

On Multiset Ordering

Grzegorz Bancerek Association of Mizar Users Białystok, Poland

Summary. Formalization of a part of [11]. Unfortunately, not all is possible to be formalized. Namely, in the paper there is a mistake in the proof of Lemma 3. It states that there exists $x \in M_1$ such that $M_1(x) > N_1(x)$ and $(\forall y \in N_1)x \not\prec y$. It should be $M_1(x) \ge N_1(x)$. Nevertheless we do not know whether $x \in N_1$ or not and cannot prove the contradiction. In the article we referred to [8], [9] and [10].

MSC: 06F05 03B35

Keywords: ordering; Dershowitz-Manna ordering

MML identifier: BAGORD_2, version: 8.1.04 5.36.1267

1. Preliminaries

Now we state the propositions:

- (1) Let us consider natural numbers m, n. Then n = m (m n) + (n m).
- (2) Let us consider natural numbers n, m. Then $m n \ge m n$.

Let us consider natural numbers m, n, x, y. Now we state the propositions:

- (3) If n = m x + y, then $m n \leq x$ and $n m \leq y$. The theorem is a consequence of (2).
- (4) If $x \leq m$ and n = m x + y, then x (m n) = y (n m). The theorem is a consequence of (3).

Now we state the propositions:

- (5) Let us consider natural numbers k, x_1, x_2, y_1, y_2 . Suppose $x_2 \leq k$ and $x_1 \leq k x_2 + y_2$. Then
 - (i) $x_2 + (x_1 y_2) \le k$, and

C 2016 University of Białystok CC-BY-SA License ver. 3.0 or later ISSN 1426-2630(Print), 1898-9934(Online)

(ii)
$$k - x_2 + y_2 - x_1 + y_1 = k - (x_2 + (x_1 - y_2)) + (y_2 - x_1 + y_1)$$

PROOF: $x_2 + (x_1 - y_2) \leq k$ by [12, (8)]. \Box

(6) Let us consider natural numbers x, y. If x + y > 0, then x > 0 or y > 0. From now on a, b denote objects and I, J denote sets.

Let us consider I. Let J be a non empty set. Let us note that every function from I into J is total and there exists a relational structure which is asymmetric, transitive, and non empty.

Let us consider I. One can verify that there exists a binary relation on I which is asymmetric and transitive.

Let R be a transitive relational structure. Observe that the internal relation of R is transitive.

Let R be an asymmetric relational structure. Let us observe that the internal relation of R is asymmetric.

Let us consider I. Let p, q be I-valued finite sequences. Let us observe that $p \cap q$ is I-valued.

Now we state the proposition:

- (7) Let us consider finite sequences p, q. Suppose $p \cap q$ is *I*-valued. Then
 - (i) p is I-valued, and
 - (ii) q is *I*-valued.

Let us consider I. Let f be an I-valued finite sequence and n be a natural number. Let us note that $f \upharpoonright n$ is I-valued.

Now we state the propositions:

- (8) Let us consider a finite sequence p. Suppose $a \in \operatorname{rng} p$. Then there exist finite sequences q, r such that $p = (q \cap \langle a \rangle) \cap r$.
- (9) Let us consider finite sequences p, q. Then $p \subset q$ if and only if $\operatorname{len} p < \operatorname{len} q$ and for every natural number i such that $i \in \operatorname{dom} p$ holds p(i) = q(i).
- (10) Let us consider finite sequences p, q, r. Then $r \cap p \subset r \cap q$ if and only if $p \subset q$.

PROOF: If $r \cap p \subset r \cap q$, then $p \subset q$ by [4, (22)], (9), [15, (30)], [4, (28)]. \Box Let R be an asymmetric, non empty relational structure and x, y be elements of R. Let us observe that the predicate $x \leq y$ is asymmetric.

Now we state the proposition:

(11) Let us consider an asymmetric, non empty relational structure R, and elements x, y of R. Then $x \leq y$ if and only if x < y.

2. Relational Extension

Let us consider I.

A multiset of I is an element of I^{\otimes} . Observe that every multiset of I is I-defined and natural-valued and every multiset of I is total.

Let m be a natural-valued function. Let us note that the functor support m is defined by the term

(Def. 1) $m^{-1}(\mathbb{N} \setminus \{0\}).$

Let us consider I. One can check that every multiset of I is finite-support. Now we state the propositions:

(12) a is a multiset of I if and only if a is a bag of I.

(13) $1_{I^{\otimes}} = \text{EmptyBag } I.$

Let R be a relational structure and x, y be elements of R. We say that $x \equiv y$ if and only if

(Def. 2) $x \not\leq y$ and $y \not\leq x$.

Observe that the predicate is symmetric.

We consider relational multiplicative magmas which extend multiplicative magmas and relational structures and are systems

(a carrier, a multiplication, an internal relation)

where the carrier is a set, the multiplication is a binary operation on the carrier, the internal relation is a binary relation on the carrier.

We consider relational monoids which extend multiplicative loop structures and relational structures and are systems

(a carrier, a multiplication, a one, an internal relation)

where the carrier is a set, the multiplication is a binary operation on the carrier, the one is an element of the carrier, the internal relation is a binary relation on the carrier.

Let M be a multiplicative loop structure.

A relational extension of M is a relational monoid and is defined by

(Def. 3) the multiplicative loop structure of it = the multiplicative loop structure of M.

Let M be a non empty multiplicative loop structure. Let us observe that every relational extension of M is non empty.

Let M be a multiplicative loop structure. One can check that there exists a relational extension of M which is strict.

Let us consider a multiplicative loop structure N and a relational extension M of N. Now we state the propositions:

- (14) a is an element of M if and only if a is an element of N.
- (15) $1_N = 1_M$.

Let us consider I. Let M be a relational extension of I^{\otimes} . Let us observe that every element of M is function-like and relation-like and every element of M is I-defined, natural-valued, and finite-support and every element of M is total.

Now we state the proposition:

(16) Let us consider a relational extension M of I^{\otimes} . Then the carrier of M = Bags I. The theorem is a consequence of (12) and (14).

The scheme RelEx deals with a non empty multiplicative loop structure \mathcal{M} and a binary predicate \mathcal{R} and states that

(Sch. 1) There exists a strict relational extension N of \mathcal{M} such that for every elements x, y of $N, x \leq y$ iff $\mathcal{R}[x, y]$.

Now we state the proposition:

(17) Let us consider a multiplicative loop structure N, and strict relational extensions M_1 , M_2 of N. Suppose for every elements m, n of M_1 for every elements x, y of M_2 such that m = x and n = y holds $m \leq n$ iff $x \leq y$. Then $M_1 = M_2$.

PROOF: The internal relation of M_1 = the internal relation of M_2 by [7, (87)]. \Box

3. Dershowitz-Manna Order

Let R be a non empty relational structure. The Dershowitz-Manna order R yielding a strict relational extension of (the carrier of R)^{\otimes} is defined by

(Def. 4) for every elements m, n of $it, m \leq n$ iff there exist elements x, y of it such that $1_{it} \neq x \mid n$ and m = n - x + y and for every element b of R such that y(b) > 0 there exists an element a of R such that x(a) > 0 and $b \leq a$.

Now we state the proposition:

(18) Let us consider bags m, n of I. Then n = m - (m - n) + (n - m). The theorem is a consequence of (1).

Let us consider bags m, n, x, y of I. Now we state the propositions:

- (19) If n = m x + y, then $m n \mid x$ and $n m \mid y$. The theorem is a consequence of (3).
- (20) If $x \mid m$ and n = m x + y, then x (m n) = y (n m). The theorem is a consequence of (4).

Now we state the propositions:

- (21) Let us consider bags m, x, y of I. If $x \mid m$ and $x \neq y$, then $m \neq m x + y$.
- (22) Let us consider a non empty set I, a binary relation R on I, and a reduction sequence r w.r.t. R. If len r > 1, then $r(\text{len } r) \in I$.
- (23) Let us consider an asymmetric, transitive binary relation R on I. Then every reduction sequence w.r.t. R is one-to-one. PROOF: For every natural numbers i, j such that i > j and $i, j \in \text{dom } r$ holds $r(i) \neq r(j)$ by $[1, (13)], [13, (22)], [1, (11)], [15, (25)]. \square$
- (24) Let us consider an asymmetric, transitive, non empty relational structure R, and a set X. Suppose X is finite and there exists an element x of R such that $x \in X$. Then there exists an element x of R such that x is maximal in X.

PROOF: Reconsider $X_1 = X$ as a finite set. Set $Y = \{r, \text{ where } r \text{ is} an element of <math>X_1^* : r$ is a reduction sequence w.r.t. the internal relation of $R\}$. Define $\mathcal{P}[\text{natural number}] \equiv \text{there exists a reduction sequence } r$ w.r.t. the internal relation of R such that $r \in Y$ and $\text{len } r = \$_1$. For every natural number k such that $\mathcal{P}[k]$ holds $k \leq \overline{X_1}$ by (23), [1, (43)]. $\mathcal{P}[1]$ by [2, (6)], [4, (74), (39)]. Consider k being a natural number such that $\mathcal{P}[k]$ and for every natural number n such that $\mathcal{P}[n]$ holds $n \leq k$ from [1, Sch. 6]. Consider r being a reduction sequence w.r.t. the internal relation of R such that $r \in Y$ and len r = k. Consider q being an element of X_1^* such that r = q and q is a reduction sequence w.r.t. the internal relation of R. \Box

(25) Let us consider bags m, n of I. Then $m - n \mid m$.

Let us consider I. Note that every element of Bags I is function-like and relation-like.

Now we state the proposition:

- (26) Let us consider bags m, n of I. Then
 - (i) $m n \neq \text{EmptyBag } I$, or
 - (ii) m = n, or
 - (iii) $n m \neq \text{EmptyBag } I$.

Let R be an asymmetric, transitive, non empty relational structure. Let us observe that the Dershowitz-Manna order R is defined by

(Def. 5) for every elements m, n of $it, m \leq n$ iff $m \neq n$ and for every element a of R such that m(a) > n(a) there exists an element b of R such that $a \leq b$ and m(b) < n(b).

Now we state the proposition:

(27) Let us consider bags k, x_1 , x_2 , y_1 , y_2 of I. Suppose $x_2 \mid k$ and $x_1 \mid k - x_2 + y_2$. Then

- (i) $x_2 + (x_1 y_2) \mid k$, and
- (ii) $k x_2 + y_2 x_1 + y_1 = k (x_2 + (x_1 y_2)) + (y_2 x_1 + y_1).$

The theorem is a consequence of (5).

Let R be an asymmetric, transitive, non empty relational structure. Let us observe that the Dershowitz-Manna order R is asymmetric and transitive.

Let us consider I. The functor DivOrder(I) yielding a binary relation on Bags I is defined by

(Def. 6) for every bags b_1 , b_2 of I, $\langle b_1, b_2 \rangle \in it$ iff $b_1 \neq b_2$ and $b_1 \mid b_2$. Now we state the proposition:

(28) Let us consider bags a, b, c of I. If $a \mid b \mid c$, then $a \mid c$.

Let us consider I. Note that DivOrder(I) is asymmetric and transitive.

Let us consider an asymmetric, transitive, non empty relational structure R. Now we state the propositions:

- (29) DivOrder(the carrier of R) \subseteq the internal relation of the Dershowitz-Manna order R. The theorem is a consequence of (12) and (14).
- (30) Suppose the internal relation of R is empty. Then the internal relation of the Dershowitz-Manna order R = DivOrder(the carrier of R). The theorem is a consequence of (29).

Now we state the proposition:

(31) Let us consider asymmetric, transitive, non empty relational structures R_1, R_2 . Suppose the carrier of R_1 = the carrier of R_2 and the internal relation of $R_1 \subseteq$ the internal relation of R_2 . Then the internal relation of the Dershowitz-Manna order $R_1 \subseteq$ the internal relation of the Dershowitz-Manna order R_2 . The theorem is a consequence of (12) and (14).

4. Monoidal Order

Let us consider I. Let f be a (Bags I)-valued finite sequence. The functor $\sum f$ yielding a bag of I is defined by

(Def. 7) there exists a function F from \mathbb{N} into Bags I such that $it = F(\operatorname{len} f)$ and $F(0) = \operatorname{EmptyBag} I$ and for every natural number i and for every bag b of I such that $i < \operatorname{len} f$ and b = f(i+1) holds F(i+1) = F(i) + b.

Now we state the proposition:

(32) $\sum \varepsilon_{\text{Bags }I} = \text{EmptyBag }I.$

Let us consider I. Let b be a bag of I. One can verify that $\langle b \rangle$ is (Bags I)-valued as a finite sequence.

Now we state the proposition:

(33) Let us consider a (Bags I)-valued finite sequence p, and a bag b of I. Then $\sum (p \cap \langle b \rangle) = \sum p + b$.

PROOF: Set $f = p \land \langle b \rangle$. Consider F being a function from \mathbb{N} into Bags Isuch that $\sum f = F(\operatorname{len} f)$ and $F(0) = \operatorname{EmptyBag} I$ and for every natural number i and for every bag b of I such that $i < \operatorname{len} f$ and b = f(i+1)holds F(i+1) = F(i) + b. Consider F_1 being a function from \mathbb{N} into Bags Isuch that $\sum p = F_1(\operatorname{len} p)$ and $F_1(0) = \operatorname{EmptyBag} I$ and for every natural number i and for every bag b of I such that $i < \operatorname{len} p$ and b = p(i+1)holds $F_1(i+1) = F_1(i) + b$. Define $\mathcal{P}[\operatorname{natural number}] \equiv \operatorname{if} \$_1 \leq \operatorname{len} p$, then $F(\$_1) = F_1(\$_1)$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$ by [5, (16)], [1, (13), (11)], [15, (25)]. For every natural number $i, \mathcal{P}[i]$ from $[1, \operatorname{Sch. 2}]$. \Box

From now on b denotes a bag of I.

Now we state the propositions:

- (34) $\sum \langle b \rangle = b$. The theorem is a consequence of (33) and (32).
- (35) Let us consider (Bags I)-valued finite sequences p, q. Then $\sum (p \cap q) = \sum p + \sum q$.

PROOF: Set $f = p \cap q$. Consider F being a function from N into Bags I such that $\sum f = F(\operatorname{len} f)$ and $F(0) = \operatorname{EmptyBag} I$ and for every natural number i and for every bag b of I such that i < len f and b = f(i+1)holds F(i+1) = F(i) + b. Consider F_1 being a function from N into Bags I such that $\sum p = F_1(\operatorname{len} p)$ and $F_1(0) = \operatorname{EmptyBag} I$ and for every natural number i and for every bag b of I such that i < len p and b = p(i+1) holds $F_1(i+1) = F_1(i) + b$. Consider F_2 being a function from N into Bags I such that $\sum q = F_2(\operatorname{len} q)$ and $F_2(0) = \operatorname{EmptyBag} I$ and for every natural number i and for every bag b of I such that $i < \log q$ and b = q(i+1)holds $F_2(i+1) = F_2(i) + b$. Define $\mathcal{P}[\text{natural number}] \equiv \text{if } \$_1 \leq \text{len } p$, then $F(\$_1) = F_1(\$_1)$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$ by [4, (22)], [1, (11), (13)], [15, (25)]. For every natural number *i*, $\mathcal{P}[i]$ from [1, Sch. 2]. Define $\mathcal{Q}[\text{natural number}] \equiv \text{if } \$_1 \leq \text{len } q$, then $F(\operatorname{len} p + \$_1) = \sum p + F_2(\$_1)$. For every natural number *i* such that $\mathcal{Q}[i]$ holds Q[i+1] by [4, (22)], [1, (13), (11)], [15, (25)]. For every natural number $i, \mathcal{Q}[i]$ from [1, Sch. 2].

Let us consider a (Bags I)-valued finite sequence p. Now we state the propositions:

- (36) $\sum (\langle b \rangle \cap p) = b + \sum p$. The theorem is a consequence of (35) and (34).
- (37) If $b \in \operatorname{rng} p$, then $b \mid \sum p$. The theorem is a consequence of (8), (7), (33), and (35).

Now we state the proposition:

- (38) Let us consider a (Bags I)-valued finite sequence p, and an object i. Suppose $i \in \text{support} \sum p$. Then there exists b such that
 - (i) $b \in \operatorname{rng} p$, and
 - (ii) $i \in \text{support } b$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every (Bags } I)$ -valued finite sequence p such that $\text{len } p = \$_1$ for every object i such that $i \in \text{support } \sum p$ there exists b such that $b \in \text{rng } p$ and $i \in \text{support } b$. $\mathcal{P}[0]$. For every natural number j such that $\mathcal{P}[j]$ holds $\mathcal{P}[j+1]$ by [3, (3)], (7), [4, (40)], [15, (25)]. For every natural number $j, \mathcal{P}[j]$ from [1, Sch. 2]. \Box

Let us consider I and b.

A partition of b is a (Bags I)-valued finite sequence and is defined by (Def. 8) $b = \sum it$.

Observe that the functor $\langle b \rangle$ yields a partition of b. Let R be a relational structure, M be a relational extension of (the carrier of R)^{\otimes}, b be an element of M, and p be a partition of b. We say that p is co-ordered if and only if

(Def. 9) for every natural number *i* such that $i, i + 1 \in \text{dom } p$ for every elements b_1, b_2 of M such that $b_1 = p(i)$ and $b_2 = p(i+1)$ holds $b_2 \leq b_1$.

Let R be a non empty relational structure and b be a bag of the carrier of R. We say that p is ordered if and only if

(Def. 10) for every bag m of the carrier of R such that $m \in \operatorname{rng} p$ for every element x of R such that m(x) > 0 holds m(x) = b(x) and for every bag m of the carrier of R such that $m \in \operatorname{rng} p$ for every elements x, y of R such that m(x) > 0 and m(y) > 0 and $x \neq y$ holds $x \equiv y$ and for every bag m of the carrier of R such that $m \in \operatorname{rng} p$ holds $m \neq \operatorname{EmptyBag}(\text{the carrier of } R)$ and for every natural number i such that $i, i + 1 \in \operatorname{dom} p$ for every element x of R such that $p_{i+1}(x) > 0$ there exists an element y of R such that $p_i(y) > 0$ and $x \leqslant y$.

In the sequel R denotes an asymmetric, transitive, non empty relational structure, a, b, c denote bags of the carrier of R, and x, y, z denote elements of R.

Now we state the propositions:

- (39) $\langle a \rangle$ is ordered if and only if $a \neq \text{EmptyBag}(\text{the carrier of } R)$ and for every x and y such that a(x) > 0 and a(y) > 0 and $x \neq y$ holds $x \equiv y$.
- (40) Let us consider a (Bags I)-valued finite sequence p, and bags a, b of I. Then $\langle a \rangle \cap p$ is a partition of b if and only if $a \mid b$ and p is a partition of b - a. The theorem is a consequence of (36).

From now on p denotes a partition of b - a and q denotes a partition of b. Now we state the proposition: (41) If $q = \langle a \rangle \cap p$ and q is ordered, then p is ordered. The theorem is a consequence of (37) and (25).

Let us consider I. Let m be a bag of I and J be a set. The functor $m \upharpoonright J$ yielding a bag of I is defined by

(Def. 11) for every object i such that $i \in I$ holds if $i \in J$, then it(i) = m(i) and if $i \notin J$, then it(i) = 0.

From now on J denotes a set and m denotes a bag of I. Now we state the propositions:

- (42) support $(m \restriction J) = J \cap$ support m.
- (43) $m \restriction J + m \restriction (I \setminus J) = m.$
- $(44) \quad m \restriction J \mid m.$
- (45) If support $m \subseteq J$, then $m \upharpoonright J = m$.
- (46) support $(m m \restriction J)$ = support $m \setminus J$.
- (47) If q is ordered and $q = \langle a \rangle \cap p$ and a(x) > 0, then a(x) = b(x).
- (48) If q is ordered and $q = \langle a \rangle \cap p$ and a(x) > 0 and a(y) > 0 and $x \neq y$, then $x \equiv y$.
- (49) If q is ordered and $q = \langle a \rangle \cap p$, then $a \neq \text{EmptyBag}$ (the carrier of R).
- (50) Let us consider a bag c of the carrier of R, and a (Bags(the carrier of R))-valued finite sequence r. Suppose q is ordered and $q = \langle a, c \rangle \cap r$ and c(y) > 0. Then there exists x such that
 - (i) a(x) > 0, and
 - (ii) $y \leq x$.
- (51) If $x \in I$ and for every y such that $y \in I$ and $y \neq x$ holds $x \equiv y$, then x is maximal in I.
- (52) If q is ordered and $q = \langle a \rangle \cap p$ and $c \in \operatorname{rng} p$ and c(x) > 0, then there exists y such that a(y) > 0 and $x \leq y$.

PROOF: Consider *i* being an object such that $i \in \text{dom } p$ and c = p(i). Define $\mathcal{P}[\text{natural number}] \equiv \text{if } \$_1 \in \text{dom } p$, then for every *x* such that $p_{\$_1}(x) > 0$ there exists *y* such that a(y) > 0 and $x \leq y$. $\mathcal{P}[1]$ by [4, (28)], [15, (25)], [4, (40)]. For every natural number *i* such that $i \geq 1$ and $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$ by [1, (13)], [15, (25)], [4, (28)], [16, (3)]. For every natural number *i* such that $i \geq 1$ holds $\mathcal{P}[i]$ from [1, Sch. 8]. \Box

Let us assume that q is ordered and $q = \langle a \rangle \cap p$. Now we state the propositions:

(53) x is maximal in support b if and only if a(x) > 0. PROOF: $a \mid \sum q = b$. There exists no y such that $y \in$ support b and x < y by (48), (38), [4, (31), (39)]. \Box (54) $a = b \upharpoonright \{x : x \text{ is maximal in support } b\}$. The theorem is a consequence of (53) and (47).

Now we state the propositions:

- (55) Let us consider a (Bags I)-valued finite sequence p. Suppose $\sum p =$ EmptyBag I and for every bag a of I such that $a \in \operatorname{rng} p$ holds $a \neq$ EmptyBag I. Then $p = \emptyset$. The theorem is a consequence of (37).
- (56) Let us consider bags a, b of I. If $a \neq \text{EmptyBag} I$, then $a + b \neq \text{EmptyBag} I$.
- (57) Let us consider partitions p, q of b. If p is ordered and q is ordered, then p = q.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every } b \text{ and } q \text{ such that } \text{len } q = \$_1$ and q is ordered for every partition p of b such that p is ordered holds q = p. $\mathcal{P}[0]$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$ by [5, (130)], (40), (49), (36). For every natural number i, $\mathcal{P}[i]$ from [1, Sch. 2]. \Box

Let us consider I. Let a, b be bags of I. One can verify that the functor $\langle a, b \rangle$ yields an element of Bags $I \times \text{Bags } I$. Now we state the proposition:

(58) Suppose $a \neq \text{EmptyBag}(\text{the carrier of } R)$. Then $\{x : x \text{ is maximal in support } a\} \neq \emptyset$. The theorem is a consequence of (24).

Let us consider R and b. The ordered partition of b yielding a (Bags(the carrier of R))-valued finite sequence is defined by

(Def. 12) there exist functions F, G from \mathbb{N} into Bags(the carrier of R) such that F(0) = b and G(0) = EmptyBag(the carrier of R) and for every natural number i, $G(i+1) = F(i) | \{x : x \text{ is maximal in support}(F(i))\}$ and F(i+1) = F(i) - G(i+1) and there exists a natural number i such that F(i) = EmptyBag(the carrier of R) and it = G | Seg i and for every natural number j such that j < i holds $F(j) \neq \text{EmptyBag}(\text{the carrier of } R)$.

One can verify that the ordered partition of b yields a partition of b. Let us note that the ordered partition of b is ordered as a partition of b.

Now we state the proposition:

(59) b = EmptyBag(the carrier of R) if and only if the ordered partition of $b = \emptyset$. The theorem is a consequence of (32).

Let us consider R. The functor $\prec_{\mathcal{M}} R$ yielding a strict relational extension of (the carrier of R)^{\otimes} is defined by

(Def. 13) for every elements m, n of $it, m \leq n$ iff $m \neq n$ and for every x such that m(x) > 0 holds m(x) < n(x) or there exists y such that n(y) > 0 and $x \leq y$.

Let us note that $\prec_{\mathcal{M}} R$ is asymmetric and transitive.

Let us consider I. Let R be a relation between I and I.

The functor LexOrder(I, R) yielding a binary relation on I^* is defined by

(Def. 14) for every *I*-valued finite sequences $p, q, \langle p, q \rangle \in it$ iff $p \subset q$ or there exists a natural number k such that $k \in \text{dom } p$ and $k \in \text{dom } q$ and $\langle p(k), q(k) \rangle \in R$ and for every natural number n such that $1 \leq n < k$ holds p(n) = q(n).

Let R be a transitive binary relation on I. One can verify that $\mathrm{LexOrder}(I,R)$ is transitive.

Let R be an asymmetric binary relation on I. Note that LexOrder(I, R) is asymmetric.

Now we state the proposition:

(60) Let us consider an asymmetric binary relation R on I, and I-valued finite sequences p, q, r. Then $\langle p, q \rangle \in \text{LexOrder}(I, R)$ if and only if $\langle r \uparrow p, r \uparrow q \rangle \in \text{LexOrder}(I, R)$. The theorem is a consequence of (10).

Let us consider R. The functor $\prec \prec_M R$ yielding a strict relational extension of (the carrier of $R)^{\otimes}$ is defined by

(Def. 15) for every elements m, n of $it, m \leq n$ iff (the ordered partition of m, the ordered partition of n) \in LexOrder((the carrier of $\prec_{\mathcal{M}} R$), (the internal relation of $\prec_{\mathcal{M}} R$)).

Observe that $\prec \prec_{\mathcal{M}} R$ is asymmetric and transitive.

Now we state the propositions:

- (61) Let us consider elements a, b of the Dershowitz-Manna order R. Suppose $a \leq b$. Then $b \neq$ EmptyBag(the carrier of R). The theorem is a consequence of (29).
- (62) Let us consider elements a, b, c, d of the Dershowitz-Manna order R, and a bag e of the carrier of R. Suppose $a \leq b$ and $e \mid a$ and $e \mid b$. If c = a e' and d = b e', then $c \leq d$.
- (63) Let us consider a (Bags I)-valued finite sequence p, and an object x. Suppose $x \in I$ and $(\sum p)(x) > 0$. Then there exists a natural number i such that
 - (i) $i \in \operatorname{dom} p$, and
 - (ii) $p_i(x) > 0$.

PROOF: Define $\mathcal{P}[\text{object}] \equiv \text{for every (Bags } I)$ -valued finite sequence p such that $p = \$_1$ and $(\sum p)(x) > 0$ there exists a natural number i such that $i \in \text{dom } p$ and $p_i(x) > 0$. $\mathcal{P}[\emptyset]$ by (32), [14, (7)]. For every finite sequence p and for every object a such that $\mathcal{P}[p]$ holds $\mathcal{P}[p \cap \langle a \rangle]$ by (7), [4, (40)], [15, (25)], [6, (102)]. For every finite sequence p, $\mathcal{P}[p]$ from [4, Sch. 3]. \Box

(64) If q is ordered and $q_1(x) = 0$ and b(x) > 0, then there exists y such that $q_1(y) > 0$ and $x \leq y$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{if } \$_1 \in \text{dom } q$, then for every x such that $q_{\$_1}(x) > 0$ there exists y such that $q_1(y) > 0$ and $x \leq y$. $\mathcal{P}[2]$ by [15, (25)]. For every natural number i such that $2 \leq i$ and $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$ by [1, (11)], [15, (25)], [16, (3)]. For every natural number i such that $i \geq 2$ holds $\mathcal{P}[i]$ from [1, Sch. 8]. Consider i being a natural number such that $i \in \text{dom } q$ and $q_i(x) > 0$. \Box

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469–478, 1996.
- [3] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397–402, 1991.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [6] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1): 55–65, 1990.
- [7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [8] Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science, 17(3):279–301, 1982. doi:10.1016/0304-3975(82)90026-3.
- [9] Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings. Communications of the ACM, 22(8):465–476, 1979. doi:10.1145/359138.359142.
- [10] Gerard Huet and Derek C. Oppen. Equations and rewrite rules: A survey. Technical report, Stanford, CA, USA, 1980.
- [11] Jean-Pierre Jouannaud and Pierre Lescanne. On multiset ordering. Information Processing Letters, 15(2):57–63, 1982. doi:10.1016/0020-0190(82)90107-7.
- [12] Robert Milewski. Natural numbers. Formalized Mathematics, 7(1):19–22, 1998.
- [13] Eliza Niewiadomska and Adam Grabowski. Introduction to formal preference spaces. Formalized Mathematics, 21(3):223–233, 2013. doi:10.2478/forma-2013-0024.
- [14] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.
- [15] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [16] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski Zorn lemma. Formalized Mathematics, 1(2):387–393, 1990.

Received December 31, 2015