Construction of Measure from Semialgebra of Sets ${ }^{1}$

Noboru Endou
Gifu National College of Technology
Gifu, Japan

Abstract

Summary. In our previous article [22], we showed complete additivity as a condition for extension of a measure. However, this condition premised the existence of a σ-field and the measure on it. In general, the existence of the measure on σ-field is not obvious. On the other hand, the proof of existence of a measure on a semialgebra is easier than in the case of a σ-field. Therefore, in this article we define a measure (pre-measure) on a semialgebra and extend it to a measure on a σ-field. Furthermore, we give a σ-measure as an extension of the measure on a σ-field. We follow [24, 10, and [31.

MSC: 28A12 03B35
Keywords: measure theory; pre-measure
MML identifier: MEASURE9, version: 8.1.04 5.34.1256
The notation and terminology used in this paper have been introduced in the following articles: [1], [2], [19], [11], 5], [12], [17], [32], [13], [14], [26], [6], [7], $[22],[20],[18],[21],[3],[4],[15],[27],[28],[35],[36], 30],[29],[23], ~ 34], ~ 8], ~ 9]$, [25], and [16].

1. Joining Finite Sequences

Now we state the propositions:
(1) Let us consider a binary relation K. If rng K is empty-membered, then $\bigcup \operatorname{rng} K=\emptyset$.
(2) Let us consider a function K. Then $\operatorname{rng} K$ is empty-membered if and only if for every object $x, K(x)=\emptyset$.

[^0]Let D be a set, F be a set of finite sequences of D, f be a finite sequence of elements of F, and n be a natural number. Note that the functor $f(n)$ yields a finite sequence of elements of D. Let Y be a set of finite sequences of D and F be a finite sequence of elements of Y. The functor Length F yielding a finite sequence of elements of \mathbb{N} is defined by
(Def. 1) dom it $=\operatorname{dom} F$ and for every natural number n such that $n \in \operatorname{dom}$ it holds $i t(n)=\operatorname{len}(F(n))$.
Now we state the propositions:
(3) Let us consider a set D, a set Y of finite sequences of D, and a finite sequence F of elements of Y. Suppose for every natural number n such that $n \in \operatorname{dom} F$ holds $F(n)=\varepsilon_{D}$. Then \sum Length $F=0$.
(4) Let us consider a set D, a set Y of finite sequences of D, a finite sequence F of elements of Y, and a natural number k. Suppose $k<\operatorname{len} F$. Then $\operatorname{Length}(F \upharpoonright(k+1))=\operatorname{Length}(F \upharpoonright k)^{\wedge}\langle\operatorname{len}(F(k+1))\rangle$.
(5) Let us consider a set D, a set Y of finite sequences of D, a finite sequence F of elements of Y, and a natural number n. Suppose $1 \leqslant n \leqslant \sum$ Length F. Then there exist natural numbers k, m such that
(i) $1 \leqslant m \leqslant \operatorname{len}(F(k+1))$, and
(ii) $k<\operatorname{len} F$, and
(iii) $m+\sum \operatorname{Length}(F \upharpoonright k)=n$, and
(iv) $n \leqslant \sum \operatorname{Length}(F \upharpoonright(k+1))$.

The theorem is a consequence of (4).
(6) Let us consider a set D, a set Y of finite sequences of D, and finite sequences F_{1}, F_{2} of elements of Y. Then Length $\left(F_{1} \frown F_{2}\right)=\operatorname{Length} F_{1}{ }^{\wedge}$ Length F_{2}.
(7) Let us consider a set D, a set Y of finite sequences of D, a finite sequence F of elements of Y, and natural numbers k_{1}, k_{2}. Suppose $k_{1} \leqslant k_{2}$. Then $\sum \operatorname{Length}\left(F \upharpoonright k_{1}\right) \leqslant \sum \operatorname{Length}\left(F \upharpoonright k_{2}\right)$. The theorem is a consequence of (6).
(8) Let us consider a set D, a set Y of finite sequences of D, a finite sequence F of elements of Y, and natural numbers $m_{1}, m_{2}, k_{1}, k_{2}$. Suppose $1 \leqslant m_{1}$ and $1 \leqslant m_{2}$ and $m_{1}+\sum \operatorname{Length}\left(F \upharpoonright k_{1}\right)=m_{2}+\sum \operatorname{Length}\left(F \upharpoonright k_{2}\right)$ and $m_{1}+$ $\sum \operatorname{Length}\left(F \upharpoonright k_{1}\right) \leqslant \sum \operatorname{Length}\left(F \upharpoonright\left(k_{1}+1\right)\right)$ and $m_{2}+\sum \operatorname{Length}\left(F \upharpoonright k_{2}\right) \leqslant$ $\sum \operatorname{Length}\left(F \upharpoonright\left(k_{2}+1\right)\right)$. Then
(i) $m_{1}=m_{2}$, and
(ii) $k_{1}=k_{2}$.

The theorem is a consequence of (7).

Let D be a non empty set, Y be a set of finite sequences of D, and F be a finite sequence of elements of Y. The functor joinedFinSeq F yielding a finite sequence of elements of D is defined by
(Def. 2) len $i t=\sum$ Length F and for every natural number n such that $n \in \operatorname{dom}$ it there exist natural numbers k, m such that $1 \leqslant m \leqslant \operatorname{len}(F(k+1))$ and $k<\operatorname{len} F$ and $m+\sum \operatorname{Length}(F \upharpoonright k)=n$ and $n \leqslant \sum \operatorname{Length}(F \upharpoonright(k+1))$ and $i t(n)=F(k+1)(m)$.
Let D be a set, Y be a set of finite sequences of D and s be a sequence of Y. The functor Length s yielding a sequence of \mathbb{N} is defined by
(Def. 3) for every natural number n, $i t(n)=\operatorname{len}(s(n))$.
Let s be a sequence of \mathbb{N}. One can check that the functor $\left(\sum_{\alpha=0}^{\kappa} s(\alpha)\right)_{\kappa \in \mathbb{N}}$ yields a sequence of \mathbb{N}. Let D be a non empty set. Let us note that there exists a set of finite sequences of D which is non empty and has a non-empty element.

Let us consider a non empty set D, a non empty set Y of finite sequences of D with a non-empty element, a non-empty sequence s of Y, and a natural number n. Now we state the propositions:
(9) (i) $\operatorname{len}(s(n)) \geqslant 1$, and
(ii) $n<\left(\sum_{\alpha=0}^{\kappa}(\text { Length } s)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)<\left(\sum_{\alpha=0}^{\kappa}(\text { Length } s)(\alpha)\right)_{\kappa \in \mathbb{N}}(n+1)$. Proof: Define \mathcal{P} [natural number] $\equiv \$_{1}<\left(\sum_{\alpha=0}^{\kappa}(\text { Length } s)(\alpha)\right)_{\kappa \in \mathbb{N}}\left(\$_{1}\right)$. For every natural number k, len $(s(k)) \geqslant 1$ by [5, (20)]. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $k, \mathcal{P}[k]$ from [3, Sch. 2].
(10) There exist natural numbers k, m such that
(i) $m \in \operatorname{dom}(s(k))$, and
(ii) $\left(\sum_{\alpha=0}^{\kappa}(\text { Length } s)(\alpha)\right)_{\kappa \in \mathbb{N}}(k)-\operatorname{len}(s(k))+m-1=n$.

The theorem is a consequence of (9).
(11) Let us consider a non empty set D, a non empty set Y of finite sequences of D with a non-empty element, and a non-empty sequence s of Y. Then $\left(\sum_{\alpha=0}^{\kappa}(\text { Length } s)(\alpha)\right)_{\kappa \in \mathbb{N}}$ is increasing.
(12) Let us consider a non empty set D, a non empty set Y of finite sequences of D with a non-empty element, a non-empty sequence s of Y, and natural numbers $m_{1}, m_{2}, k_{1}, k_{2}$. Suppose $m_{1} \in \operatorname{dom}\left(s\left(k_{1}\right)\right)$ and $m_{2} \in \operatorname{dom}\left(s\left(k_{2}\right)\right)$ and $\left(\sum_{\alpha=0}^{\kappa}(\text { Length } s)(\alpha)\right)_{\kappa \in \mathbb{N}}\left(k_{1}\right)-\operatorname{len}\left(s\left(k_{1}\right)\right)+m_{1}=$ $\left(\sum_{\alpha=0}^{\kappa}(\text { Length } s)(\alpha)\right)_{\kappa \in \mathbb{N}}\left(k_{2}\right)-\operatorname{len}\left(s\left(k_{2}\right)\right)+m_{2}$. Then
(i) $m_{1}=m_{2}$, and
(ii) $k_{1}=k_{2}$.

The theorem is a consequence of (11).
(13) Let us consider a non empty set D, a set Y of finite sequences of D with a non-empty element, and a non-empty sequence s of Y. Then there exists an increasing sequence N of \mathbb{N} such that for every natural number $k, N(k)=\left(\sum_{\alpha=0}^{\kappa}(\text { Length } s)(\alpha)\right)_{\kappa \in \mathbb{N}}(k)-1$.
Proof: Define \mathcal{P} [natural number, natural number] $\equiv \$_{2}=$
$\left(\sum_{\alpha=0}^{\kappa}(\text { Length } s)(\alpha)\right)_{\kappa \in \mathbb{N}}\left(\$_{1}\right)-1$. For every element k of \mathbb{N}, there exists an element n of \mathbb{N} such that $\mathcal{P}[k, n]$ by (9), [3, (20)]. Consider N being a function from \mathbb{N} into \mathbb{N} such that for every element k of $\mathbb{N}, \mathcal{P}[k, N(k)]$ from [14, Sch. 3]. For every natural number $k, N(k)=$
$\left(\sum_{\alpha=0}^{\kappa}(\text { Length } s)(\alpha)\right)_{\kappa \in \mathbb{N}}(k)-1$. For every natural number $n, N(n)<$ $N(n+1)$.
Let D be a non empty set, Y be a set of finite sequences of D with a nonempty element, and s be a non-empty sequence of Y. The functor joinedSeq s yielding a sequence of D is defined by
(Def. 4) for every natural number n, there exist natural numbers k, m such that $m \in \operatorname{dom}(s(k))$ and $\left(\sum_{\alpha=0}^{\kappa}(\text { Length } s)(\alpha)\right)_{\kappa \in \mathbb{N}}(k)-\operatorname{len}(s(k))+m-1=n$ and $i t(n)=s(k)(m)$.
Now we state the propositions:
(14) Let us consider a non empty set D, a set Y of finite sequences of D with a non-empty element, a non-empty sequence s of Y, and a sequence s_{1} of D. Suppose for every natural number $n, s_{1}(n)=$ (joinedSeq $s)\left(\left(\sum_{\alpha=0}^{\kappa}(\text { Length } s)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)-1\right)$. Then s_{1} is a subsequence of joinedSeq s.
Proof: Consider N being an increasing sequence of \mathbb{N} such that for every natural number $n, N(n)=\left(\sum_{\alpha=0}^{\kappa}(\text { Length } s)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)-1$. For every element n of $\mathbb{N}, s_{1}(n)=($ joinedSeq $s \cdot N)(n)$ by [14, (15)].
(15) Let us consider a non empty set D, a set Y of finite sequences of D with a non-empty element, a non-empty sequence s of Y, and natural numbers k, m. Suppose $m \in \operatorname{dom}(s(k))$. Then there exists a natural number n such that
(i) $n=\left(\sum_{\alpha=0}^{\kappa}(\text { Length } s)(\alpha)\right)_{\kappa \in \mathbb{N}}(k)-\operatorname{len}(s(k))+m-1$, and
(ii) $($ joinedSeq $s)(n)=s(k)(m)$.

The theorem is a consequence of (12).
Let us consider a non empty set D, a set Y of finite sequences of D, and a finite sequence F of elements of Y. Now we state the propositions:
(16) Suppose for every natural numbers n, m such that $n \neq m$ holds $\bigcup \operatorname{rng}(F(n))$ misses $\bigcup \operatorname{rng}(F(m))$ and for every natural number $n, F(n)$ is disjoint valued. Then joinedFinSeq F is disjoint valued.
(17) \quad rng joinedFinSeq $F=\bigcup\{\operatorname{rng}(F(n))$, where n is a natural number : $n \in$ dom $F\}$. The theorem is a consequence of (4), (7), and (8).

2. Extended Real-Valued Matrix

Let x be an extended real number. One can check that the functor $\langle x\rangle$ yields a finite sequence of elements of $\overline{\mathbb{R}}$. Let e be a finite sequence of elements of $\overline{\mathbb{R}}^{*}$. The functor $\sum e$ yielding a finite sequence of elements of $\overline{\mathbb{R}}$ is defined by
(Def. 5) len $i t=$ len e and for every natural number k such that $k \in \operatorname{dom}$ it holds $i t(k)=\sum(e(k))$.
Let M be a matrix over $\overline{\mathbb{R}}$. The functor SumAll M yielding an element of $\overline{\mathbb{R}}$ is defined by the term
(Def. 6) $\quad \sum \sum M$.
Now we state the propositions:
(18) Let us consider a matrix M over $\overline{\mathbb{R}}$. Then
(i) len $\sum M=\operatorname{len} M$, and
(ii) for every natural number i such that $i \in \operatorname{Seg}$ len M holds $\left(\sum M\right)(i)=$ $\sum \operatorname{Line}(M, i)$.
(19) Let us consider a finite sequence F of elements of $\overline{\mathbb{R}}$. Suppose for every natural number i such that $i \in \operatorname{dom} F$ holds $F(i) \neq-\infty$. Then $\sum F \neq$ $-\infty$.
Proof: Consider f being a function from \mathbb{N} into $\overline{\mathbb{R}}$ such that $\sum F=$ $f($ len F) and $f(0)=0$ and for every natural number i such that $i<\operatorname{len} F$ holds $f(i+1)=f(i)+F(i+1)$. Define \mathcal{P} [natural number] \equiv if $\$_{1} \leqslant \operatorname{len} F$, then $f\left(\$_{1}\right) \neq-\infty$. For every natural number j such that $\mathcal{P}[j]$ holds $\mathcal{P}[j+1]$ by [3, (13), (11)], [33, (25)]. For every natural number $i, \mathcal{P}[i]$ from [3, Sch. 2].
(20) Let us consider finite sequences F, G, H of elements of $\overline{\mathbb{R}}$. Suppose $-\infty \notin \operatorname{rng} F$ and $-\infty \notin \operatorname{rng} G$ and $\operatorname{dom} F=\operatorname{dom} G$ and $H=F+G$. Then $\sum H=\sum F+\sum G$.
Proof: Consider h being a function from \mathbb{N} into $\overline{\mathbb{R}}$ such that $\sum H=$ $h($ len $H)$ and $h(0)=0_{\overline{\mathbb{R}}}$ and for every natural number i such that $i<\operatorname{len} H$ holds $h(i+1)=h(i)+H(i+1)$. Consider f being a function from \mathbb{N} into $\overline{\mathbb{R}}$ such that $\sum F=f(\operatorname{len} F)$ and $f(0)=0_{\overline{\mathbb{R}}}$ and for every natural number i such that $i<\operatorname{len} F$ holds $f(i+1)=f(i)+F(i+1)$. Consider g being a function from \mathbb{N} into $\overline{\mathbb{R}}$ such that $\sum G=g(\operatorname{len} G)$ and $g(0)=0_{\overline{\mathbb{R}}}$ and for every natural number i such that $i<$ len G holds $g(i+1)=g(i)+G(i+1)$. Define \mathcal{P} [natural number] \equiv if $\$_{1} \leqslant$ len H, then $h\left(\$_{1}\right)=f\left(\$_{1}\right)+g\left(\$_{1}\right)$. For
every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [3, (13), (11)], [33, (25)], [13, (3)]. For every natural number $i, \mathcal{P}[i]$ from [3, Sch. 2].
(21) Let us consider an extended real number r, and a finite sequence F of elements of $\overline{\mathbb{R}}$. Then $\sum\left(F^{\frown}\langle r\rangle\right)=\sum F+r$.
Proof: Consider f being a function from \mathbb{N} into $\overline{\mathbb{R}}$ such that $\sum\left(F^{\frown}\langle r\rangle\right)=$ $f\left(\operatorname{len}\left(F^{\frown}\langle r\rangle\right)\right)$ and $f(0)=0$ and for every natural number i such that $i<\operatorname{len}\left(F^{\frown}\langle r\rangle\right)$ holds $f(i+1)=f(i)+\left(F^{\frown}\langle r\rangle\right)(i+1)$. Consider g being a function from \mathbb{N} into $\overline{\mathbb{R}}$ such that $\sum F=g(\operatorname{len} F)$ and $g(0)=0$ and for every natural number i such that $i<$ len F holds $g(i+1)=g(i)+F(i+1)$. Define \mathcal{P} [natural number] \equiv if $\$_{1} \leqslant \operatorname{len} F$, then $f\left(\$_{1}\right)=g\left(\$_{1}\right)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [3, (13)], [5, (64)], [3, (11)]. For every natural number $i, \mathcal{P}[i]$ from [3, Sch. 2].
(22) Let us consider an extended real number r, and a natural number i. If r is real, then $\sum(i \mapsto r)=i \cdot r$.
Proof: Define \mathcal{P} [natural number] $\equiv \sum\left(\$_{1} \mapsto r\right)=\$_{1} \cdot r$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$ by [12, (60)], (21). For every natural number $i, \mathcal{P}[i]$ from [3, Sch. 2].
(23) Let us consider a matrix M over $\overline{\mathbb{R}}$. If len $M=0$, then SumAll $M=0$.
(24) Let us consider a natural number m, and a matrix M over $\overline{\mathbb{R}}$ of dimension $m \times 0$. Then SumAll $M=0$. The theorem is a consequence of (23) and (22).
(25) Let us consider natural numbers n, m, k, a matrix M_{1} over $\overline{\mathbb{R}}$ of dimension $n \times k$, and a matrix M_{2} over $\overline{\mathbb{R}}$ of dimension $m \times k$. Then $\sum\left(M_{1} \wedge M_{2}\right)=$ $\sum M_{1} \frown \sum M_{2}$.
Let us consider matrices M_{1}, M_{2} over $\overline{\mathbb{R}}$. Now we state the propositions:
(26) Suppose for every natural number i such that $i \in \operatorname{dom} M_{1}$ holds $-\infty \notin$ $\operatorname{rng}\left(M_{1}(i)\right)$ and for every natural number i such that $i \in \operatorname{dom} M_{2}$ holds $-\infty \notin \operatorname{rng}\left(M_{2}(i)\right)$. Then $\sum M_{1}+\sum M_{2}=\sum\left(M_{1} \frown M_{2}\right)$. The theorem is a consequence of (19).
(27) Suppose len $M_{1}=\operatorname{len} M_{2}$ and for every natural number i such that $i \in$ dom M_{1} holds $-\infty \notin \operatorname{rng}\left(M_{1}(i)\right)$ and for every natural number i such that $i \in \operatorname{dom} M_{2}$ holds $-\infty \notin \operatorname{rng}\left(M_{2}(i)\right)$. Then SumAll $M_{1}+\operatorname{SumAll} M_{2}=$ $\operatorname{SumAll}\left(M_{1} \frown M_{2}\right)$. The theorem is a consequence of (19), (26), and (20).
Now we state the propositions:
(28) Let us consider a finite sequence p of elements of $\overline{\mathbb{R}}$. Suppose $-\infty \notin \operatorname{rng} p$. Then SumAll $\langle p\rangle=\operatorname{SumAll}\langle p\rangle^{\mathrm{T}}$.
Proof: Define $x[$ finite sequence of elements of $\overline{\mathbb{R}}] \equiv$ if $-\infty \notin \operatorname{rng} \$_{1}$, then $\operatorname{SumAll}\left\langle \$_{1}\right\rangle=\operatorname{SumAll}\left\langle \$_{1}\right\rangle^{\mathrm{T}}$. For every finite sequence p of elements of $\overline{\mathbb{R}}$ and for every element x of $\overline{\mathbb{R}}$ such that $x[p]$ holds $x\left[p^{\wedge}\langle x\rangle\right]$ by [5, (31),
(38), (6)]. $x\left[\varepsilon_{\overline{\mathbb{R}}}\right]$. For every finite sequence p of elements of $\overline{\mathbb{R}}, x[p]$ from [12, Sch. 2].
(29) Let us consider an extended real number p, and a matrix M over $\overline{\mathbb{R}}$. Suppose for every natural number i such that $i \in$ dom M holds $p \notin \operatorname{rng}(M(i))$. Let us consider a natural number j. If $j \in \operatorname{dom} M^{\mathrm{T}}$, then $p \notin \operatorname{rng}\left(M^{\mathrm{T}}(j)\right)$.
(30) Let us consider a matrix M over $\overline{\mathbb{R}}$. Suppose for every natural number i such that $i \in \operatorname{dom} M$ holds $-\infty \notin \operatorname{rng}(M(i))$. Then SumAll $M=$ SumAll M^{T}.
Proof: Define x [natural number] \equiv for every matrix M over $\overline{\mathbb{R}}$ such that len $M=\$_{1}$ and for every natural number i such that $i \in \operatorname{dom} M$ holds $-\infty \notin \operatorname{rng}(M(i))$ holds SumAll $M=\operatorname{SumAll} M^{\mathrm{T}}$. For every natural number n such that $x[n]$ holds $x[n+1$] by [3, (11)], [33, (25)], [5, (40)], (28). $x[0]$. For every natural number $n, x[n]$ from [3, Sch. 2].

3. Definition of Pre-Measure

Let x be an object. Let us observe that $\langle x\rangle$ is disjoint valued.
Now we state the proposition:
(31) Let us consider a set X, a semi-diff-closed, \cap-closed family S of subsets of X with the empty element, a finite sequence F of elements of S, and an element G of S. Then there exists a disjoint valued finite sequence H of elements of S such that $G \backslash \bigcup F=\bigcup H$.
Proof: Define \mathcal{P} [natural number] \equiv for every finite sequence f of elements of S such that len $f=\$_{1}$ there exists a disjoint valued finite sequence H of elements of S such that $G \backslash \bigcup f=\bigcup H$. For every finite sequence f of elements of S such that len $f=0$ there exists a disjoint valued finite sequence H of elements of S such that $G \backslash \cup f=\bigcup H$ by [16, (2)], [5, (38)], [16, (25)]. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$ by [3, (11)], [5, (59)], [33, (55)], [5, (36), (38)]. For every natural number $i, \mathcal{P}[i]$ from [3, Sch. 2].
Let X be a set and P be a semi-diff-closed, \cap-closed family of subsets of X with the empty element. Let us note that there exists a sequence of P which is disjoint valued.

Let P be a non empty family of subsets of X. Note that there exists a function from P into $\overline{\mathbb{R}}$ which is non-negative, additive, and zeroed.

Let P be a family of subsets of X with the empty element. One can check that there exists a function from \mathbb{N} into P which is disjoint valued.

A pre-measure of P is a non-negative, zeroed function from P into $\overline{\mathbb{R}}$ and is defined by
(Def. 7) for every disjoint valued finite sequence F of elements of P such that $\bigcup F \in P$ holds $i t(\bigcup F)=\sum(i t \cdot F)$ and for every disjoint valued function K from \mathbb{N} into P such that $\bigcup K \in P$ holds $i t(\bigcup K) \leqslant \bar{\sum}(i t \cdot K)$.
Now we state the propositions:
(32) Let us consider a set X with the empty element, and a finite sequence F of elements of X. Then there exists a function G from \mathbb{N} into X such that
(i) for every natural number $i, F(i)=G(i)$, and
(ii) $\cup F=\bigcup G$.

Proof: Define \mathcal{P} [element of \mathbb{N}, set] \equiv if $\$_{1} \in \operatorname{dom} F$, then $F\left(\$_{1}\right)=\$_{2}$ and if $\$_{1} \notin \operatorname{dom} F$, then $\$_{2}=\emptyset$. For every element i of \mathbb{N}, there exists an element y of X such that $\mathcal{P}[i, y]$ by [13, (3)]. Consider G being a function from \mathbb{N} into X such that for every element i of $\mathbb{N}, \mathcal{P}[i, G(i)]$ from [14, Sch. 3].
(33) Let us consider a non empty set X, a finite sequence F of elements of X, and a function G from \mathbb{N} into X. Suppose for every natural number i, $F(i)=G(i)$. Then F is disjoint valued if and only if G is disjoint valued.
(34) Let us consider a finite sequence F of elements of $\overline{\mathbb{R}}$, and a sequence G of extended reals. Suppose for every natural number $i, F(i)=G(i)$. Then F is non-negative if and only if G is non-negative.
Let us observe that there exists a finite sequence of elements of $\overline{\mathbb{R}}$ which is non-negative and there exists a finite sequence of elements of $\overline{\mathbb{R}}$ which is without $-\infty$ and there exists a finite sequence of elements of $\overline{\mathbb{R}}$ which is non-positive and there exists a finite sequence of elements of $\overline{\mathbb{R}}$ which is without $+\infty$ and every finite sequence of elements of $\overline{\mathbb{R}}$ which is non-negative is also without $-\infty$ and every finite sequence of elements of $\overline{\mathbb{R}}$ which is non-positive is also without $+\infty$.

Let X, Y be non empty sets, F be a without $-\infty$ function from Y into $\overline{\mathbb{R}}$, and G be a function from X into Y. One can check that $F \cdot G$ is without $-\infty$ as a function from X into $\overline{\mathbb{R}}$.

Let F be a non-negative function from Y into $\overline{\mathbb{R}}$. One can check that $F \cdot G$ is non-negative as a function from X into $\overline{\mathbb{R}}$.

Now we state the propositions:
(35) Let us consider an extended real number a. Then $\sum\langle a\rangle=a$.
(36) Let us consider a finite sequence F of elements of $\overline{\mathbb{R}}$, and a natural number k. Then
(i) if F is without $-\infty$, then $F \upharpoonright k$ is without $-\infty$, and
(ii) if F is without $+\infty$, then $F \upharpoonright k$ is without $+\infty$.
(37) Let us consider a without $-\infty$ finite sequence F of elements of $\overline{\mathbb{R}}$, and a sequence G of extended reals. Suppose for every natural number $i, F(i)=G(i)$. Let us consider a natural number i. Then $\sum(F \upharpoonright i)=$ $\left(\sum_{\alpha=0}^{\kappa} G(\alpha)\right)_{\kappa \in \mathbb{N}}(i)$. The theorem is a consequence of (36) and (35).
(38) Let us consider a without $-\infty$ finite sequence F of elements of $\overline{\mathbb{R}}$, and a sequence G of extended reals. Suppose for every natural number $i, F(i)=$ $G(i)$. Then
(i) G is summable, and
(ii) $\sum F=\sum G$.

Proof: $\sum(F \upharpoonright$ len $F)=\left(\sum_{\alpha=0}^{\kappa} G(\alpha)\right)_{\kappa \in \mathbb{N}}(\operatorname{len} F)$. Define \mathcal{P} [natural number] $\equiv \sum F=\left(\sum_{\alpha=0}^{\kappa} G(\alpha)\right)_{\kappa \in \mathbb{N}}$ (len $\left.F+\$_{1}\right)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$ by [3, (11), (19)], [33, (25)]. For every natural number $k, \mathcal{P}[k]$ from [3, Sch. 2].
(39) Let us consider a set X, a semi-diff-closed, \cap-closed family S of subsets of X with the empty element, a disjoint valued finite sequence F of elements of S, and a non empty, preboolean family R of subsets of X. Suppose $S \subseteq R$ and $\bigcup F \in R$. Let us consider a natural number i. Then $\bigcup(F \upharpoonright i) \in R$. Proof: Define \mathcal{P} [natural number] $\equiv \bigcup\left(F \upharpoonright \$_{1}\right) \in R$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$ by [3, (12)], [5, (58)], [3, (13)], [5, (82), (17)]. For every natural number $i, \mathcal{P}[i]$ from [3, Sch. 2].
(40) Let us consider a set X, a semi-diff-closed, \cap-closed family S of subsets of X with the empty element, a pre-measure P of S, and disjoint valued finite sequences F_{1}, F_{2} of elements of S. Suppose $\bigcup F_{1} \in S$ and $\bigcup F_{1}=\bigcup F_{2}$. Then $P\left(\bigcup F_{1}\right)=P\left(\bigcup F_{2}\right)$.
(41) Let us consider a non empty, \cap-closed set S, and finite sequences F_{1}, F_{2} of elements of S. Then there exists a matrix M over S of dimension len $F_{1} \times$ len F_{2} such that for every natural numbers i, j such that $\langle i, j\rangle \in$ the indices of M holds $M_{i, j}=F_{1}(i) \cap F_{2}(j)$.
Proof: Define \mathcal{P} [natural number, natural number, set] $\equiv \$_{3}=F_{1}\left(\$_{1}\right) \cap$ $F_{2}\left(\$_{2}\right)$. For every natural numbers i, j such that $\langle i, j\rangle \in \operatorname{Seg}$ len $F_{1} \times$ Seg len F_{2} there exists an element K of S such that $\mathcal{P}[i, j, K]$ by [16, (87)], [13, (3)]. Consider M being a matrix over S of dimension len $F_{1} \times$ len F_{2} such that for every natural numbers i, j such that $\langle i, j\rangle \in$ the indices of M holds $\mathcal{P}\left[i, j, M_{i, j}\right]$.
Let us consider a set X, a \cap-closed family S of subsets of X with the empty element, non empty, disjoint valued finite sequences F_{1}, F_{2} of elements of S, a non-negative, zeroed function P from S into $\overline{\mathbb{R}}$, and a matrix M over $\overline{\mathbb{R}}$ of dimension len $F_{1} \times$ len F_{2}.

Let us assume that $\bigcup F_{1}=\bigcup F_{2}$ and for every natural numbers i, j such that $\langle i, j\rangle \in$ the indices of M holds $M_{i, j}=P\left(F_{1}(i) \cap F_{2}(j)\right)$ and for every disjoint valued finite sequence F of elements of S such that $\cup F \in S$ holds $P(\bigcup F)=\sum(P \cdot F)$. Now we state the propositions:
(42) (i) for every natural number i such that $i \leqslant \operatorname{len}\left(P \cdot F_{1}\right)$ holds (P. $\left.F_{1}\right)(i)=\left(\sum M\right)(i)$, and
(ii) $\sum\left(P \cdot F_{1}\right)=$ SumAll M.

Proof: Consider K being a matrix over S of dimension len $F_{1} \times \operatorname{len} F_{2}$ such that for every natural numbers i, j such that $\langle i, j\rangle \in$ the indices of K holds $K_{i, j}=F_{1}(i) \cap F_{2}(j)$. For every natural number i such that $i \leqslant \operatorname{len}\left(P \cdot F_{1}\right)$ holds $\left(P \cdot F_{1}\right)(i)=\left(\sum M\right)(i)$ by [33, (24)], [3, (14)], [33, (25)], [13, (11), (3)]. Consider Q being a function from \mathbb{N} into $\overline{\mathbb{R}}$ such that $\sum\left(P \cdot F_{1}\right)=Q\left(\operatorname{len}\left(P \cdot F_{1}\right)\right)$ and $Q(0)=0$ and for every natural number i such that $i<\operatorname{len}\left(P \cdot F_{1}\right)$ holds $Q(i+1)=Q(i)+\left(P \cdot F_{1}\right)(i+1)$. Consider L being a function from \mathbb{N} into $\overline{\mathbb{R}}$ such that SumAll $M=L\left(\operatorname{len} \sum M\right)$ and $L(0)=0_{\overline{\mathbb{R}}}$ and for every natural number i such that $i<\operatorname{len} \sum M$ holds $L(i+1)=L(i)+\left(\sum M\right)(i+1)$. Define \mathcal{R} [natural number] \equiv if $\$_{1} \leqslant \operatorname{len}\left(P \cdot F_{1}\right)$, then $Q\left(\$_{1}\right)=L\left(\$_{1}\right)$. For every natural number i such that $\mathcal{R}[i]$ holds $\mathcal{R}[i+1]$ by [3, (13)]. For every natural number $i, \mathcal{R}[i]$ from [3, Sch. 2].
(i) for every natural number i such that $i \leqslant \operatorname{len}\left(P \cdot F_{2}\right)$ holds (P. $\left.F_{2}\right)(i)=\left(\sum M^{\mathrm{T}}\right)(i)$, and
(ii) $\sum\left(P \cdot F_{2}\right)=\operatorname{SumAll} M^{\mathrm{T}}$.

Proof: Consider K being a matrix over S of dimension len $F_{1} \times$ len F_{2} such that for every natural numbers i, j such that $\langle i, j\rangle \in$ the indices of K holds $K_{i, j}=F_{1}(i) \cap F_{2}(j)$. For every natural number i such that $i \leqslant \operatorname{len}\left(P \cdot F_{2}\right)$ holds $\left(P \cdot F_{2}\right)(i)=\left(\sum M^{\mathrm{T}}\right)(i)$ by [33, (24)], 3, (14)], [33, (25)], [13, (11), (3)]. Consider Q being a function from \mathbb{N} into $\overline{\mathbb{R}}$ such that $\sum\left(P \cdot F_{2}\right)=Q\left(\operatorname{len}\left(P \cdot F_{2}\right)\right)$ and $Q(0)=0$ and for every natural number i such that $i<\operatorname{len}\left(P \cdot F_{2}\right)$ holds $Q(i+1)=Q(i)+\left(P \cdot F_{2}\right)(i+1)$. Consider L being a function from \mathbb{N} into $\overline{\mathbb{R}}$ such that SumAll $M^{\mathrm{T}}=L\left(\operatorname{len} \sum M^{\mathrm{T}}\right)$ and $L(0)=0_{\overline{\mathbb{R}}}$ and for every natural number i such that $i<\operatorname{len} \sum M^{\mathrm{T}}$ holds $L(i+1)=L(i)+\left(\sum M^{\mathrm{T}}\right)(i+1)$. Define \mathcal{R} [natural number] \equiv if $\$_{1} \leqslant \operatorname{len}\left(P \cdot F_{2}\right)$, then $Q\left(\$_{1}\right)=L\left(\$_{1}\right)$. For every natural number i such that $\mathcal{R}[i]$ holds $\mathcal{R}[i+1]$ by [3, (13)]. For every natural number $i, \mathcal{R}[i]$ from [3, Sch. 2].
(44) Let us consider a set X, a semi-diff-closed, \cap-closed family S of subsets of X with the empty element, a pre-measure P of S, and a set A. Suppose $A \in$ the ring generated by S. Let us consider disjoint valued finite sequences F_{1},
F_{2} of elements of S. If $A=\bigcup F_{1}$ and $A=\bigcup F_{2}$, then $\sum\left(P \cdot F_{1}\right)=\sum\left(P \cdot F_{2}\right)$. The theorem is a consequence of (42), (43), and (30).
(45) Let us consider finite sequences f_{1}, f_{2}. Suppose f_{1} is disjoint valued and f_{2} is disjoint valued and $\bigcup \operatorname{rng} f_{1}$ misses $\bigcup \operatorname{rng} f_{2}$. Then $f_{1} \wedge f_{2}$ is disjoint valued.
(46) Let us consider a set X, a semi-diff-closed family P of subsets of X with the empty element, a pre-measure M of P, and sets A, B. If A, B, $A \backslash B \in P$ and $B \subseteq A$, then $M(A) \geqslant M(B)$. The theorem is a consequence of (45).
(47) Let us consider non empty sets Y, S, a partial function F from Y to S, and a function M from S into $\overline{\mathbb{R}}$. If M is non-negative, then $M \cdot F$ is non-negative.
(48) Let us consider a set X, a semi-diff-closed, \cap-closed family S of subsets of X with the empty element, and a pre-measure P of S. Then there exists a non-negative, additive, zeroed function M from the ring generated by S into $\overline{\mathbb{R}}$ such that for every set A such that $A \in$ the ring generated by S for every disjoint valued finite sequence F of elements of S such that $A=\bigcup F$ holds $M(A)=\sum(P \cdot F)$.
Proof: Define $\mathcal{P}[$ object, object $] \equiv$ for every disjoint valued finite sequence F of elements of S such that $\$_{1}=\bigcup F$ holds $\$_{2}=\sum(P \cdot F)$. For every object A such that $A \in$ the ring generated by S there exists an object p such that $p \in \overline{\mathbb{R}}$ and $\mathcal{P}[A, p]$ by [23, (18)], (44). Consider M being a function from the ring generated by S into \mathbb{R} such that for every object A such that $A \in$ the ring generated by S holds $\mathcal{P}[A, M(A)]$ from [14, Sch. 1]. For every element A of the ring generated by $S, 0 \leqslant M(A)$ by [23, (18)], [3, (11)], [33, (25)], [13, (12)]. For every elements A, B of the ring generated by S such that A misses B and $A \cup B \in$ the ring generated by S holds $M(A \cup B)=M(A)+M(B)$ by [23, (18)], (45), [5, (31)], [16, (78)].
(49) Let us consider sets X, Y, and functions F, G from \mathbb{N} into 2^{X}. Suppose for every natural number $i, G(i)=F(i) \cap Y$ and $\bigcup F=Y$. Then $\cup G=\bigcup F$.
(50) Let us consider a set X, a semi-diff-closed, \cap-closed family S of subsets of X with the empty element, and a pre-measure P of S. Then there exists a function M from the ring generated by S into $\overline{\mathbb{R}}$ such that
(i) $M(\emptyset)=0$, and
(ii) for every disjoint valued finite sequence K of elements of S such that $\cup K \in$ the ring generated by S holds $M(\cup K)=\sum(P \cdot K)$.
The theorem is a consequence of (48).
(51) Let us consider sets X, Z, a semi-diff-closed, \cap-closed family P of subsets of X with the empty element, and a disjoint valued function K from \mathbb{N} into the ring generated by P. Suppose $Z=\{\langle n, F\rangle$, where n is a natural number, F is a disjoint valued finite sequence of elements of $P: \bigcup F=$ $K(n)$ and if $K(n)=\emptyset$, then $F=\langle\emptyset\rangle\}$. Then
(i) $\pi_{2}(Z)$ is a set of finite sequences of P, and
(ii) for every object $x, x \in \operatorname{rng} K$ iff there exists a finite sequence F of elements of P such that $F \in \pi_{2}(Z)$ and $\cup F=x$, and
(iii) $\pi_{2}(Z)$ has non empty elements.
(52) Let us consider a set X, a semi-diff-closed, \cap-closed family P of subsets of X with the empty element, and a disjoint valued function K from \mathbb{N} into the ring generated by P. Suppose rng K has a non-empty element. Then there exists a non empty set Y of finite sequences of P such that
(i) $Y=\{F$, where F is a disjoint valued finite sequence of elements of $P: \bigcup F \in \operatorname{rng} K$ and $F \neq \emptyset\}$, and
(ii) Y has non empty elements.

4. Pre-Measure on Semialgebra and Construction of Measure

Now we state the propositions:
(53) Let us consider sets X, Z, a semialgebra P of sets of X, and a disjoint valued function K from \mathbb{N} into the field generated by P. Suppose $Z=\{\langle n$, $F\rangle$, where n is a natural number, F is a disjoint valued finite sequence of elements of $P: \bigcup F=K(n)$ and if $K(n)=\emptyset$, then $F=\langle\emptyset\rangle\}$. Then
(i) $\pi_{2}(Z)$ is a set of finite sequences of P, and
(ii) for every object $x, x \in \operatorname{rng} K$ iff there exists a finite sequence F of elements of P such that $F \in \pi_{2}(Z)$ and $\bigcup F=x$, and
(iii) $\pi_{2}(Z)$ has non empty elements.
(54) Let us consider a set X, a semialgebra S of sets of X, a pre-measure P of S, a set A, and disjoint valued finite sequences F_{1}, F_{2} of elements of S. If $A=\bigcup F_{1}$ and $A=\bigcup F_{2}$, then $\sum\left(P \cdot F_{1}\right)=\sum\left(P \cdot F_{2}\right)$. The theorem is a consequence of (42), (43), and (30).
(55) Let us consider a set X, a semialgebra S of sets of X, and a pre-measure P of S. Then there exists a measure M on the field generated by S such that for every set A such that $A \in$ the field generated by S for every disjoint valued finite sequence F of elements of S such that $A=\bigcup F$ holds $M(A)=\sum(P \cdot F)$.

Proof: Define \mathcal{P} [object, object] \equiv for every disjoint valued finite sequence F of elements of S such that $\$_{1}=\bigcup F$ holds $\$_{2}=\sum(P \cdot F)$. For every object A such that $A \in$ the field generated by S there exists an object p such that $p \in \overline{\mathbb{R}}$ and $\mathcal{P}[A, p]$ by [23, (22)], (54). Consider M being a function from the field generated by S into $\overline{\mathbb{R}}$ such that for every object A such that $A \in$ the field generated by S holds $\mathcal{P}[A, M(A)$] from [14, Sch. 1]. For every element A of the field generated by $S, 0 \leqslant M(A)$ by [23, (22)], [3, (11)], [33, (25)], [13, (12)]. For every elements A, B of the field generated by S such that A misses B holds $M(A \cup B)=M(A)+M(B)$ by [23, (22)], (45), [5, (31)], [16, (78)].
(56) Let us consider a sequence F of extended reals, a natural number n, and an extended real number a. Suppose for every natural number $k, F(k)=a$. Then $\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}(n)=a \cdot(n+1)$.
Proof: Define \mathcal{P} [natural number] $\equiv\left(\sum_{\alpha=0}^{\kappa} F(\alpha)\right)_{\kappa \in \mathbb{N}}\left(\$_{1}\right)=a \cdot\left(\$_{1}+1\right)$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every natural number $i, \mathcal{P}[i]$ from [3, Sch. 2].
(57) Let us consider a non empty set X, a sequence F of X, and a natural number n. Then $\operatorname{rng}\left(F \upharpoonright \mathbb{Z}_{n+1}\right)=\operatorname{rng}\left(F \upharpoonright \mathbb{Z}_{n}\right) \cup\{F(n)\}$.
(58) Let us consider a set X, a field S of subsets of X, a measure M on S, a sequence F of separated subsets of S, and a natural number n. Then
(i) $\bigcup \operatorname{rng}\left(F \upharpoonright \mathbb{Z}_{n+1}\right) \in S$, and
(ii) $\left(\sum_{\alpha=0}^{\kappa}(M \cdot F)(\alpha)\right)_{\kappa \in \mathbb{N}}(n)=M\left(\bigcup \operatorname{rng}\left(F \upharpoonright \mathbb{Z}_{n+1}\right)\right)$.

Proof: $\operatorname{rng}\left(F \upharpoonright \mathbb{Z}_{0+1}\right)=\operatorname{rng}\left(F \upharpoonright \mathbb{Z}_{0}\right) \cup\{F(0)\}$. Define \mathcal{R} [natural number] \equiv $\bigcup \operatorname{rng}\left(F \upharpoonright \mathbb{Z}_{\$_{1}+1}\right) \in S$. For every natural number k such that $\mathcal{R}[k]$ holds $\mathcal{R}[k+1]$ by (57), [16, (78), (25)], [27, (3)]. For every natural number $k, \mathcal{R}[k]$ from [3, Sch. 2]. Define \mathcal{P} [natural number] $\equiv\left(\sum_{\alpha=0}^{\kappa}(M \cdot F)(\alpha)\right)_{\kappa \in \mathbb{N}}\left(\$_{1}\right)=$ $M\left(\bigcup \operatorname{rng}\left(F \backslash \mathbb{Z}_{\$_{1}+1}\right)\right)$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [14, (15)], [35, (57)], [3, (44)], [13, (47)]. For every natural number $n, \mathcal{P}[n]$ from [3, Sch. 2].
(59) Let us consider a set X, a semialgebra S of sets of X, a pre-measure P of S, and a measure M on the field generated by S. Suppose for every set A such that $A \in$ the field generated by S for every disjoint valued finite sequence F of elements of S such that $A=\bigcup F$ holds $M(A)=\sum(P \cdot F)$. Then M is completely-additive. The theorem is a consequence of (53), (15), (13), (58), and (1).

Let X be a set, S be a semialgebra of sets of X, and P be a pre-measure of S.
An induced measure of S and P is a measure on the field generated by S and is defined by
(Def. 8) for every set A such that $A \in$ the field generated by S for every disjoint valued finite sequence F of elements of S such that $A=\bigcup F$ holds it $(A)=$ $\sum(P \cdot F)$.
Now we state the propositions:
(60) Let us consider a set X, a semialgebra S of sets of X, and a pre-measure P of S. Then every induced measure of S and P is completely-additive. The theorem is a consequence of (59).
(61) Let us consider a non empty set X, a semialgebra S of sets of X, a pre-measure P of S, and an induced measure M of S and P. Then σ-Meas (the Caratheodory measure determined by $M) \upharpoonright \sigma($ the field generated by S) is a σ-measure on $\sigma($ the field generated by $S)$. The theorem is a consequence of (60).
Let X be a non empty set, S be a semialgebra of sets of X, P be a premeasure of S, and M be an induced measure of S and P.

An induced σ-measure of S and M is a σ-measure on σ (the field generated by S) and is defined by
(Def. 9) it $=\sigma$-Meas(the Caratheodory measure determined by $M) \upharpoonright \sigma($ the field generated by S).
Now we state the proposition:
(62) Let us consider a non empty set X, a semialgebra S of sets of X, a premeasure P of S, and an induced measure m of S and P. Then every induced σ-measure of S and m is an extension of m. The theorem is a consequence of (60).

References

[1] Grzegorz Bancerek. Cardinal numbers Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. König's theorem, Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences, Formalized Mathematics, 1(1):107-114, 1990.
[6] Józef Białas. The σ-additive measure theory Formalized Mathematics, 2(2):263-270, 1991.
[7] Józef Białas. Properties of Caratheodor's measure Formalized Mathematics, 3(1):67-70, 1992.
[8] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory Formalized Mathematıcs, 2(1):163-171, 1991.
[9] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
[10] V.I. Bogachev. Measure Theory, volume 1. Springer, 2006.
[11] Czesław Bylinski. Binary operations applied to finite sequences Formalized Mathematics, 1(4):643-649, 1990.
[12] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[13] Czesław Byliński. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[14] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[15] Czesław Byliński. Partial functions, Formalized Mathematics, 1(2):357-367, 1990.
[16] Czesław Bylinski. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[17] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[18] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, $14(\mathbf{2}): 53-70,2006$. doi $10.2478 / \mathrm{v} 10037-006-0008-\mathrm{x}$.
[19] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.
[20] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions Formalized Mathematics, 9(3):495-500, 2001.
[21] Noboru Endou, Keiko Narita, and Yasunari Shidama. The Lebesgue monotone convergence theorem. Formalized Mathematics, 16(2):167-175, 2008. doi $10.2478 / \mathrm{v} 10037-008-$ 0023-1.
[22] Noboru Endou, Hiroyuki Okazaki, and Yasunari Shidama. Hopf extension theorem of measure. Formalized Mathematics, 17(2):157-162, 2009. doi 10.2478/v10037-009-0018-6.
[23] Noboru Endou, Kazuhisa Nakasho, and Yasunari Shidama. σ-ring and σ-algebra of sets. Formalized Mathematics, 23(1):51-57, 2015. doi 10.2478/forma-2015-0004
[24] P. R. Halmos. Measure Theory. Springer-Verlag, 1974.
[25] Andrzej Kondracki. The Chinese Remainder Theorem Formalized Mathematics, 6(4): 573-577, 1997.
[26] Robert Milewski. Associated matrix of linear map Formalized Mathematics, 5(3):339345, 1996.
[27] Andrzej Nędzusiak. σ-fields and probability Formalized Mathematics, 1(2):401-407, 1990.
[28] Andrzej Nędzusiak. Probability Formalized Mathematics, 1(4):745-749, 1990.
[29] Beata Padlewska. Families of sets Formalized Mathematics, 1(1):147-152, 1990.
[30] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449452, 1991.
[31] M.M. Rao. Measure Theory and Integration. CRC Press, 2nd edition, 2004.
[32] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1 (1):187-190, 1990.
[33] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences Formalized Mathematics, 1(3):569-573, 1990.
[34] Zinaida Trybulec. Properties of subsets Formalized Mathematics, 1(1):67-71, 1990.
[35] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[36] Edmund Woronowicz. Relations defined on sets Formalized Mathematics, 1(1):181-186, 1990.

Received August 14, 2015

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI 23500029.

