a binary operation on the carrier,
the internal relation is a binary relation on the carrier.

We consider relational monoids which extend multiplicative loop structures
and relational structures and are systems

〈〈a carrier, a multiplication, a one, an internal relation〉〉

where the carrier is a set, the multiplication is a binary operation on the carrier,
the one is an element of the carrier, the internal relation is a binary relation on
the carrier.

Let M be a multiplicative loop structure.
A relational extension of M is a relational monoid and is defined by

(Def. 3) the multiplicative loop structure of it = the multiplicative loop structure
of M .

Let M be a non empty multiplicative loop structure. Let us observe that
every relational extension of M is non empty.

Let M be a multiplicative loop structure. One can check that there exists
a relational extension of M which is strict.

Let us consider a multiplicative loop structure N and a relational extension
M of N . Now we state the propositions:
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(14) a is an element of M if and only if a is an element of N .

(15) 1N = 1M .

Let us consider I. LetM be a relational extension of I⊗. Let us observe that
every element of M is function-like and relation-like and every element of M is
I-defined, natural-valued, and finite-support and every element of M is total.

Now we state the proposition:

(16) Let us consider a relational extension M of I⊗. Then the carrier of
M = Bags I. The theorem is a consequence of (12) and (14).

The scheme RelEx deals with a non empty multiplicative loop structure M
and a binary predicate R and states that

(Sch. 1) There exists a strict relational extension N of M such that for every
elements x, y of N , x ¬ y iff R[x, y].

Now we state the proposition:

(17) Let us consider a multiplicative loop structure N , and strict relational
extensions M1, M2 of N . Suppose for every elements m, n of M1 for every
elements x, y of M2 such that m = x and n = y holds m ¬ n iff x ¬ y.
Then M1 =M2.
Proof: The internal relation of M1 = the internal relation of M2 by [7,
(87)]. �

3. Dershowitz-Manna Order

Let R be a non empty relational structure. The Dershowitz-Manna order R
yielding a strict relational extension of (the carrier of R)⊗ is defined by

(Def. 4) for every elements m, n of it, m ¬ n iff there exist elements x, y of it
such that 1it 6= x | n and m = n −′ x + y and for every element b of R
such that y(b) > 0 there exists an element a of R such that x(a) > 0 and
b ¬ a.

Now we state the proposition:

(18) Let us consider bags m, n of I. Then n = m−′ (m−′ n) + (n−′m). The
theorem is a consequence of (1).

Let us consider bags m, n, x, y of I. Now we state the propositions:

(19) If n = m −′ x + y, then m −′ n | x and n −′ m | y. The theorem is
a consequence of (3).

(20) If x | m and n = m −′ x + y, then x −′ (m −′ n) = y −′ (n −′ m). The
theorem is a consequence of (4).

Now we state the propositions:
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On multiset ordering 99

(21) Let us consider bagsm, x, y of I. If x | m and x 6= y, thenm 6= m−′x+y.
(22) Let us consider a non empty set I, a binary relation R on I, and a re-

duction sequence r w.r.t. R. If len r > 1, then r(len r) ∈ I.
(23) Let us consider an asymmetric, transitive binary relation R on I. Then

every reduction sequence w.r.t. R is one-to-one.
Proof: For every natural numbers i, j such that i > j and i, j ∈ dom r
holds r(i) 6= r(j) by [1, (13)], [13, (22)], [1, (11)], [15, (25)]. �

(24) Let us consider an asymmetric, transitive, non empty relational struc-
ture R, and a set X. Suppose X is finite and there exists an element x of
R such that x ∈ X. Then there exists an element x of R such that x is
maximal in X.
Proof: Reconsider X1 = X as a finite set. Set Y = {r, where r is
an element of X1∗ : r is a reduction sequence w.r.t. the internal relation
of R}. Define P[natural number] ≡ there exists a reduction sequence r
w.r.t. the internal relation of R such that r ∈ Y and len r = $1. For every
natural number k such that P[k] holds k ¬ X1 by (23), [1, (43)]. P[1]
by [2, (6)], [4, (74), (39)]. Consider k being a natural number such that
P[k] and for every natural number n such that P[n] holds n ¬ k from [1,
Sch. 6]. Consider r being a reduction sequence w.r.t. the internal relation
of R such that r ∈ Y and len r = k. Consider q being an element of X1∗

such that r = q and q is a reduction sequence w.r.t. the internal relation
of R. �

(25) Let us consider bags m, n of I. Then m−′ n | m.

Let us consider I. Note that every element of Bags I is function-like and
relation-like.

Now we state the proposition:

(26) Let us consider bags m, n of I. Then

(i) m−′ n 6= EmptyBag I, or

(ii) m = n, or

(iii) n−′ m 6= EmptyBag I.

Let R be an asymmetric, transitive, non empty relational structure. Let us
observe that the Dershowitz-Manna order R is defined by

(Def. 5) for every elements m, n of it, m ¬ n iff m 6= n and for every element a
of R such that m(a) > n(a) there exists an element b of R such that a ¬ b
and m(b) < n(b).

Now we state the proposition:

(27) Let us consider bags k, x1, x2, y1, y2 of I. Suppose x2 | k and x1 |
k −′ x2 + y2. Then
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(i) x2 + (x1 −′ y2) | k, and

(ii) k −′ x2 + y2 −′ x1 + y1 = k −′ (x2 + (x1 −′ y2)) + (y2 −′ x1 + y1).

The theorem is a consequence of (5).

Let R be an asymmetric, transitive, non empty relational structure. Let us
observe that the Dershowitz-Manna order R is asymmetric and transitive.

Let us consider I. The functor DivOrder(I) yielding a binary relation on
Bags I is defined by

(Def. 6) for every bags b1, b2 of I, 〈〈b1, b2〉〉 ∈ it iff b1 6= b2 and b1 | b2.
Now we state the proposition:

(28) Let us consider bags a, b, c of I. If a | b | c, then a | c.
Let us consider I. Note that DivOrder(I) is asymmetric and transitive.
Let us consider an asymmetric, transitive, non empty relational structure

R. Now we state the propositions:

(29) DivOrder(the carrier of R) ⊆ the internal relation of the Dershowitz-
Manna order R. The theorem is a consequence of (12) and (14).

(30) Suppose the internal relation of R is empty. Then the internal relation
of the Dershowitz-Manna order R = DivOrder(the carrier of R). The the-
orem is a consequence of (29).

Now we state the proposition:

(31) Let us consider asymmetric, transitive, non empty relational structures
R1, R2. Suppose the carrier of R1 = the carrier of R2 and the internal
relation of R1 ⊆ the internal relation of R2. Then the internal relation of
the Dershowitz-Manna orderR1 ⊆ the internal relation of the Dershowitz-
Manna order R2. The theorem is a consequence of (12) and (14).

4. Monoidal Order

Let us consider I. Let f be a (Bags I)-valued finite sequence. The functor∑
f yielding a bag of I is defined by

(Def. 7) there exists a function F from N into Bags I such that it = F (len f) and
F (0) = EmptyBag I and for every natural number i and for every bag b
of I such that i < len f and b = f(i+ 1) holds F (i+ 1) = F (i) + b.

Now we state the proposition:

(32)
∑
εBags I = EmptyBag I.

Let us consider I. Let b be a bag of I. One can verify that 〈b〉 is (Bags I)-
valued as a finite sequence.

Now we state the proposition:
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On multiset ordering 101

(33) Let us consider a (Bags I)-valued finite sequence p, and a bag b of I.
Then

∑
(p a 〈b〉) =

∑
p+ b.

Proof: Set f = p a 〈b〉. Consider F being a function from N into Bags I
such that

∑
f = F (len f) and F (0) = EmptyBag I and for every natural

number i and for every bag b of I such that i < len f and b = f(i + 1)
holds F (i+1) = F (i)+b. Consider F1 being a function from N into Bags I
such that

∑
p = F1(len p) and F1(0) = EmptyBag I and for every natural

number i and for every bag b of I such that i < len p and b = p(i + 1)
holds F1(i+1) = F1(i)+ b. Define P[natural number] ≡ if $1 ¬ len p, then
F ($1) = F1($1). For every natural number i such that P[i] holds P[i+ 1]
by [5, (16)], [1, (13), (11)], [15, (25)]. For every natural number i, P[i]
from [1, Sch. 2]. �

From now on b denotes a bag of I.
Now we state the propositions:

(34)
∑
〈b〉 = b. The theorem is a consequence of (33) and (32).

(35) Let us consider (Bags I)-valued finite sequences p, q. Then
∑

(p a q) =∑
p+
∑
q.

Proof: Set f = p a q. Consider F being a function from N into Bags I
such that

∑
f = F (len f) and F (0) = EmptyBag I and for every natural

number i and for every bag b of I such that i < len f and b = f(i + 1)
holds F (i+1) = F (i)+b. Consider F1 being a function from N into Bags I
such that

∑
p = F1(len p) and F1(0) = EmptyBag I and for every natural

number i and for every bag b of I such that i < len p and b = p(i+1) holds
F1(i + 1) = F1(i) + b. Consider F2 being a function from N into Bags I
such that

∑
q = F2(len q) and F2(0) = EmptyBag I and for every natural

number i and for every bag b of I such that i < len q and b = q(i + 1)
holds F2(i + 1) = F2(i) + b. Define P[natural number] ≡ if $1 ¬ len p,
then F ($1) = F1($1). For every natural number i such that P[i] holds
P[i + 1] by [4, (22)], [1, (11), (13)], [15, (25)]. For every natural number
i, P[i] from [1, Sch. 2]. Define Q[natural number] ≡ if $1 ¬ len q, then
F (len p + $1) =

∑
p + F2($1). For every natural number i such that Q[i]

holds Q[i + 1] by [4, (22)], [1, (13), (11)], [15, (25)]. For every natural
number i, Q[i] from [1, Sch. 2]. �

Let us consider a (Bags I)-valued finite sequence p. Now we state the pro-
positions:

(36)
∑

(〈b〉 a p) = b+
∑
p. The theorem is a consequence of (35) and (34).

(37) If b ∈ rng p, then b |
∑
p. The theorem is a consequence of (8), (7), (33),

and (35).

Now we state the proposition:
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(38) Let us consider a (Bags I)-valued finite sequence p, and an object i.
Suppose i ∈ support

∑
p. Then there exists b such that

(i) b ∈ rng p, and

(ii) i ∈ support b.

Proof: Define P[natural number] ≡ for every (Bags I)-valued finite sequ-
ence p such that len p = $1 for every object i such that i ∈ support

∑
p

there exists b such that b ∈ rng p and i ∈ support b. P[0]. For every natural
number j such that P[j] holds P[j+ 1] by [3, (3)], (7), [4, (40)], [15, (25)].
For every natural number j, P[j] from [1, Sch. 2]. �

Let us consider I and b.
A partition of b is a (Bags I)-valued finite sequence and is defined by

(Def. 8) b =
∑
it .

Observe that the functor 〈b〉 yields a partition of b. Let R be a relational
structure, M be a relational extension of (the carrier of R)⊗, b be an element
of M , and p be a partition of b. We say that p is co-ordered if and only if

(Def. 9) for every natural number i such that i, i+ 1 ∈ dom p for every elements
b1, b2 of M such that b1 = p(i) and b2 = p(i+ 1) holds b2 ¬ b1.

Let R be a non empty relational structure and b be a bag of the carrier of
R. We say that p is ordered if and only if

(Def. 10) for every bag m of the carrier of R such that m ∈ rng p for every element
x of R such that m(x) > 0 holds m(x) = b(x) and for every bag m of
the carrier of R such that m ∈ rng p for every elements x, y of R such
that m(x) > 0 and m(y) > 0 and x 6= y holds x ≡ y and for every bag m
of the carrier of R such that m ∈ rng p holds m 6= EmptyBag(the carrier
of R) and for every natural number i such that i, i+ 1 ∈ dom p for every
element x of R such that pi+1(x) > 0 there exists an element y of R such
that pi(y) > 0 and x ¬ y.

In the sequel R denotes an asymmetric, transitive, non empty relational
structure, a, b, c denote bags of the carrier of R, and x, y, z denote elements of
R.

Now we state the propositions:

(39) 〈a〉 is ordered if and only if a 6= EmptyBag(the carrier of R) and for
every x and y such that a(x) > 0 and a(y) > 0 and x 6= y holds x ≡ y.

(40) Let us consider a (Bags I)-valued finite sequence p, and bags a, b of I.
Then 〈a〉 a p is a partition of b if and only if a | b and p is a partition of
b−′ a. The theorem is a consequence of (36).

From now on p denotes a partition of b−′ a and q denotes a partition of b.
Now we state the proposition:
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On multiset ordering 103

(41) If q = 〈a〉 a p and q is ordered, then p is ordered. The theorem is a con-
sequence of (37) and (25).

Let us consider I. Let m be a bag of I and J be a set. The functor m�J
yielding a bag of I is defined by

(Def. 11) for every object i such that i ∈ I holds if i ∈ J , then it(i) = m(i) and if
i /∈ J , then it(i) = 0.

From now on J denotes a set and m denotes a bag of I.
Now we state the propositions:

(42) support(m�J) = J ∩ supportm.

(43) m�J +m�(I \ J) = m.

(44) m�J | m.

(45) If supportm ⊆ J , then m�J = m.

(46) support(m−′ m�J) = supportm \ J .

(47) If q is ordered and q = 〈a〉 a p and a(x) > 0, then a(x) = b(x).

(48) If q is ordered and q = 〈a〉 a p and a(x) > 0 and a(y) > 0 and x 6= y,
then x ≡ y.

(49) If q is ordered and q = 〈a〉 a p, then a 6= EmptyBag(the carrier of R).

(50) Let us consider a bag c of the carrier of R, and a (Bags(the carrier of
R))-valued finite sequence r. Suppose q is ordered and q = 〈a, c〉 a r and
c(y) > 0. Then there exists x such that

(i) a(x) > 0, and

(ii) y ¬ x.
(51) If x ∈ I and for every y such that y ∈ I and y 6= x holds x ≡ y, then x

is maximal in I.

(52) If q is ordered and q = 〈a〉 a p and c ∈ rng p and c(x) > 0, then there
exists y such that a(y) > 0 and x ¬ y.
Proof: Consider i being an object such that i ∈ dom p and c = p(i).
Define P[natural number] ≡ if $1 ∈ dom p, then for every x such that
p$1(x) > 0 there exists y such that a(y) > 0 and x ¬ y. P[1] by [4, (28)],
[15, (25)], [4, (40)]. For every natural number i such that i  1 and P[i]
holds P[i+ 1] by [1, (13)], [15, (25)], [4, (28)], [16, (3)]. For every natural
number i such that i  1 holds P[i] from [1, Sch. 8]. �

Let us assume that q is ordered and q = 〈a〉 a p. Now we state the proposi-
tions:

(53) x is maximal in support b if and only if a(x) > 0.
Proof: a |

∑
q = b. There exists no y such that y ∈ support b and x < y

by (48), (38), [4, (31), (39)]. �
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(54) a = b�{x : x is maximal in support b}. The theorem is a consequence of
(53) and (47).

Now we state the propositions:

(55) Let us consider a (Bags I)-valued finite sequence p. Suppose
∑
p =

EmptyBag I and for every bag a of I such that a ∈ rng p holds a 6=
EmptyBag I. Then p = ∅. The theorem is a consequence of (37).

(56) Let us consider bags a, b of I. If a 6= EmptyBag I, then a + b 6=
EmptyBag I.

(57) Let us consider partitions p, q of b. If p is ordered and q is ordered, then
p = q.
Proof: Define P[natural number] ≡ for every b and q such that len q = $1
and q is ordered for every partition p of b such that p is ordered holds q = p.
P[0]. For every natural number i such that P[i] holds P[i+1] by [5, (130)],
(40), (49), (36). For every natural number i, P[i] from [1, Sch. 2]. �

Let us consider I. Let a, b be bags of I. One can verify that the functor 〈〈a,
b〉〉 yields an element of Bags I × Bags I. Now we state the proposition:

(58) Suppose a 6= EmptyBag(the carrier of R). Then {x : x is maximal in
support a} 6= ∅. The theorem is a consequence of (24).

Let us considerR and b. The ordered partition of b yielding a (Bags(the carrier
of R))-valued finite sequence is defined by

(Def. 12) there exist functions F , G from N into Bags(the carrier of R) such that
F (0) = b and G(0) = EmptyBag(the carrier of R) and for every natural
number i, G(i+ 1) = F (i)�{x : x is maximal in support(F (i))} and F (i+
1) = F (i) −′ G(i + 1) and there exists a natural number i such that
F (i) = EmptyBag(the carrier of R) and it = G� Seg i and for every natural
number j such that j < i holds F (j) 6= EmptyBag(the carrier of R).

One can verify that the ordered partition of b yields a partition of b. Let us
note that the ordered partition of b is ordered as a partition of b.

Now we state the proposition:

(59) b = EmptyBag(the carrier of R) if and only if the ordered partition of
b = ∅. The theorem is a consequence of (32).

Let us consider R. The functor ≺M R yielding a strict relational extension
of (the carrier of R)⊗ is defined by

(Def. 13) for every elements m, n of it, m ¬ n iff m 6= n and for every x such that
m(x) > 0 holds m(x) < n(x) or there exists y such that n(y) > 0 and
x ¬ y.

Let us note that ≺M R is asymmetric and transitive.
Let us consider I. Let R be a relation between I and I.
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On multiset ordering 105

The functor LexOrder(I,R) yielding a binary relation on I∗ is defined by

(Def. 14) for every I-valued finite sequences p, q, 〈〈p, q〉〉 ∈ it iff p ⊂ q or there
exists a natural number k such that k ∈ dom p and k ∈ dom q and 〈〈p(k),
q(k)〉〉 ∈ R and for every natural number n such that 1 ¬ n < k holds
p(n) = q(n).

LetR be a transitive binary relation on I. One can verify that LexOrder(I,R)
is transitive.

Let R be an asymmetric binary relation on I. Note that LexOrder(I,R) is
asymmetric.

Now we state the proposition:

(60) Let us consider an asymmetric binary relation R on I, and I-valued
finite sequences p, q, r. Then 〈〈p, q〉〉 ∈ LexOrder(I,R) if and only if 〈〈r a p,

r a q〉〉 ∈ LexOrder(I,R). The theorem is a consequence of (10).

Let us consider R. The functor ≺≺M R yielding a strict relational extension
of (the carrier of R)⊗ is defined by

(Def. 15) for every elements m, n of it, m ¬ n iff 〈〈the ordered partition of m,
the ordered partition of n〉〉 ∈ LexOrder((the carrier of ≺M R), (the internal
relation of ≺M R)).

Observe that ≺≺M R is asymmetric and transitive.
Now we state the propositions:

(61) Let us consider elements a, b of the Dershowitz-Manna order R. Suppose
a ¬ b. Then b 6= EmptyBag(the carrier of R). The theorem is a consequ-
ence of (29).

(62) Let us consider elements a, b, c, d of the Dershowitz-Manna order R, and
a bag e of the carrier of R. Suppose a ¬ b and e | a and e | b. If c = a−′ e
and d = b−′ e, then c ¬ d.

(63) Let us consider a (Bags I)-valued finite sequence p, and an object x.
Suppose x ∈ I and (

∑
p)(x) > 0. Then there exists a natural number i

such that

(i) i ∈ dom p, and

(ii) pi(x) > 0.

Proof: Define P[object] ≡ for every (Bags I)-valued finite sequence p such
that p = $1 and (

∑
p)(x) > 0 there exists a natural number i such that

i ∈ dom p and pi(x) > 0. P[∅] by (32), [14, (7)]. For every finite sequence
p and for every object a such that P[p] holds P[p a 〈a〉] by (7), [4, (40)],
[15, (25)], [6, (102)]. For every finite sequence p, P[p] from [4, Sch. 3]. �

(64) If q is ordered and q1(x) = 0 and b(x) > 0, then there exists y such that
q1(y) > 0 and x ¬ y.
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Proof: Define P[natural number] ≡ if $1 ∈ dom q, then for every x such
that q$1(x) > 0 there exists y such that q1(y) > 0 and x ¬ y. P[2] by [15,
(25)]. For every natural number i such that 2 ¬ i and P[i] holds P[i+ 1]
by [1, (11)], [15, (25)], [16, (3)]. For every natural number i such that i  2
holds P[i] from [1, Sch. 8]. Consider i being a natural number such that
i ∈ dom q and qi(x) > 0. �
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