Summable Family in a Commutative Group

Roland Coghetto
Rue de la Brasserie 5
7100 La Louvière, Belgium

Summary. Hörlz et al. showed that it was possible to build “a generic theory of limits based on filters” in Isabelle/HOL [22], [7]. In this paper we present our formalization of this theory in Mizar [6].

First, we compare the notions of the limit of a family indexed by a directed set, or a sequence, in a metric space [30], a real normed linear space [29] and a linear topological space [14] with the concept of the limit of an image filter [16].

Then, following Bourbaki [9], [10] (TG.III, §5.1 Familles sommables dans un groupe commutatif), we conclude by defining the summable families in a commutative group (“additive notation” in [17]), using the notion of filters.

MSC: 54A20 54H11 22A05 03B35

Keywords: limits; filters; topological group; summable family; convergence series; linear topological space

MML identifier: CARDFIL3 version: 8.1.04 5.34.1256

The notation and terminology used in this paper have been introduced in the following articles: [26], [16], [1], [27], [4], [18], [34], [32], [30], [11], [12], [35], [17], [23], [29], [20], [37], [2], [13], [8], [28], [39], [14], [36], [19], [31], [38], [24], [3], [25], [5], [21], and [15].

1. Preliminaries

Now we state the propositions:

(1) Let us consider a set \(I \). Then \(\emptyset \) is an element of \(\text{Fin} I \).

(2) Let us consider sets \(I, J \). Suppose \(J \in \text{Fin} I \). Then there exists a finite sequence \(p \) of elements of \(I \) such that

\(i \) \(J = \text{rng} p \), and
(ii) p is one-to-one.

(3) Let us consider a set I, a non empty set Y, a Y-valued many sorted set x indexed by I, and a finite sequence p of elements of I. Then $p \cdot x$ is a finite sequence of elements of Y.

(4) Let us consider non empty sets I, X, an X-valued many sorted set x indexed by I, and finite sequences p, q of elements of I. Then $(p \cdot q) \cdot x = p \cdot (q \cdot x)$.

Proof: For every object t such that $t \in \text{dom}((p \cdot q) \cdot x)$ holds $(p \cdot q) \cdot x(t) = (p \cdot (q \cdot x))(t)$ by [33, (120)], [11, (13)], [4, (25)]. □

Let I be a set, Y be a non empty set, x be a Y-valued many sorted set indexed by I, and p be a finite sequence of elements of I. The functor $\#^p_x$ yielding a finite sequence of elements of Y is defined by the term

(Def. 1) $p \cdot x$.

The functor $F(I)$ yielding a non empty, transitive, reflexive relational structure is defined by the term

(Def. 2) $\langle \text{Fin } I, \subseteq \rangle$.

Now we state the proposition:

(5) Let us consider a set I. Then $\Omega_{F(I)}$ is directed.

2. Convergence in Metric Spaces

Now we state the propositions:

(6) Let us consider a non empty metric space M, and a point x of M_{top}. Then $\text{Balls } x$ is a generalized basis of $\text{BooleanFilterToFilter}(\text{the neighborhood system of } x)$.

(7) Let us consider a non empty metric space M, a non empty, transitive, reflexive relational structure L, a function f from Ω_L into the carrier of M_{top}, a point x of M_{top}, and a generalized basis B of $\text{BooleanFilterToFilter}(\text{the neighborhood system of } x)$. Suppose Ω_L is directed. Then $x \in \text{LimF}(f)$ if and only if for every element b of B, there exists an element i of L such that for every element j of L such that $i \leq j$ holds $f(j) \in b$.

(8) Let us consider a non empty metric space M, a non empty, transitive, reflexive relational structure L, a function f from Ω_L into the carrier of M_{top}, and a point x of M_{top}. Suppose Ω_L is directed. Then $x \in \text{LimF}(f)$ if and only if for every element b of $\text{Balls } x$, there exists an element n of L such that for every element m of L such that $n \leq m$ holds $f(m) \in b$. The theorem is a consequence of (6).
(9) Let us consider a non empty metric space M, a sequence s of the carrier of M_{top}, and a point x of M_{top}. Then $x \in \lim F(s)$ if and only if for every element b of Balls x, there exists a natural number i such that for every natural number j such that $i \leq j$ holds $s(j) \in b$. The theorem is a consequence of (6).

(10) Let us consider a non empty topological structure T, a sequence s of T, and a point x of T. Then $x \in \lim s$ if and only if for every subset U_1 of T such that U_1 is open and $x \in U_1$ there exists a natural number n such that for every natural number m such that $n \leq m$ holds $s(m) \in U_1$.

Let us consider a non empty metric space M, a sequence s of the carrier of M_{top}, and a point x of M_{top}. Now we state the propositions:

(11) $x \in \lim s$ if and only if for every element b of Balls x, there exists a natural number n such that for every natural number m such that $n \leq m$ holds $s(m) \in b$. The theorem is a consequence of (6) and (10).

(12) $x \in \lim F(s)$ if and only if $x \in \lim s$. The theorem is a consequence of (9) and (11).

3. Filter and Limit of a Sequence in Real Normed Space

Now we state the propositions:

(13) Let us consider a real normed space N, a non empty, transitive, reflexive relational structure L, a function f from Ω_L into the carrier of $(\text{MetricSpaceNorm } N)_{\text{top}}$, a point x of $(\text{MetricSpaceNorm } N)_{\text{top}}$, and a generalized basis B of BooleanFilterToFilter(the neighborhood system of x). Suppose Ω_L is directed. Then $x \in \lim F(f)$ if and only if for every element b of B, there exists an element i of L such that for every element j of L such that $i \leq j$ holds $f(j) \in b$.

(14) Let us consider a real normed space N, and a point x of $(\text{MetricSpaceNorm } N)_{\text{top}}$. Then Balls x is a generalized basis of BooleanFilterToFilter(the neighborhood system of x).

(15) Let us consider a real normed space N, a sequence s of the carrier of $(\text{MetricSpaceNorm } N)_{\text{top}}$, and a point x of $(\text{MetricSpaceNorm } N)_{\text{top}}$. Then $x \in \lim F(s)$ if and only if for every element b of Balls x, there exists a natural number i such that for every natural number j such that $i \leq j$ holds $s(j) \in b$.

(16) Let us consider a real normed space N, and a point x of $(\text{MetricSpaceNorm } N)_{\text{top}}$. Then there exists a point y of MetricSpaceNorm N such that

(i) $y = x$, and
(ii) Balls\(x = \{\text{Ball}(y, \frac{1}{n}) \mid \text{where } n \text{ is a natural number : } n \neq 0\}.\)

(17) Let us consider a real normed space \(N \), a point \(x \) of \((\text{MetricSpaceNorm } N)_{\text{top}}\), a point \(y \) of \(\text{MetricSpaceNorm } N \), and a positive natural number \(n \). If \(x = y \), then \(\text{Ball}(y, \frac{1}{n}) \in \text{Balls } x \).

(18) Let us consider a real normed space \(N \), a point \(x \) of \(\text{MetricSpaceNorm } N \), and a natural number \(n \). Suppose \(n \neq 0 \). Then \(\text{Ball}(x, \frac{1}{n}) = \{q \mid q \text{ is a point of } N : \rho(x, q) < \frac{1}{n}\} \).

(19) Let us consider a real normed space \(N \), an element \(x \) of \(\text{MetricSpaceNorm } N \), and a natural number \(n \). Suppose \(n \neq 0 \). Then there exists a point \(y \) of \(N \) such that

(i) \(x = y \), and

(ii) \(\text{Ball}(x, \frac{1}{n}) = \{q \mid q \text{ is a point of } N : \|y - q\| < \frac{1}{n}\} \).

Let us consider a metric structure \(P_1 \). Now we state the propositions:

(20) \(P_{1\text{top}} = \langle \text{the carrier of } P_1, \text{the open set family of } P_1 \rangle \).

(21) The carrier of \(\langle \text{the carrier of } P_1, \text{the open set family of } P_1 \rangle \) = the carrier of \(P_1 \).

(22) The carrier of \(P_{1\text{top}} \) = the carrier of \(\langle \text{the carrier of } P_1, \text{the open set family of } P_1 \rangle \).

(23) The carrier of \(P_{1\text{top}} \) = the carrier of \(P_1 \).

Now we state the proposition:

(24) Let us consider a real normed space \(N \), a sequence \(s \) of the carrier of \((\text{MetricSpaceNorm } N)_{\text{top}}\), and a natural number \(j \). Then \(s(j) \) is an element of the carrier of \((\text{MetricSpaceNorm } N)_{\text{top}}\).

Let \(N \) be a real normed space and \(x \) be a point of \((\text{MetricSpaceNorm } N)_{\text{top}}\). The functor \(\# x \) yielding a point of \(N \) is defined by the term (Def. 3) \(x \).

Now we state the proposition:

(25) Let us consider a real normed space \(N \), a sequence \(s \) of the carrier of \((\text{MetricSpaceNorm } N)_{\text{top}}\), and a point \(x \) of \((\text{MetricSpaceNorm } N)_{\text{top}}\). Then \(x \in \text{LimF}(s) \) if and only if for every positive natural number \(n \), there exists a natural number \(i \) such that for every natural number \(j \) such that \(i \leq j \) holds \(\|\# x - \# s(j)\| < \frac{1}{n} \).

Proof: Reconsider \(x_1 = x \) as a point of \((\text{MetricSpaceNorm } N)_{\text{top}}\). Consider \(y_0 \) being a point of \(\text{MetricSpaceNorm } N \) such that \(y_0 = x_1 \) and \(\text{Balls } x_1 = \{\text{Ball}(y_0, \frac{1}{n}) \mid \text{where } n \text{ is a natural number : } n \neq 0\} \). If \(x \in \text{LimF}(s) \), then for every positive natural number \(n \), there exists a natural number \(i \) such that for every natural number \(j \) such that \(i \leq j \) holds
\[\| \# x - \# s(j) \| < \frac{1}{n} \] by (9), [20] (2). If for every positive natural number \(n \), there exists a natural number \(i \) such that for every natural number \(j \) such that \(i \leq j \) holds \[\| \# x - \# s(j) \| < \frac{1}{n}, \] then \(x \in \text{LimF}(s) \) by [20] (2), (9). □

4. Filter and Limit of a Sequence in Linear Topological Space

Now we state the propositions:

(26) Let us consider a non empty linear topological space \(X \). Then the neighborhood system of \(0_X \) is a local base of \(X \).

(27) Let us consider a linear topological space \(X \), a local base \(O \) of \(X \), a point \(a \) of \(X \), and a family \(P \) of subsets of \(X \). Suppose \(P = \{ a + U, \text{ where } U \text{ is a subset of } X : U \in O \} \). Then \(P \) is a generalized basis of \(a \).

(28) Let us consider a non empty linear topological space \(X \), a point \(x \) of \(X \), and a local base \(O \) of \(X \). Then \(\{ x + U, \text{ where } U \text{ is a subset of } X : U \in O \text{ and } U \text{ is a neighbourhood of } 0_X \} = \{ x + U, \text{ where } U \text{ is a subset of } X : U \in O \text{ and } U \text{ is in the neighborhood system of } 0_X \} \).

Proof: Set \(F = \text{BooleanFilterToFilter}(\text{the neighborhood system of } x) \). \(F \subseteq [B] \) by [14] (9), [27] (3), [14] (8), [6]. \([B] \subseteq F \) by [14] (37). □

(30) Let us consider a non empty linear topological space \(X \), a sequence \(s \) of the carrier of \(X \), a point \(x \) of \(X \), a local base \(V \) of \(X \), and a family \(B \) of subsets of \(X \). Suppose \(B = \{ x + U, \text{ where } U \text{ is a subset of } X : U \in V \text{ and } U \text{ is a neighbourhood of } 0_X \} \). Then \(x \in \text{LimF}(s) \) if and only if for every element \(v \) of \(B \), there exists a natural number \(i \) such that for every natural number \(j \) such that \(i \leq j \) holds \(s(j) \in v \). The theorem is a consequence of (29).

Proof: Set \(B = \{ x + U, \text{ where } U \text{ is a subset of } X : U \in V \text{ and } U \text{ is a neighbourhood of } 0_X \} \). \(B \) is a generalized basis of \(\text{BooleanFilterToFilter} \).
(the neighborhood system of x). For every element b of B, there exists a natural number i such that for every natural number j such that $i \leq j$ holds $s(j) \in b$ by [5, (2)]. □

(32) Let us consider a non empty linear topological space T, a non empty, transitive, reflexive relational structure L, a function f from Ω_L into the carrier of T, a point x of T, and a generalized basis B of BooleanFilterToFilter(the neighborhood system of x). Suppose Ω_L is directed. Then $x \in \text{LimF}(f)$ if and only if for every element b of B, there exists an element i of L such that for every element j of L such that $i \leq j$ holds $f(j) \in b$.

(33) Let us consider a non empty linear topological space T, a non empty, transitive, reflexive relational structure L, a function f from Ω_L into the carrier of T, a point x of T, and a local base V of T. Suppose Ω_L is directed. Then $x \in \text{LimF}(f)$ if and only if for every subset v of T such that $v \in V \cap$ (the neighborhood system of 0_T) there exists an element i of L such that for every element j of L such that $i \leq j$ holds $f(j) \in x + v$.

5. Series in Abelian Group: a Definition

Let I be a non empty set, L be an Abelian group, x be a (the carrier of L)-valued many sorted set indexed by I, and J be an element of FinI. The functor $\sum^J_{\kappa=0} x(\kappa)$ yielding an element of L is defined by

(Def. 4) there exists a one-to-one finite sequence p of elements of I such that $\text{rng } p = J$ and $it = (\text{the addition of } L) \odot \#^p_x$.

Now we state the proposition:

(34) Let us consider a non empty set I, an Abelian group L, a (the carrier of L)-valued many sorted set x indexed by I, an element J of FinI, and an element e of FinI. Suppose $e = \emptyset$. Then

(i) $\sum^e_{\kappa=0} x(\kappa) = 0_L$, and

(ii) for every elements e, f of FinI such that e misses f holds $\sum^{e\cup f}_{\kappa=0} x(\kappa) = \sum^e_{\kappa=0} x(\kappa) + \sum^f_{\kappa=0} x(\kappa)$.

The theorem is a consequence of (4).

Let I be a non empty set, L be an Abelian group, and x be a (the carrier of L)-valued many sorted set indexed by I. The functor $(\sum^\kappa_{\alpha=0} x(\alpha))_{\kappa \in \mathbb{N}}$ yielding a function from $\Omega_{\mathcal{F}(I)}$ into the carrier of L is defined by

(Def. 5) for every element j of FinI, $it(j) = \sum^j_{\kappa=0} x(\kappa)$.
6. Product of Family as Limit in Commutative Topological Group

Let \(I \) be a non empty set, \(L \) be a commutative semi topological group, \(x \) be a \((\text{the carrier of } L)\)-valued many sorted set indexed by \(I \), and \(J \) be an element of \(\text{Fin} \, I \). The functor \(\text{Product}(x, J) \) yielding an element of \(L \) is defined by

(Def. 6) there exists a one-to-one finite sequence \(p \) of elements of \(I \) such that \(\text{rng} \, p = J \) and it \(= (\text{the multiplication of } L) \odot \#_p^p \).

(35) Let us consider a set \(I \), a semi topological group \(G \), a function \(f \) from \(\Omega_{\mathcal{F}}(I) \) into the carrier of \(G \), a point \(x \) of \(G \), and a generalized basis \(B \) of \(\text{BooleanFilterToFilter}(\text{the neighborhood system of } x) \). Then \(x \in \text{LimF}(f) \) if and only if for every element \(b \) of \(B \), there exists an element \(i \) of \(\mathcal{F}(I) \) such that for every element \(j \) of \(\mathcal{F}(I) \) such that \(i \leq j \) holds \(f(j) \in b \). The theorem is a consequence of (5).

(36) Let us consider a non empty set \(I \), a commutative semi topological group \(L \), a \((\text{the carrier of } L)\)-valued many sorted set \(x \) indexed by \(I \), an element \(J \) of \(\text{Fin} \, I \), and an element \(e \) of \(\text{Fin} \, I \). Suppose \(e = \emptyset \). Then

(i) \(\text{Product}(x, e) = 1_L \), and

(ii) for every elements \(e, f \) of \(\text{Fin} \, I \) such that \(e \) misses \(f \) holds \(\text{Product}(x, e \cup f) = \text{Product}(x, e) \cdot \text{Product}(x, f) \).

The theorem is a consequence of (4).

Let \(I \) be a non empty set, \(L \) be a commutative semi topological group, and \(x \) be a \((\text{the carrier of } L)\)-valued many sorted set indexed by \(I \). The functor the partial product of \(x \) yielding a function from \(\Omega_{\mathcal{F}}(I) \) into the carrier of \(L \) is defined by

(Def. 7) for every element \(j \) of \(\text{Fin} \, I \), \(it(j) = \text{Product}(x, j) \).

(37) Let us consider a non empty set \(I \), a commutative semi topological group \(G \), a \((\text{the carrier of } G)\)-valued many sorted set \(s \) indexed by \(I \), a point \(x \) of \(G \), and a generalized basis \(B \) of \(\text{BooleanFilterToFilter}(\text{the neighborhood system of } x) \). Then \(x \in \text{LimF}(\text{the partial product of } s) \) if and only if for every element \(b \) of \(B \), there exists an element \(i \) of \(\mathcal{F}(I) \) such that for every element \(j \) of \(\mathcal{F}(I) \) such that \(i \leq j \) holds \((\text{the partial product of } s)(j) \in b \).

7. Summable Family in Commutative Topological Group

Let \(I \) be a non empty set, \(L \) be an Abelian semi additive topological group, \(x \) be a \((\text{the carrier of } L)\)-valued many sorted set indexed by \(I \), and \(J \) be an element of \(\text{Fin} \, I \). The functor \(\sum_{\kappa=0}^{J} x(\kappa) \) yielding an element of \(L \) is defined by

...
(Def. 8) there exists a one-to-one finite sequence p of elements of I such that $\text{rng } p = J$ and $it = \text{(the addition of } L) \odot \#^p_x$.

Now we state the propositions:

(38) Let us consider a set I, a semi additive topological group G, a function f from $\Omega_{F(I)}$ into the carrier of G, a point x of G, and a generalized basis B of BooleanFilterToFilter(\text{the neighborhood system of } x). Then $x \in \text{LimF}(f)$ if and only if for every element b of B, there exists an element i of $F(I)$ such that for every element j of $F(I)$ such that $i \leq j$ holds $f(j) \in b$. The theorem is a consequence of (5).

(39) Let us consider a non empty set I, an Abelian semi additive topological group L, a (the carrier of L)-valued many sorted set x indexed by I, an element J of Fin I, and an element e of Fin I. Suppose $e = \emptyset$. Then

(i) $\sum_{\kappa=0}^{e} x(\kappa) = 0_L,$ and

(ii) for every elements e, f of Fin I such that e misses f holds $\sum_{\kappa=0}^{e \cup f} x(\kappa) = \sum_{\kappa=0}^{e} x(\kappa) + \sum_{\kappa=0}^{f} x(\kappa).$

The theorem is a consequence of (4).

Let I be a non empty set, L be an Abelian semi additive topological group, and x be a (the carrier of L)-valued many sorted set indexed by I. The functor $(\sum_{\alpha=0}^{k} x(\alpha))_{\kappa \in \mathbb{N}}$ yielding a function from $\Omega_{F(I)}$ into the carrier of L is defined by

(Def. 9) for every element j of Fin I, $it(j) = \sum_{\kappa=0}^{j} x(\kappa)$.

Now we state the proposition:

(40) Let us consider a non empty set I, an Abelian semi additive topological group G, a (the carrier of G)-valued many sorted set s indexed by I, a point x of G, and a generalized basis B of BooleanFilterToFilter(\text{the neighborhood system of } x). Then $x \in \text{LimF}((\sum_{\alpha=0}^{k} s(\alpha))_{\kappa \in \mathbb{N}})$ if and only if for every element b of B, there exists an element i of $F(I)$ such that for every element j of $F(I)$ such that $i \leq j$ holds $(\sum_{\alpha=0}^{k} s(\alpha))_{\kappa \in \mathbb{N}}(j) \in b$.

REFERENCES

[33] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. *For-

Received August 14, 2015