

Algebra of Polynomially Bounded Sequences and Negligible Functions

Hiroyuki Okazaki Shinshu University Nagano, Japan

Summary. In this article we formalize negligible functions that play an essential role in cryptology [10], [2]. Generally, a cryptosystem is secure if the probability of succeeding any attacks against the cryptosystem is negligible. First, we formalize the algebra of polynomially bounded sequences [20]. Next, we formalize negligible functions and prove the set of negligible functions is a subset of the algebra of polynomially bounded sequences. Moreover, we then introduce equivalence relation between polynomially bounded sequences, using negligible functions.

MSC: 68Q25 94A60 03B35

Keywords: polynomially bounded function; negligible functions

MML identifier: ASYMPT_3, version: 8.1.04 5.33.1254

The notation and terminology used in this paper have been introduced in the following articles: [29], [16], [17], [20], [4], [19], [9], [24], [21], [5], [6], [26], [25], [1], [7], [13], [22], [12], [3], [11], [30], [27], [14], [15], [23], [28], [18], and [8].

1. Preliminaries

Let us consider a real number r. Now we state the propositions:

- (1) r < |r| + 1.
- (2) There exists a natural number N such that for every natural number n such that $N \leq n$ holds $r < \frac{n}{\log_2 n}$.

Let us consider a natural number k. Now we state the propositions:

(3) There exists a natural number N such that for every natural number x such that $N \leq x$ holds $x^k < 2^x$. The theorem is a consequence of (2).

© 2015 University of Białystok CC-BY-SA License ver. 3.0 or later ISSN 1426-2630(Print), 1898-9934(Online) (4) There exists a natural number N such that for every natural number x such that $N \leq x$ holds $\frac{1}{2^x} < \frac{1}{x^k}$. The theorem is a consequence of (3).

Now we state the proposition:

(5) Let us consider a natural number z. Suppose $2 \le z$. Let us consider a natural number k. Then there exists a natural number N such that for every natural number x such that $N \le x$ holds $\frac{1}{z^x} < \frac{1}{x^k}$. The theorem is a consequence of (4).

Observe that there exists a finite 0-sequence of \mathbb{R} which is positive yielding and there exists a positive yielding finite 0-sequence of \mathbb{R} which is non empty.

Now we state the proposition:

(6) Let us consider a finite 0-sequence c of \mathbb{R} , and a real number a. Then $a \cdot c$ is a finite 0-sequence of \mathbb{R} .

Let c be a finite 0-sequence of \mathbb{R} and a be a real number. Observe that $a \cdot c$ is finite as a transfinite sequence of elements of \mathbb{R} .

Now we state the proposition:

(7) Let us consider a non empty, positive yielding finite 0-sequence c of \mathbb{R} , and a real number a. Suppose 0 < a. Then $a \cdot c$ is a non empty, positive yielding finite 0-sequence of \mathbb{R} . The theorem is a consequence of (6).

Let c be a non empty, positive yielding finite 0-sequence of \mathbb{R} and a be a positive real number. Observe that $a \cdot c$ is non empty and positive yielding as a finite 0-sequence of \mathbb{R} .

Let c be a finite 0-sequence of \mathbb{R} . We introduce the notation polynom c as a synonym of $\operatorname{Seq}_{\operatorname{poly}}(c)$.

- (8) Let us consider a non empty, positive yielding finite 0-sequence c of \mathbb{R} , and a natural number x. Then $0 < (\operatorname{polynom} c)(x)$.

 PROOF: Define $\mathcal{P}[\operatorname{natural number}] \equiv \text{for every non empty, positive yielding finite 0-sequence } c$ of \mathbb{R} such that $\operatorname{len} c = \$_1$ for every natural number x, $0 < (\operatorname{polynom} c)(x)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [20, (28), (29)], [1, (44)], [5, (3), (47)]. For every natural number k, $\mathcal{P}[k]$ from $[1, \operatorname{Sch. 2}]$. \square
- (9) Let us consider non empty, positive yielding finite 0-sequences c, c_1 of \mathbb{R} , and a real number a. Suppose $c_1 = a \cdot c$. Let us consider a natural number x. Then (polynom c_1)(x) = $a \cdot (\text{polynom } c)(x)$.

PROOF: For every object
$$i$$
 such that $i \in \text{dom}(c_1 \cdot \{x^{1 \cdot n + 0}\}_{n \in \mathbb{N}})$ holds $(c_1 \cdot \{x^{1 \cdot n + 0}\}_{n \in \mathbb{N}})(i) = (a \cdot (c \cdot \{x^{1 \cdot n + 0}\}_{n \in \mathbb{N}}))(i)$ by [20, (26)]. \square

2. Algebra of Polynomially Bounded Sequences

Let p be a sequence of real numbers. We say that p is absolutely polynomially bounded if and only if

(Def. 1) there exists a natural number k such that $|p| \in O(\{n^k\}_{n \in \mathbb{N}})$.

One can verify that every sequence of real numbers which is polynomially bounded is also absolutely polynomially bounded.

Now we state the proposition:

(10) Let us consider an element r of \mathbb{N} , and a sequence s of real numbers. If $s = \mathbb{N} \longmapsto r$, then s is absolutely polynomially bounded.

One can check that there exists a function from \mathbb{N} into \mathbb{R} which is absolutely polynomially bounded.

Let f, g be absolutely polynomially bounded functions from \mathbb{N} into \mathbb{R} . One can verify that f+g is absolutely polynomially bounded as a function from \mathbb{N} into \mathbb{R} and $f\cdot g$ is absolutely polynomially bounded as a function from \mathbb{N} into \mathbb{R} .

Let f be an absolutely polynomially bounded function from \mathbb{N} into \mathbb{R} and a be an element of \mathbb{R} . Observe that $a \cdot f$ is absolutely polynomially bounded as a function from \mathbb{N} into \mathbb{R} .

The functor $\mathcal{O}_{\text{poly}}$ yielding a subset of RAlgebra N is defined by

(Def. 2) for every object $x, x \in it$ iff x is an absolutely polynomially bounded function from \mathbb{N} into \mathbb{R} .

Note that $\mathcal{O}_{\text{poly}}$ is non empty.

The functor RAlgebra \mathcal{O}_{poly} yielding a strict algebra structure is defined by

(Def. 3) the carrier of $it = \mathcal{O}_{\text{poly}}$ and the multiplication of $it = \cdot_{\mathbb{R}^{\mathbb{N}}} \upharpoonright \mathcal{O}_{\text{poly}}$ and the addition of $it = +_{\mathbb{R}^{\mathbb{N}}} \upharpoonright \mathcal{O}_{\text{poly}}$ and the external multiplication of $it = \cdot_{\mathbb{R}^{\mathbb{N}}} \upharpoonright (\mathbb{R} \times \mathcal{O}_{\text{poly}})$ and the one of $it = \mathbf{1}_{\mathbb{R}^{\mathbb{N}}}$ and the zero of $it = \mathbf{0}_{\mathbb{R}^{\mathbb{N}}}$.

One can verify that RAlgebra \mathcal{O}_{poly} is non empty.

Now we state the propositions:

- (11) The carrier of RAlgebra $\mathcal{O}_{\text{poly}} \subseteq \text{the carrier of RAlgebra } \mathbb{N}$.
- (12) Let us consider an object f. Then $f \in \text{RAlgebra}\mathcal{O}_{\text{poly}}$ if and only if f is an absolutely polynomially bounded function from \mathbb{N} into \mathbb{R} .

Let us consider points f, g of RAlgebra \mathcal{O}_{poly} and points f_1 , g_1 of RAlgebra \mathbb{N} . Let us assume that $f = f_1$ and $g = g_1$. Now we state the propositions:

- $(13) \quad f \cdot g = f_1 \cdot g_1.$
- $(14) \quad f + g = f_1 + g_1.$

- (15) Let us consider a point f of RAlgebra \mathcal{O}_{poly} , a point f_1 of RAlgebra \mathbb{N} , and an element a of \mathbb{R} . If $f = f_1$, then $a \cdot f = a \cdot f_1$.
- (16) $0_{\text{RAlgebra}\mathcal{O}_{\text{poly}}} = 0_{\text{RAlgebra}\mathbb{N}}.$
- (17) $1_{\text{RAlgebra}\mathcal{O}_{\text{poly}}} = 1_{\text{RAlgebra}\mathbb{N}}.$

One can check that RAlgebra $\mathcal{O}_{\text{poly}}$ is strict, Abelian, add-associative, right zeroed, right complementable, commutative, associative, right unital, right distributive, vector associative, scalar associative, vector distributive, and scalar distributive.

Now we state the proposition:

(18) RAlgebra $\mathcal{O}_{\text{poly}}$ is an algebra.

Let us consider vectors f, g, h of RAlgebra \mathcal{O}_{poly} and functions f', g', h' from \mathbb{N} into \mathbb{R} .

Let us assume that f' = f and g' = g and h' = h. Now we state the propositions:

- (19) h = f + g if and only if for every natural number x, h'(x) = f'(x) + g'(x). The theorem is a consequence of (11) and (14).
- (20) $h = f \cdot g$ if and only if for every natural number x, $h'(x) = f'(x) \cdot g'(x)$. The theorem is a consequence of (11) and (13).

Now we state the proposition:

(21) Let us consider vectors f, h of RAlgebra \mathcal{O}_{poly} , and functions f', h' from \mathbb{N} into \mathbb{R} . Suppose f' = f and h' = h. Let us consider a real number a. Then $h = a \cdot f$ if and only if for every natural number x, $h'(x) = a \cdot f'(x)$. The theorem is a consequence of (11) and (15).

3. Negligible Functions

DEFINITION 1.3.5 OF [10], P.16: Let f be a function from \mathbb{N} into \mathbb{R} . We say that f is negligible if and only if

(Def. 4) for every non empty, positive yielding finite 0-sequence c of \mathbb{R} , there exists a natural number N such that for every natural number x such that $N \leqslant x$ holds $|f(x)| < \frac{1}{(\operatorname{polynom} c)(x)}$.

- (22) Let us consider a real number r. Suppose 0 < r. Then there exists a non empty, positive yielding finite 0-sequence c of \mathbb{R} such that for every natural number x, (polynom c)(x) = r.
- (23) Let us consider a function f from \mathbb{N} into \mathbb{R} . Suppose f is negligible. Let us consider a real number r. Suppose 0 < r. Then there exists a natural

number N such that for every natural number x such that $N \leq x$ holds |f(x)| < r. The theorem is a consequence of (22).

(24) Let us consider a function f from \mathbb{N} into \mathbb{R} . If f is negligible, then f is convergent and $\lim f = 0$. The theorem is a consequence of (23).

Let us observe that $\{0\}_{n\in\mathbb{N}}$ is negligible and there exists a function from \mathbb{N} into \mathbb{R} which is negligible.

Let f be a negligible function from \mathbb{N} into \mathbb{R} . Let us observe that |f| is negligible as a function from \mathbb{N} into \mathbb{R} .

Let a be a real number. One can verify that $a \cdot f$ is negligible as a function from $\mathbb N$ into $\mathbb R$.

Let f, g be negligible functions from $\mathbb N$ into $\mathbb R$. One can check that f+g is negligible as a function from $\mathbb N$ into $\mathbb R$ and $f\cdot g$ is negligible as a function from $\mathbb N$ into $\mathbb R$.

Now we state the propositions:

(25) Inverse of Power of 2 is negligible:

Let us consider a function f from \mathbb{N} into \mathbb{R} . If for every natural number x, $f(x) = \frac{1}{2^x}$, then f is negligible.

PROOF: Set k = len c. Define $\mathcal{F}(\text{natural number}) = 1 \cdot \$_1^k$. Consider y being a sequence of real numbers such that for every natural number x, $y(x) = \mathcal{F}(x)$ from [14, Sch. 1]. Consider N_1 being a natural number such that for every natural number x such that $N_1 \leq x$ holds $|(\text{Seq}_{\text{poly}}(c))(x)| \leq y(x)$. Consider N_2 being a natural number such that for every natural number x such that $N_2 \leq x$ holds $\frac{1}{2^x} < \frac{1}{x^k}$. Set $N = N_1 + N_2$. For every natural number x such that $N \leq x$ holds $|f(x)| < \frac{1}{(\text{polynom } c)(x)}$ by [1, (12)], (8). \square

(26) Let us consider functions f, g from \mathbb{N} into \mathbb{R} . Suppose f is negligible and for every natural number $x, |g(x)| \leq |f(x)|$. Then g is negligible.

One can check that every function from \mathbb{N} into \mathbb{R} which is negligible is also absolutely polynomially bounded.

The functor negligible-Funcs yielding a subset of \mathcal{O}_{poly} is defined by

(Def. 5) for every object $x, x \in it$ iff x is a negligible function from \mathbb{N} into \mathbb{R} .

Let us observe that negligible-Funcs is non empty.

Let us consider vectors v, w of RAlgebra \mathcal{O}_{poly} and functions v_1 , w_1 from \mathbb{N} into \mathbb{R} .

Let us assume that $v = v_1$ and $w_1 = w$. Now we state the propositions:

- (27) $v + w = v_1 + w_1$. The theorem is a consequence of (19).
- (28) $v \cdot w = v_1 \cdot w_1$. The theorem is a consequence of (20).

- (29) Let us consider a real number a, a vector v of RAlgebra $\mathcal{O}_{\text{poly}}$, and a function v_1 from \mathbb{N} into \mathbb{R} . If $v = v_1$, then $a \cdot v = a \cdot v_1$. The theorem is a consequence of (21).
- (30) Let us consider a real number a, and a vector v of RAlgebra \mathcal{O}_{poly} . Suppose $v \in \text{negligible-Funcs}$. Then $a \cdot v \in \text{negligible-Funcs}$. The theorem is a consequence of (29).

Let us consider vectors v, u of RAlgebra $\mathcal{O}_{\text{poly}}$.

Let us assume that $v, u \in \text{negligible-Funcs}$. Now we state the propositions:

- (31) $v + u \in \text{negligible-Funcs}$. The theorem is a consequence of (27).
- (32) $v \cdot u \in \text{negligible-Funcs}$. The theorem is a consequence of (28).

Let f, g be functions from $\mathbb N$ into $\mathbb R$. We say that $f \approx_{\operatorname{neg}} g$ if and only if

(Def. 6) there exists a function h from \mathbb{N} into \mathbb{R} such that h is negligible and for every natural number x, $|f(x) - g(x)| \leq |h(x)|$.

One can verify that the predicate is reflexive and symmetric.

Now we state the propositions:

- (33) Let us consider functions f, g, h from \mathbb{N} into \mathbb{R} . Suppose $f \approx_{\text{neg}} g$ and $g \approx_{\text{neg}} h$. Then $f \approx_{\text{neg}} h$.
- (34) Let us consider functions f, g from \mathbb{N} into \mathbb{R} . Then $f \approx_{\text{neg}} g$ if and only if f g is negligible. The theorem is a consequence of (26).
- (35) Let us consider a non empty, positive yielding finite 0-sequence c of \mathbb{R} . Then there exists a real number a and there exist natural numbers k, N such that 0 < a and 0 < k and for every natural number x such that $N \leq x$ holds $(\text{polynom } c)(x) \leq a \cdot x^k$. The theorem is a consequence of (8).

Let a be a non-negative yielding finite 0-sequence of \mathbb{R} and b be a non-negative yielding sequence of real numbers. Let us observe that $a \cdot b$ is non-negative yielding.

Let a, b be non-negative yielding finite 0-sequences of \mathbb{R} . One can check that $a \cap b$ is non-negative yielding.

Let a, b, c be non negative real numbers. Let us note that $\{a^{b \cdot n + c}\}_{n \in \mathbb{N}}$ is non-negative yielding.

Now we state the propositions:

(36) Let us consider a real number a, and a natural number k. Then there exists a non empty, positive yielding finite 0-sequence c of \mathbb{R} such that for every natural number x, $a \cdot x^k \leq (\text{polynom } c)(x)$.

PROOF: Reconsider $c = \mathbb{Z}_{k+1} \longmapsto |a| + 1$ as a finite 0-sequence of \mathbb{R} . For every natural number $x, a \cdot x^k \leq (\text{polynom } c)(x)$ by [14, (1)], [24, (13), (7)], [1, (44)]. \square

(37) Let us consider non empty, positive yielding finite 0-sequences c, s of \mathbb{R} . Then there exists a non empty, positive yielding finite 0-sequence d of \mathbb{R} and there exists a natural number N such that for every natural number x such that $N \leq x$ holds $(\text{polynom } c)(x) \cdot (\text{polynom } s)(x) \leq (\text{polynom } d)(x)$. PROOF: Consider a_1 being a real number, k_1 , k_1 being natural numbers such that $0 < a_1$ and $0 < k_1$ and for every natural number x such that $N_1 \leq x$ holds $(\text{polynom } c)(x) \leq a_1 \cdot x^{k_1}$. Consider a_2 being a real number, k_2 , k_2 being natural numbers such that $k_2 \leq x$ holds $k_2 \leq x$ holds $k_3 \leq x$ and for every natural number $k_3 \leq x$ holds $k_4 \leq x$ holds $k_5 \leq x$ holds k_5

Let f be a negligible function from \mathbb{N} into \mathbb{R} and c be a non empty, positive yielding finite 0-sequence of \mathbb{R} . Let us observe that polynom $c \cdot f$ is negligible as a function from \mathbb{N} into \mathbb{R} .

Now we state the proposition:

(38) Let us consider an absolutely polynomially bounded function g from \mathbb{N} into \mathbb{R} . Then there exists a non empty, positive yielding finite 0-sequence d of \mathbb{R} and there exists a natural number N such that for every natural number x such that $N \leq x$ holds $|g(x)| \leq (\operatorname{polynom} d)(x)$. The theorem is a consequence of (36).

Let f be a negligible function from $\mathbb N$ into $\mathbb R$ and g be an absolutely polynomially bounded function from $\mathbb N$ into $\mathbb R$. Let us note that $g \cdot f$ is negligible as a function from $\mathbb N$ into $\mathbb R$.

Now we state the proposition:

(39) Let us consider vectors v, w of RAlgebra \mathcal{O}_{poly} . Suppose $w \in \text{negligible-Funcs}$. Then $v \cdot w \in \text{negligible-Funcs}$. The theorem is a consequence of (12) and (28).

ACKNOWLEDGEMENT: The author would like to express his gratitude to Prof. Yuichi Futa and Prof. Yasunari Shidama for their support and encouragement.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Mihir Bellare. A note on negligible functions, 2002.
- [3] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
- [4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.

- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [10] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University Press, 2001.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1): 35–40, 1990.
- [12] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841–845, 1990.
- [13] Artur Korniłowicz. On the real valued functions. Formalized Mathematics, 13(1):181–187, 2005.
- [14] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [15] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [16] Richard Krueger, Piotr Rudnicki, and Paul Shelley. Asymptotic notation. Part I: Theory. Formalized Mathematics, 9(1):135–142, 2001.
- [17] Richard Krueger, Piotr Rudnicki, and Paul Shelley. Asymptotic notation. Part II: Examples and problems. *Formalized Mathematics*, 9(1):143–154, 2001.
- [18] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [19] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265–268, 1997.
- [20] Hiroyuki Okazaki and Yuichi Futa. Polynomially bounded sequences and polynomial sequences. Formalized Mathematics, 23(3):205–213, 2015. doi:10.1515/forma-2015-0017.
- [21] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555–561, 1990.
- [22] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213–216, 1991.
- [23] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449–452, 1991.
- [24] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.
- [25] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [26] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [27] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [29] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825–829, 2001.
- [30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.

Received August 15, 2015