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Extended Real-Valued Double Sequence and
Its Convergence1
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Summary. In this article we introduce the convergence of extended real-
valued double sequences [16], [17]. It is similar to our previous articles [15], [10].
In addition, we also prove Fatou’s lemma and the monotone convergence theorem
for double sequences.
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1. Preliminaries

Let X be a non empty set. One can verify that there exists a function from X

into R which is non-negative and non-positive and there exists a function from
X into R which is without −∞, without +∞, non-negative, and non-positive
and every function from X into R which is non-negative is also without −∞
and every function from X into R which is non-positive is also without +∞ and
there exists a without +∞ function from X into R which is without −∞.

Let f be a function from X into R. Let us observe that the functor −f yields
a function from X into R. Let f be a without −∞ function from X into R. Note
that −f is without +∞.
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Let f be a without +∞ function from X into R. Let us observe that −f is
without −∞.

Let f be a non-negative function from X into R. Note that −f is non-
positive.

Let f be a non-positive function from X into R. Let us observe that −f is
non-negative.

Let A, B be non empty sets and f be a without −∞ function from A × B
into R. Let us observe that fT is without −∞.

Let f be a without +∞ function from A×B into R. One can verify that fT

is without +∞.
Let f be a non-negative function from A×B into R. One can check that fT

is non-negative.
Let f be a non-positive function from A × B into R. Note that fT is non-

positive.
Now we state the propositions:

(1) Let us consider a sequence s of extended reals. Then (
∑κ
α=0(−s)(α))κ∈N =

−(
∑κ
α=0 s(α))κ∈N.

Proof: Define Q[natural number] ≡
(−(
∑κ
α=0 s(α))κ∈N)($1) = −(

∑κ
α=0 s(α))κ∈N($1). For every natural num-

ber n,Q[n] from [1, Sch. 2]. Define P[natural number] ≡ (
∑κ
α=0(−s)(α))κ∈N

($1) = (−(
∑κ
α=0 s(α))κ∈N)($1). For every natural number n such that P[n]

holds P[n+ 1]. For every natural number n, P[n] from [1, Sch. 2]. �

(2) Let us consider a non empty set X, and a partial function f from X to
R. Then −−f = f .

(3) Let us consider non empty sets X, Y, and a function f from X × Y into
R. Then (−f)T = −fT.

Let s be a non-negative sequence of extended reals. One can verify that
(
∑κ
α=0 s(α))κ∈N is non-negative.
Let s be a non-positive sequence of extended reals. Let us observe that

(
∑κ
α=0 s(α))κ∈N is non-positive.
Now we state the propositions:

(4) Let us consider a non-negative sequence s of extended reals, and a natural
number m. Then s(m) ¬ (

∑κ
α=0 s(α))κ∈N(m).

Proof: Define P[natural number] ≡ s($1) ¬ (
∑κ
α=0 s(α))κ∈N($1). For

every natural number k such that P[k] holds P[k + 1] by [4, (51)]. For
every natural number k, P[k] from [1, Sch. 2]. �

(5) Let us consider a non-positive sequence s of extended reals, and a natural
number m. Then s(m)  (

∑κ
α=0 s(α))κ∈N(m). The theorem is a consequ-

ence of (4), (1), and (2).

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/15/16 9:36 AM



Extended real-valued double sequence and its convergence 255

(6) Let us consider a non empty set X. Then every without −∞, without
+∞ function from X into R is a function from X into R.

Let X be a non empty set and f1, f2 be without −∞ functions from X into
R. One can verify that the functor f1 + f2 yields a without −∞ function from
X into R. Let f1, f2 be without +∞ functions from X into R. One can verify
that the functor f1 + f2 yields a without +∞ function from X into R. Let f1
be a without −∞ function from X into R and f2 be a without +∞ function
from X into R. Let us observe that the functor f1 − f2 yields a without −∞
function from X into R. Let f1 be a without +∞ function from X into R and
f2 be a without −∞ function from X into R. Observe that the functor f1 − f2
yields a without +∞ function from X into R. Now we state the propositions:

(7) Let us consider a non empty set X, an element x of X, and functions
f1, f2 from X into R. Then

(i) if f1 is without −∞ and f2 is without −∞, then (f1 + f2)(x) =
f1(x) + f2(x), and

(ii) if f1 is without +∞ and f2 is without +∞, then (f1 + f2)(x) =
f1(x) + f2(x), and

(iii) if f1 is without −∞ and f2 is without +∞, then (f1 − f2)(x) =
f1(x)− f2(x), and

(iv) if f1 is without +∞ and f2 is without −∞, then (f1 − f2)(x) =
f1(x)− f2(x).

(8) Let us consider a non empty set X, and without −∞ functions f1, f2
from X into R. Then

(i) f1 + f2 = f1 −−f2, and

(ii) −(f1 + f2) = −f1 − f2.
The theorem is a consequence of (7).

(9) Let us consider a non empty set X, and without +∞ functions f1, f2
from X into R. Then

(i) f1 + f2 = f1 −−f2, and

(ii) −(f1 + f2) = −f1 − f2.
The theorem is a consequence of (7).

(10) Let us consider a non empty set X, a without −∞ function f1 from X

into R, and a without +∞ function f2 from X into R. Then

(i) f1 − f2 = f1 +−f2, and

(ii) f2 − f1 = f2 +−f1, and

(iii) −(f1 − f2) = −f1 + f2, and
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256 noboru endou

(iv) −(f2 − f1) = −f2 + f1.

The theorem is a consequence of (8), (2), and (9).

Let f be a function from N × N into R and n, m be natural numbers. One
can check that the functor f(n,m) yields an element of R. Now we state the
propositions:

(11) Let us consider without −∞ functions f1, f2 from N × N into R, and
natural numbers n, m. Then (f1 + f2)(n,m) = f1(n,m) + f2(n,m). The
theorem is a consequence of (7).

(12) Let us consider without +∞ functions f1, f2 from N × N into R, and
natural numbers n, m. Then (f1 + f2)(n,m) = f1(n,m) + f2(n,m). The
theorem is a consequence of (7).

(13) Let us consider a without −∞ function f1 from N×N into R, a without
+∞ function f2 from N× N into R, and natural numbers n, m. Then

(i) (f1 − f2)(n,m) = f1(n,m)− f2(n,m), and

(ii) (f2 − f1)(n,m) = f2(n,m)− f1(n,m).

The theorem is a consequence of (7).

(14) Let us consider non empty sets X, Y, and without −∞ functions f1,
f2 from X × Y into R. Then (f1 + f2)T = f1

T + f2
T. The theorem is a

consequence of (7).

(15) Let us consider non empty sets X, Y, and without +∞ functions f1,
f2 from X × Y into R. Then (f1 + f2)T = f1

T + f2
T. The theorem is a

consequence of (7).

(16) Let us consider non empty sets X, Y, a without −∞ function f1 from
X × Y into R, and a without +∞ function f2 from X × Y into R. Then

(i) (f1 − f2)T = f1
T − f2T, and

(ii) (f2 − f1)T = f2
T − f1T.

The theorem is a consequence of (7).

One can verify that every sequence of extended reals which is convergent to
+∞ is also convergent and every sequence of extended reals which is convergent
to −∞ is also convergent and every sequence of extended reals which is conver-
gent to a finite limit is also convergent and there exists a sequence of extended
reals which is convergent and there exists a without −∞ sequence of extended
reals which is convergent and there exists a without +∞ sequence of extended
reals which is convergent.

Now we state the proposition:

(17) Let us consider a convergent sequence s of extended reals. Then
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Extended real-valued double sequence and its convergence 257

(i) s is convergent to a finite limit iff −s is convergent to a finite limit,
and

(ii) s is convergent to +∞ iff −s is convergent to −∞, and

(iii) s is convergent to −∞ iff −s is convergent to +∞, and

(iv) −s is convergent, and

(v) lim(−s) = −lim s.

The theorem is a consequence of (2).

Let us consider without −∞ sequences s1, s2 of extended reals. Now we state
the propositions:

(18) Suppose s1 is convergent to +∞ and s2 is convergent to +∞. Then

(i) s1 + s2 is convergent to +∞ and convergent, and

(ii) lim(s1 + s2) = +∞.

The theorem is a consequence of (7).

(19) Suppose s1 is convergent to +∞ and s2 is convergent to a finite limit.
Then

(i) s1 + s2 is convergent to +∞ and convergent, and

(ii) lim(s1 + s2) = +∞.

The theorem is a consequence of (7).

Now we state the proposition:

(20) Let us consider without +∞ sequences s1, s2 of extended reals. Suppose
s1 is convergent to +∞ and s2 is convergent to a finite limit. Then

(i) s1 + s2 is convergent to +∞ and convergent, and

(ii) lim(s1 + s2) = +∞.

The theorem is a consequence of (7).

Let us consider without −∞ sequences s1, s2 of extended reals. Now we state
the propositions:

(21) Suppose s1 is convergent to −∞ and s2 is convergent to −∞. Then

(i) s1 + s2 is convergent to −∞ and convergent, and

(ii) lim(s1 + s2) = −∞.

The theorem is a consequence of (7).

(22) Suppose s1 is convergent to −∞ and s2 is convergent to a finite limit.
Then

(i) s1 + s2 is convergent to −∞ and convergent, and

(ii) lim(s1 + s2) = −∞.
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258 noboru endou

The theorem is a consequence of (7).

(23) Suppose s1 is convergent to a finite limit and s2 is convergent to a finite
limit. Then

(i) s1 + s2 is convergent to a finite limit and convergent, and

(ii) lim(s1 + s2) = lim s1 + lim s2.

The theorem is a consequence of (7).

Now we state the propositions:

(24) Let us consider without +∞ sequences s1, s2 of extended reals. Then

(i) if s1 is convergent to +∞ and s2 is convergent to +∞, then s1 + s2
is convergent to +∞ and convergent and lim(s1 + s2) = +∞, and

(ii) if s1 is convergent to +∞ and s2 is convergent to a finite limit, then
s1+ s2 is convergent to +∞ and convergent and lim(s1+ s2) = +∞,
and

(iii) if s1 is convergent to −∞ and s2 is convergent to −∞, then s1 + s2
is convergent to −∞ and convergent and lim(s1 + s2) = −∞, and

(iv) if s1 is convergent to −∞ and s2 is convergent to a finite limit, then
s1+ s2 is convergent to −∞ and convergent and lim(s1+ s2) = −∞,
and

(v) if s1 is convergent to a finite limit and s2 is convergent to a finite
limit, then s1 + s2 is convergent to a finite limit and convergent and
lim(s1 + s2) = lim s1 + lim s2.

The theorem is a consequence of (17), (21), (10), (9), (2), (22), (18), (19),
and (23).

(25) Let us consider a without −∞ sequence s1 of extended reals, and a wi-
thout +∞ sequence s2 of extended reals. Then

(i) if s1 is convergent to +∞ and s2 is convergent to −∞, then s1−s2 is
convergent to +∞ and convergent and s2 − s1 is convergent to −∞
and convergent and lim(s1 − s2) = +∞ and lim(s2 − s1) = −∞, and

(ii) if s1 is convergent to +∞ and s2 is convergent to a finite limit, then
s1−s2 is convergent to +∞ and convergent and s2−s1 is convergent
to−∞ and convergent and lim(s1−s2) = +∞ and lim(s2−s1) = −∞,
and

(iii) if s1 is convergent to −∞ and s2 is convergent to a finite limit, then
s1−s2 is convergent to −∞ and convergent and s2−s1 is convergent
to +∞ and convergent and lim(s1−s2) = −∞ and lim(s2−s1) = +∞,
and
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Extended real-valued double sequence and its convergence 259

(iv) if s1 is convergent to a finite limit and s2 is convergent to a finite
limit, then s1 − s2 is convergent to a finite limit and convergent and
s2−s1 is convergent to a finite limit and convergent and lim(s1−s2) =
lim s1 − lim s2 and lim(s2 − s1) = lim s2 − lim s1.

The theorem is a consequence of (17), (24), (18), (10), (19), (22), (23),
and (2).

2. Subsequences of Convergent Extended Real-Valued Sequences

Let us consider sequences s1, s2 of extended reals. Now we state the propo-
sitions:

(26) Suppose s2 is a subsequence of s1 and s1 is convergent to a finite limit.
Then

(i) s2 is convergent to a finite limit, and

(ii) lim s1 = lim s2.

Proof: Consider g being a real number such that lim s1 = g and for every
real number p such that 0 < p there exists a natural number n such that
for every natural number m such that n ¬ m holds |s1(m) − lim s1| < p

and s1 is convergent to a finite limit. Reconsider L = lim s1 as an extended
real number. There exists a real number g such that for every real number
p such that 0 < p there exists a natural number n such that for every
natural number m such that n ¬ m holds |(s2(m) − g qua extended
real)| < p by [19, (14)], [7, (15)]. For every real number p such that 0 < p

there exists a natural number n such that for every natural number m
such that n ¬ m holds |s2(m)− L| < p by [19, (14)], [7, (15)]. �

(27) Suppose s2 is a subsequence of s1 and s1 is convergent to +∞. Then

(i) s2 is convergent to +∞, and

(ii) lim s2 = +∞.

(28) Suppose s2 is a subsequence of s1 and s1 is convergent to −∞. Then

(i) s2 is convergent to −∞, and

(ii) lim s2 = −∞.
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3. Convergency for Extended Real-Valued Double Sequences

Let us consider a function R from N× N into R. Now we state the proposi-
tions:

(29) Suppose the lim in the first coordinate of R is convergent. Then the first
coordinate major iterated lim of R = lim(the lim in the first coordinate
of R).

(30) Suppose the lim in the second coordinate of R is convergent. Then
the second coordinate major iterated lim of R = lim(the lim in the second
coordinate of R).

Let E be a function from N×N into R. We say that E is P-convergent to a
finite limit if and only if

(Def. 1) there exists a real number p such that for every real number e such that
0 < e there exists a natural number N such that for every natural numbers
n, m such that n  N and m  N holds |E(n,m) − (p qua extended
real)| < e.

We say that E is P-convergent to +∞ if and only if

(Def. 2) for every real number g such that 0 < g there exists a natural number
N such that for every natural numbers n, m such that n  N and m  N
holds g ¬ E(n,m).

We say that E is P-convergent to −∞ if and only if

(Def. 3) for every real number g such that g < 0 there exists a natural number
N such that for every natural numbers n, m such that n  N and m  N
holds E(n,m) ¬ g.

Let f be a function from N × N into R. We say that f is convergent in the
first coordinate to +∞ if and only if

(Def. 4) for every element m of N, curry′(f,m) is convergent to +∞.

We say that f is convergent in the first coordinate to −∞ if and only if

(Def. 5) for every element m of N, curry′(f,m) is convergent to −∞.

We say that f is convergent in the first coordinate to a finite limit if and only if

(Def. 6) for every element m of N, curry′(f,m) is convergent to a finite limit.

We say that f is convergent in the first coordinate if and only if

(Def. 7) for every element m of N, curry′(f,m) is convergent.

We say that f is convergent in the second coordinate to +∞ if and only if

(Def. 8) for every element m of N, curry(f,m) is convergent to +∞.

We say that f is convergent in the second coordinate to −∞ if and only if

(Def. 9) for every element m of N, curry(f,m) is convergent to −∞.
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Extended real-valued double sequence and its convergence 261

We say that f is convergent in the second coordinate to a finite limit if and only
if

(Def. 10) for every element m of N, curry(f,m) is convergent to a finite limit.

We say that f is convergent in the second coordinate if and only if

(Def. 11) for every element m of N, curry(f,m) is convergent.

Now we state the propositions:

(31) Let us consider a function f from N× N into R. Then

(i) if f is convergent in the first coordinate to +∞ or convergent in the
first coordinate to −∞ or convergent in the first coordinate to a finite
limit, then f is convergent in the first coordinate, and

(ii) if f is convergent in the second coordinate to +∞ or convergent in
the second coordinate to −∞ or convergent in the second coordinate
to a finite limit, then f is convergent in the second coordinate.

(32) Let us consider non empty sets X, Y, Z, a function F from X × Y into
Z, and an element x of X. Then curry(F, x) = curry′(FT, x).

(33) Let us consider non empty sets X, Y, Z, a function F from X × Y into
Z, and an element y of Y. Then curry′(F, y) = curry(FT, y).

(34) Let us consider non empty sets X, Y, a function F from X × Y into R,
and an element x of X. Then curry(−F , x) = −curry(F, x).

(35) Let us consider non empty sets X, Y, a function F from X × Y into R,
and an element y of Y. Then curry′(−F , y) = −curry′(F, y).

Let us consider a function f from N×N into R. Now we state the propositions:

(36) (i) f is convergent in the first coordinate to +∞ iff fT is convergent
in the second coordinate to +∞, and

(ii) f is convergent in the second coordinate to +∞ iff fT is convergent
in the first coordinate to +∞, and

(iii) f is convergent in the first coordinate to −∞ iff fT is convergent in
the second coordinate to −∞, and

(iv) f is convergent in the second coordinate to −∞ iff fT is convergent
in the first coordinate to −∞, and

(v) f is convergent in the first coordinate to a finite limit iff fT is co-
nvergent in the second coordinate to a finite limit, and

(vi) f is convergent in the second coordinate to a finite limit iff fT is
convergent in the first coordinate to a finite limit.

The theorem is a consequence of (33) and (32).

(37) (i) f is convergent in the first coordinate to +∞ iff −f is convergent
in the first coordinate to −∞, and
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(ii) f is convergent in the first coordinate to −∞ iff −f is convergent in
the first coordinate to +∞, and

(iii) f is convergent in the first coordinate to a finite limit iff −f is co-
nvergent in the first coordinate to a finite limit, and

(iv) f is convergent in the second coordinate to +∞ iff −f is convergent
in the second coordinate to −∞, and

(v) f is convergent in the second coordinate to −∞ iff −f is convergent
in the second coordinate to +∞, and

(vi) f is convergent in the second coordinate to a finite limit iff −f is
convergent in the second coordinate to a finite limit.

The theorem is a consequence of (35), (17), (2), and (34).

Let f be a function from N × N into R. The functors: the lim in the first
coordinate of f and the lim in the second coordinate of f yielding sequences of
extended reals are defined by conditions

(Def. 12) for every element m of N, the lim in the first coordinate of f(m) =
lim curry′(f,m),

(Def. 13) for every element n of N, the lim in the second coordinate of f(n) =
lim curry(f, n),

respectively. Now we state the proposition:

(38) Let us consider a function f from N× N into R. Then

(i) the lim in the first coordinate of f = the lim in the second coordinate
of fT, and

(ii) the lim in the second coordinate of f = the lim in the first coordinate
of fT.

The theorem is a consequence of (33) and (32).

Let X, Y be non empty sets, F be a without +∞ function from X × Y into
R, and x be an element of X. Let us observe that curry(F, x) is without +∞.

Let y be an element of Y. One can verify that curry′(F, y) is without +∞.
Let F be a without −∞ function from X × Y into R and x be an element

of X. Let us note that curry(F, x) is without −∞.
Let y be an element of Y. Observe that curry′(F, y) is without −∞.
Let f be a function from N × N into R. The partial sums in the second

coordinate of f yielding a function from N× N into R is defined by

(Def. 14) for every natural numbers n, m, it(n, 0) = f(n, 0) and it(n,m + 1) =
it(n,m) + f(n,m+ 1).

The partial sums in the first coordinate of f yielding a function from N×N
into R is defined by
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Extended real-valued double sequence and its convergence 263

(Def. 15) for every natural numbers n, m, it(0,m) = f(0,m) and it(n + 1,m) =
it(n,m) + f(n+ 1,m).

Let f be a without −∞ function from N × N into R. Let us note that
the partial sums in the second coordinate of f is without −∞.

Let f be a without +∞ function from N×N into R. Observe that the partial
sums in the second coordinate of f is without +∞.

Let f be a non-negative function from N × N into R. Let us observe that
the partial sums in the second coordinate of f is non-negative as a function from
N× N into R.

Let f be a non-positive function from N × N into R. One can check that
the partial sums in the second coordinate of f is non-positive as a function from
N× N into R.

Let f be a without −∞ function from N × N into R. Let us note that
the partial sums in the first coordinate of f is without −∞.

Let f be a without +∞ function from N×N into R. Observe that the partial
sums in the first coordinate of f is without +∞.

Let f be a non-negative function from N × N into R. Let us observe that
the partial sums in the first coordinate of f is non-negative as a function from
N× N into R.

Let f be a non-positive function from N × N into R. One can check that
the partial sums in the first coordinate of f is non-positive as a function from
N× N into R.

Let f be a function from N×N into R. The functor (
∑κ
α=0 f(α))κ∈N yielding

a function from N× N into R is defined by the term

(Def. 16) the partial sums in the second coordinate of the partial sums in the first
coordinate of f .

Now we state the propositions:

(39) Let us consider a function f from N×N into R, and natural numbers n,
m. Then

(i) (the partial sums in the first coordinate of f)(n,m) = (the partial
sums in the second coordinate of fT)(m,n), and

(ii) (the partial sums in the second coordinate of f)(n,m) = (the partial
sums in the first coordinate of fT)(m,n).

Proof: Define P[natural number] ≡ (the partial sums in the first coordina-
te of f)($1,m) = (the partial sums in the second coordinate of fT)(m, $1).
For every natural number k such that P[k] holds P[k+1]. For every natural
number k, P[k] from [1, Sch. 2]. Define Q[natural number] ≡ (the partial
sums in the second coordinate of f)(n, $1) = (the partial sums in the first
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coordinate of fT)($1, n). For every natural number k such that Q[k] holds
Q[k + 1]. For every natural number k, Q[k] from [1, Sch. 2]. �

(40) Let us consider a function f from N× N into R. Then

(i) (the partial sums in the first coordinate of f)T = the partial sums
in the second coordinate of fT, and

(ii) (the partial sums in the second coordinate of f)T = the partial sums
in the first coordinate of fT.

The theorem is a consequence of (39).

(41) Let us consider a function f from N×N into R, an extended real-valued
function g, and a natural number n. Suppose for every natural number k,
(the partial sums in the first coordinate of f)(n, k) = g(k). Then

(i) for every natural number k, (
∑κ
α=0 f(α))κ∈N(n, k) =

(
∑κ
α=0 g(α))κ∈N(k), and

(ii) (the lim in the second coordinate of (
∑κ
α=0 f(α))κ∈N)(n) =

∑
g.

(42) Let us consider a function f from N× N into R. Then

(i) the partial sums in the second coordinate of −f =

−(the partial sums in the second coordinate of f), and

(ii) the partial sums in the first coordinate of −f =

−(the partial sums in the first coordinate of f).

Proof: For every element z of N×
N, (−(the partial sums in the second coordinate of f))(z) = (the partial
sums in the second coordinate of −f)(z) by [9, (87)]. For every element z
of N× N,
(−(the partial sums in the first coordinate of f))(z) = (the partial sums
in the first coordinate of −f)(z) by [9, (87)]. �

(43) Let us consider a function f from N × N into R, and elements m, n of
N. Then

(i) (the partial sums in the first coordinate of f)(m,n) =

(
∑κ
α=0(curry′(f, n))(α))κ∈N(m), and

(ii) (the partial sums in the second coordinate of f)(m,n) =

(
∑κ
α=0(curry(f,m))(α))κ∈N(n).

Proof: Define P[natural number] ≡ (the partial sums in the first co-
ordinate of f)($1, n) = (

∑κ
α=0(curry′(f, n))(α))κ∈N($1). For every natural

number k such that P[k] holds P[k + 1]. For every natural number k,
P[k] from [1, Sch. 2]. Define Q[natural number] ≡ (the partial sums in
the second coordinate of f)(m, $1) = (

∑κ
α=0(curry(f,m))(α))κ∈N($1). For
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every natural number k such that Q[k] holds Q[k + 1]. For every natural
number k, Q[k] from [1, Sch. 2]. �

(44) Let us consider without −∞ functions f1, f2 from N× N into R. Then

(i) the partial sums in the second coordinate of f1 + f2 = (the partial
sums in the second coordinate of f1)+(the partial sums in the second
coordinate of f2), and

(ii) the partial sums in the first coordinate of f1 + f2 = (the partial
sums in the first coordinate of f1) + (the partial sums in the first
coordinate of f2).

The theorem is a consequence of (11).

(45) Let us consider without +∞ functions f1, f2 from N× N into R. Then

(i) the partial sums in the second coordinate of f1 + f2 = (the partial
sums in the second coordinate of f1)+(the partial sums in the second
coordinate of f2), and

(ii) the partial sums in the first coordinate of f1 + f2 = (the partial
sums in the first coordinate of f1) + (the partial sums in the first
coordinate of f2).

The theorem is a consequence of (10), (9), (2), (42), (44), and (8).

(46) Let us consider a without −∞ function f1 from N × N into R, and
a without +∞ function f2 from N× N into R. Then

(i) the partial sums in the second coordinate of f1 − f2 = (the partial
sums in the second coordinate of f1)−(the partial sums in the second
coordinate of f2), and

(ii) the partial sums in the first coordinate of f1 − f2 = (the partial
sums in the first coordinate of f1) − (the partial sums in the first
coordinate of f2), and

(iii) the partial sums in the second coordinate of f2 − f1 = (the partial
sums in the second coordinate of f2)−(the partial sums in the second
coordinate of f1), and

(iv) the partial sums in the first coordinate of f2 − f1 = (the partial
sums in the first coordinate of f2) − (the partial sums in the first
coordinate of f1).

The theorem is a consequence of (10), (44), (42), and (45).

(47) Let us consider a without −∞ function f from N×N into R, and natural
numbers n, m. Then

(i) (
∑κ
α=0 f(α))κ∈N(n+1,m) = (the partial sums in the second coordinate

of f)(n+ 1,m) + (
∑κ
α=0 f(α))κ∈N(n,m), and

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/15/16 9:36 AM



266 noboru endou

(ii) (the partial sums in the first coordinate of the partial sums in the
second coordinate of f)(n,m + 1) = (the partial sums in the first
coordinate of f)(n,m+ 1) + (the partial sums in the first coordinate
of the partial sums in the second coordinate of f)(n,m).

Proof: Set R1 = (
∑κ
α=0 f(α))κ∈N. Set C1 = the partial sums in the

first coordinate of the partial sums in the second coordinate of f . Set
R2 = the partial sums in the first coordinate of f . Set C2 = the partial
sums in the second coordinate of f . Define P[natural number] ≡ R1(n +
1, $1) = C2(n + 1, $1) + R1(n, $1). For every natural number k such that
P[k] holds P[k + 1]. For every natural number k, P[k] from [1, Sch. 2].
Define Q[natural number] ≡ C1($1,m+1) = R2($1,m+1)+C1($1,m). For
every natural number k such that Q[k] holds Q[k + 1]. For every natural
number k, Q[k] from [1, Sch. 2]. �

(48) Let us consider a without +∞ function f from N×N into R, and natural
numbers n, m. Then

(i) (
∑κ
α=0 f(α))κ∈N(n+1,m) = (the partial sums in the second coordinate

of f)(n+ 1,m) + (
∑κ
α=0 f(α))κ∈N(n,m), and

(ii) (the partial sums in the first coordinate of the partial sums in the
second coordinate of f)(n,m + 1) = (the partial sums in the first
coordinate of f)(n,m+ 1) + (the partial sums in the first coordinate
of the partial sums in the second coordinate of f)(n,m).

The theorem is a consequence of (2), (42), and (47).

(49) Let us consider a function f from N × N into R. Suppose f is without
−∞ or without +∞. Then (

∑κ
α=0 f(α))κ∈N = the partial sums in the

first coordinate of the partial sums in the second coordinate of f .

(50) Let us consider without −∞ functions f1, f2 from N × N into R. Then
(
∑κ
α=0(f1 + f2)(α))κ∈N = (

∑κ
α=0 f1(α))κ∈N + (

∑κ
α=0 f2(α))κ∈N. The the-

orem is a consequence of (44).

(51) Let us consider without +∞ functions f1, f2 from N × N into R. Then
(
∑κ
α=0(f1 + f2)(α))κ∈N = (

∑κ
α=0 f1(α))κ∈N + (

∑κ
α=0 f2(α))κ∈N. The the-

orem is a consequence of (45).

(52) Let us consider a without −∞ function f1 from N × N into R, and
a without +∞ function f2 from N× N into R. Then

(i) (
∑κ
α=0(f1 − f2)(α))κ∈N = (

∑κ
α=0 f1(α))κ∈N − (

∑κ
α=0 f2(α))κ∈N, and

(ii) (
∑κ
α=0(f2 − f1)(α))κ∈N = (

∑κ
α=0 f2(α))κ∈N − (

∑κ
α=0 f1(α))κ∈N.

The theorem is a consequence of (46).

(53) Let us consider a function f from N×N into R, and an element k of N.
Then
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(i) curry′(the partial sums in the first coordinate of f, k) =

(
∑κ
α=0(curry′(f, k))(α))κ∈N, and

(ii) curry(the partial sums in the second coordinate of f, k) =

(
∑κ
α=0(curry(f, k))(α))κ∈N.

The theorem is a consequence of (43).

(54) Let us consider a function f from N × N into R. Suppose f is without
−∞ or without +∞. Then

(i) curry((
∑κ
α=0 f(α))κ∈N, 0) = curry(the partial sums in the second

coordinate of f, 0), and

(ii) curry′((
∑κ
α=0 f(α))κ∈N, 0) = curry′(the partial sums in the first coor-

dinate of f, 0).

(55) Let us consider non empty sets C, D, without −∞ functions F1, F2
from C × D into R, and an element c of C. Then curry(F1 + F2, c) =
curry(F1, c) + curry(F2, c). The theorem is a consequence of (7).

(56) Let us consider non empty sets C, D, without −∞ functions F1, F2
from C × D into R, and an element d of D. Then curry′(F1 + F2, d) =
curry′(F1, d) + curry′(F2, d). The theorem is a consequence of (7).

(57) Let us consider non empty sets C, D, without +∞ functions F1, F2
from C × D into R, and an element c of C. Then curry(F1 + F2, c) =
curry(F1, c) + curry(F2, c). The theorem is a consequence of (7).

(58) Let us consider non empty sets C, D, without +∞ functions F1, F2
from C × D into R, and an element d of D. Then curry′(F1 + F2, d) =
curry′(F1, d) + curry′(F2, d). The theorem is a consequence of (7).

(59) Let us consider non empty sets C, D, a without −∞ function F1 from
C×D into R, a without +∞ function F2 from C×D into R, and an element
c of C. Then

(i) curry(F1 − F2, c) = curry(F1, c)− curry(F2, c), and

(ii) curry(F2 − F1, c) = curry(F2, c)− curry(F1, c).

The theorem is a consequence of (7).

(60) Let us consider non empty sets C, D, a without −∞ function F1 from
C×D into R, a without +∞ function F2 from C×D into R, and an element
d of D. Then

(i) curry′(F1 − F2, d) = curry′(F1, d)− curry′(F2, d), and

(ii) curry′(F2 − F1, d) = curry′(F2, d)− curry′(F1, d).

The theorem is a consequence of (7).
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4. Non-Negative Extended Real-Valued Double Sequences

Now we state the propositions:

(61) Let us consider a non-negative sequence s of extended reals. Suppose
(
∑κ
α=0 s(α))κ∈N is not convergent to +∞. Let us consider a natural number

n. Then s(n) is a real number.

(62) Let us consider a non-negative sequence s of extended reals. Suppose s
is non-decreasing. Then s is convergent to +∞ or convergent to a finite
limit.

Let f be a non-negative function from N×N into R and n be an element of N.
Let us observe that curry(f, n) is non-negative and curry′(f, n) is non-negative.

Now we state the propositions:

(63) Let us consider a non-negative function f from N×N into R, and an ele-
ment m of N. Then curry(the partial sums in the second coordinate of
f,m) is non-decreasing.
Proof: Set P = curry(the partial sums in the second coordinate of f,m).
For every natural numbers n, j such that j ¬ n holds P (j) ¬ P (n) by [4,
(51)], [1, (13), (20)]. �

(64) Let us consider a non-negative function f from N×N into R, and an ele-
ment n of N. Then curry′(the partial sums in the first coordinate of f, n)
is non-decreasing. The theorem is a consequence of (63), (40), and (33).

Let f be a non-negative function from N×N into R and m be an element of
N. One can check that curry(the partial sums in the second coordinate of f,m)
is non-decreasing and curry′(the partial sums in the first coordinate of f,m) is
non-decreasing.

Let us consider a non-negative function f from N×N into R. Now we state
the propositions:

(65) (i) if f is convergent in the first coordinate, then the lim in the first
coordinate of f is non-negative, and

(ii) if f is convergent in the second coordinate, then the lim in the second
coordinate of f is non-negative.

(66) (i) the partial sums in the first coordinate of f is convergent in the
first coordinate, and

(ii) the partial sums in the second coordinate of f is convergent in the
second coordinate.

Let us consider a non-negative function f from N×N into R, an element m
of N, and a natural number n.

Let us assume that curry′(the partial sums in the first coordinate of f,m) is
not convergent to +∞. Now we state the propositions:
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(67) f(n,m) is a real number.

(68) f(m,n) is a real number.

Let us consider a non-negative function f from N × N into R and natural
numbers n, m. Now we state the propositions:

(69) Suppose for every natural number i such that i ¬ n holds f(i,m) is a real
number. Then (the partial sums in the first coordinate of f)(n,m) < +∞.
Proof: Define P[natural number] ≡ if $1 ¬ n, then (the partial sums in
the first coordinate of f)($1,m) < +∞. For every natural number k such
that P[k] holds P[k + 1] by [4, (51)], [1, (13)]. For every natural number
k, P[k] from [1, Sch. 2]. �

(70) Suppose for every natural number i such that i ¬ m holds f(n, i) is a real
number. Then (the partial sums in the second coordinate of f)(n,m) <
+∞.
Proof: Define P[natural number] ≡ if $1 ¬ m, then (the partial sums
in the second coordinate of f)(n, $1) < +∞. For every natural number
k such that P[k] holds P[k + 1] by [4, (51)], [1, (13)]. For every natural
number k, P[k] from [1, Sch. 2]. �

Now we state the proposition:

(71) Let us consider a without −∞ function f from N × N into R. Suppose
(
∑κ
α=0 f(α))κ∈N is convergent in the first coordinate to −∞. Then there

exists an element m of N such that curry′(the partial sums in the first
coordinate of f,m) is convergent to −∞. The theorem is a consequence of
(54).

Let us consider a non-negative function f from N× N into R and a natural
number m. Now we state the propositions:

(72) for every element k of N such that k ¬ m holds curry(the partial sums
in the second coordinate of f, k) is not convergent to +∞ if and only if for
every element k of N such that k ¬ m holds lim curry(the partial sums
in the second coordinate of f, k) < +∞. The theorem is a consequence of
(62).

(73) for every element k of N such that k ¬ m holds curry′(the partial sums
in the first coordinate of f, k) is not convergent to +∞ if and only if for
every element k of N such that k ¬ m holds lim curry′(the partial sums
in the first coordinate of f, k) < +∞. The theorem is a consequence of
(62).

(74) (
∑κ
α=0(the lim in the second coordinate of the partial sums in the second

coordinate of f)(α))κ∈N(m) = +∞ if and only if there exists an element k
of N such that k ¬ m and curry(the partial sums in the second coordinate
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of f, k) is convergent to +∞. The theorem is a consequence of (72), (65),
and (4).

(75) (
∑κ
α=0(the lim in the first coordinate of the partial sums in the first

coordinate of f)(α))κ∈N(m) = +∞ if and only if there exists an element k
of N such that k ¬ m and curry′(the partial sums in the first coordinate
of f, k) is convergent to +∞. The theorem is a consequence of (38), (40),
(74), and (32).

Now we state the proposition:

(76) Let us consider a non-negative function f from N×N into R, and natural
numbers n, m. Then

(i) (the partial sums in the first coordinate of f)(n,m)  f(n,m), and

(ii) (the partial sums in the second coordinate of f)(n,m)  f(n,m).

Proof: Define P[natural number] ≡ if $1 ¬ n, then (the partial sums in
the first coordinate of f)($1,m)  f($1,m). For every natural number k
such that P[k] holds P[k+1] by [4, (51)]. For every natural number k, P[k]
from [1, Sch. 2]. Define Q[natural number] ≡ if $1 ¬ m, then (the partial
sums in the second coordinate of f)(n, $1)  f(n, $1). For every natural
number k such that Q[k] holds Q[k + 1] by [4, (51)]. For every natural
number k, Q[k] from [1, Sch. 2]. �

Let us consider a non-negative function f from N×N into R and an element
m of N. Now we state the propositions:

(77) Suppose there exists an element k of N such that k ¬ m and curry(the par-
tial sums in the second coordinate of f, k) is convergent to +∞. Then

(i) curry(the partial sums in the second coordinate of the partial sums
in the first coordinate of f,m) is convergent to +∞, and

(ii) lim curry(the partial sums in the second coordinate of the partial
sums in the first coordinate of f,m) = +∞.

Proof: For every real number g such that 0 < g there exists a natural
number N such that for every natural number n such that N ¬ n holds
g ¬ (curry(the par- tial sums in the second coordinate of the partial sums
in the first coordinate of f,m))(n) by [26, (7)], (76). �

(78) Suppose there exists an element k of N such that k ¬ m and curry′(the par-
tial sums in the first coordinate of f, k) is convergent to +∞. Then

(i) curry′(the partial sums in the first coordinate of the partial sums in
the second coordinate of f,m) is convergent to +∞, and

(ii) lim curry′(the partial sums in the first coordinate of the partial sums
in the second coordinate of f,m) = +∞.
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The theorem is a consequence of (40), (32), and (77).

Now we state the propositions:

(79) Let us consider a without −∞ function f from N × N into R. Then
(
∑κ
α=0 f(α))κ∈N is convergent in the first coordinate to a finite limit if

and only if the partial sums in the first coordinate of f is convergent in
the first coordinate to a finite limit. The theorem is a consequence of (54),
(47), (7), and (23).

(80) Let us consider a non-negative function f from N × N into R. Suppo-
se (
∑κ
α=0 f(α))κ∈N is convergent in the first coordinate to a finite limit.

Let us consider an element m of N. Then (
∑κ
α=0(the lim in the first

coordinate of the partial sums in the first coordinate of f)(α))κ∈N(m) =
lim curry′(the partial sums in the first coordinate of the partial sums in
the second coordinate of f,m).
Proof: The partial sums in the first coordinate of f is convergent in
the first coordinate to a finite limit. Define P[natural number] ≡ for eve-
ry element k of N such that k ¬ $1 holds (

∑κ
α=0(the lim in the first

coordinate of the partial sums in the first coordinate of f)(α))κ∈N(k) =
lim curry′(the partial sums in the first coordinate of the partial sums in
the second coordinate of f, k). For every natural number n such that P[n]
holds P[n + 1] by [1, (13)], [14, (7)], (47), [4, (51)]. For every natural
number n, P[n] from [1, Sch. 2]. �

(81) Let us consider a without −∞ function f from N × N into R. Then
(
∑κ
α=0 f(α))κ∈N is convergent in the second coordinate to a finite limit if

and only if the partial sums in the second coordinate of f is convergent in
the second coordinate to a finite limit. The theorem is a consequence of
(36), (40), and (79).

(82) Let us consider a non-negative function f from N × N into R. Suppose
(
∑κ
α=0 f(α))κ∈N is convergent in the second coordinate to a finite limit.

Let us consider an element m of N. Then (
∑κ
α=0(the lim in the second

coordinate of the partial sums in the second coordinate of f)(α))κ∈N(m) =
lim curry(the partial sums in the second coordinate of the partial sums in
the first coordinate of f,m). The theorem is a consequence of (36), (40),
(38), (80), and (32).

Let us consider a non-negative function f from N×N into R and a sequence
s of extended reals. Now we state the propositions:

(83) Suppose for every element m of N, s(m) = lim inf curry′(f,m). Then∑
s ¬ lim inf(the lim in the second coordinate of the partial sums in the

second coordinate of f).
Proof: For every element m of N and for every elements N , n of N
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such that n  N holds (the inferior realsequence curry′(f,m))(N) ¬
f(n,m) by [26, (7), (8)]. Define F(element of N) = the inferior realse-
quence curry′(f, $1). Define G(element of N, element of N) = (the inferior
realsequence curry′(f, $2))($1). Consider g being a function from N × N
into R such that for every element n of N and for every element m of N,
g(n,m) = G(n,m) from [5, Sch. 4]. For every element m of N and for every
elements N , n of N such that n  N holds (the partial sums in the second
coordinate of g)(N,m) ¬ (the partial sums in the second coordinate of
f)(n,m). For every element m of N and for every elements N , n of N
such that n  N holds (the partial sums in the second coordinate of
g)(N,m) ¬ (the inferior realsequence the lim in the second coordinate
of the partial sums in the second coordinate of f)(n) by [26, (37), (23)].
Define Q[natural number] ≡ for every element m of N such that m = $1
holds (

∑κ
α=0 s(α))κ∈N(m) = lim curry′(the partial sums in the second

coordinate of g,m). For every element m of N, curry′(the partial sums in
the second coordinate of g,m) is convergent by [26, (7), (37)]. For every
natural number k such that Q[k] holds Q[k+1] by [26, (37)], [4, (51), (52)],
[14, (11)]. For every natural number k, Q[k] from [1, Sch. 2]. For every
natural number m, (

∑κ
α=0 s(α))κ∈N(m) ¬ lim inf(the lim in the second

coordinate of the partial sums in the second coordinate of f) by [26, (37),
(38)]. For every object m such that m ∈ dom s holds 0 ¬ s(m) by [4, (51),
(52)], [26, (23)]. �

(84) Suppose for every element m of N, s(m) = lim inf curry(f,m). Then∑
s ¬ lim inf(the lim in the first coordinate of the partial sums in the

first coordinate of f). The theorem is a consequence of (32), (83), (38),
and (40).

Now we state the proposition:

(85) Let us consider a function f from N×N into R, a sequence s of extended
reals, and natural numbers n, m. Then

(i) if for every natural numbers i, j, f(i, j) ¬ s(i), then (the partial
sums in the first coordinate of f)(n,m) ¬ (

∑κ
α=0 s(α))κ∈N(n), and

(ii) if for every natural numbers i, j, f(i, j) ¬ s(j), then (the partial
sums in the second coordinate of f)(n,m) ¬ (

∑κ
α=0 s(α))κ∈N(m).

Proof: Define P[natural number] ≡ (the partial sums in the second
coordinate of f)(n, $1) ¬ (

∑κ
α=0 s(α))κ∈N($1). For every natural number

k such that P[k] holds P[k + 1]. For every natural number k, P[k] from
[1, Sch. 2]. �

Let us consider a sequence s of extended reals and an extended real number
r. Now we state the propositions:
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(86) If for every natural number n, s(n) ¬ r, then lim sup s ¬ r.
Proof: Define F(element of N) = r. Consider f being a function from N
into R such that for every element n of N, f(n) = F(n) from [7, Sch. 4].
For every natural number n, f(n) = r. For every natural number n, s(n) ¬
f(n). �

(87) If for every natural number n, r ¬ s(n), then r ¬ lim inf s.
Proof: Define F(element of N) = r. Consider f being a function from N
into R such that for every element n of N, f(n) = F(n) from [7, Sch. 4]. For
every natural number n, f(n) = r. For every natural number n, f(n) ¬
s(n). �

Now we state the proposition:

(88) Let us consider a non-negative function f from N× N into R. Then

(i) for every natural numbers i1, i2, j such that i1 ¬ i2 holds (the partial
sums in the first coordinate of f)(i1, j) ¬ (the partial sums in the
first coordinate of f)(i2, j), and

(ii) for every natural numbers i, j1, j2 such that j1 ¬ j2 holds (the partial
sums in the second coordinate of f)(i, j1) ¬ (the partial sums in the
second coordinate of f)(i, j2).

Let us consider a function f from N×N into R and natural numbers i, j, k.
Now we state the propositions:

(89) Suppose for every element m of N, curry′(f,m) is non-decreasing and
i ¬ j. Then (the partial sums in the second coordinate of f)(i, k) ¬
(the partial sums in the second coordinate of f)(j, k).
Proof: Define P[natural number] ≡ (the partial sums in the second
coordinate of f)(i, $1) ¬ (the partial sums in the second coordinate of
f)(j, $1). For every natural number n such that P[n] holds P[n + 1] by
[26, (7)]. For every natural number n, P[n] from [1, Sch. 2]. �

(90) Suppose for every element n of N, curry(f, n) is non-decreasing and i ¬ j.
Then (the partial sums in the first coordinate of f)(k, i) ¬ (the partial
sums in the first coordinate of f)(k, j). The theorem is a consequence of
(32), (89), and (39).

Let us consider a non-negative function f from N×N into R and a sequence
s of extended reals. Now we state the propositions:

(91) Suppose for every element m of N, curry′(f,m) is non-decreasing and
s(m) = lim curry′(f,m). Then

(i) the lim in the second coordinate of the partial sums in the second
coordinate of f is non-decreasing, and
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(ii)
∑
s = lim(the lim in the second coordinate of the partial sums in

the second coordinate of f).

Proof:
∑
s ¬ lim inf(the lim in the second coordinate of the partial sums

in the second coordinate of f). For every natural numbers n, m, f(n,m) ¬
s(m) by [26, (37)], [6, (3)]. For every natural numbers n, m such that m ¬
n holds (the lim in the second coordinate of the partial sums in the second
coordinate of f)(m) ¬ (the lim in the second coordinate of the partial
sums in the second coordinate of f)(n) by [26, (37)], (89), [26, (38)]. For
every natural number n, (the lim in the second coordinate of the partial
sums in the second coordinate of f)(n) ¬

∑
s by [26, (37)], [4, (39)], (87),

[26, (41)]. lim sup(the lim in the second coordinate of the partial sums in
the second coordinate of f) ¬

∑
s. �

(92) Suppose for every element m of N, curry(f,m) is non-decreasing and
s(m) = lim curry(f,m). Then

(i) the lim in the first coordinate of the partial sums in the first coordi-
nate of f is non-decreasing, and

(ii)
∑
s = lim(the lim in the first coordinate of the partial sums in the

first coordinate of f).

The theorem is a consequence of (32), (91), (33), and (40).

5. Pringsheim Sense Convergence for Extended Real-Valued
Double Sequences

Let us consider a function f from N×N into R. Now we state the propositions:

(93) If f is P-convergent to +∞, then f is not P-convergent to −∞ and f is
not P-convergent to a finite limit.

(94) If f is P-convergent to −∞, then f is not P-convergent to +∞ and f is
not P-convergent to a finite limit.

Let f be a function from N×N into R. We say that f is P-convergent if and
only if

(Def. 17) f is P-convergent to a finite limit or P-convergent to +∞ or P-convergent
to −∞.

Assume f is P-convergent. The functor P-lim f yielding an extended real is
defined by

(Def. 18) there exists a real number p such that it = p and for every real number
e such that 0 < e there exists a natural number N such that for every
natural numbers n, m such that n  N and m  N holds |f(n,m)−it | < e
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and f is P-convergent to a finite limit or it = +∞ and f is P-convergent
to +∞ or it = −∞ and f is P-convergent to −∞.

Now we state the propositions:

(95) Let us consider a function f from N × N into R, and a real number r.
Suppose for every natural numbers n, m, f(n,m) = r. Then

(i) f is P-convergent to a finite limit, and

(ii) P-lim f = r.

(96) Let us consider a function f from N × N into R. Suppose for every
natural numbers n1, m1, n2, m2 such that n1 ¬ n2 and m1 ¬ m2 holds
f(n1,m1) ¬ f(n2,m2). Then

(i) f is P-convergent, and

(ii) P-lim f = sup rng f .

(97) Let us consider functions f1, f2 from N × N into R. Suppose for every
natural numbers n, m, f1(n,m) ¬ f2(n,m). Then sup rng f1 ¬ sup rng f2.

(98) Let us consider a function f from N×N into R, and natural numbers n,
m. Then f(n,m) ¬ sup rng f .

Let us consider a function f from N×N into R and an extended real number
K. Now we state the propositions:

(99) If for every natural numbers n, m, f(n,m) ¬ K, then sup rng f ¬ K.

(100) If K 6= +∞ and for every natural numbers n, m, f(n,m) ¬ K, then
sup rng f < +∞.

Now we state the propositions:

(101) Let us consider a without −∞ function f from N × N into R. Then
sup rng f 6= +∞ if and only if there exists a real number K such that
0 < K and for every natural numbers n, m, f(n,m) ¬ K.

(102) Let us consider a function f from N×N into R, and an extended real c.
Suppose for every natural numbers n, m, f(n,m) = c. Then

(i) f is P-convergent, and

(ii) P-lim f = c, and

(iii) P-lim f = sup rng f .

(103) Let us consider a function f from N×N into R, and without−∞ functions
f1, f2 from N × N into R. Suppose for every natural numbers n1, m1,
n2, m2 such that n1 ¬ n2 and m1 ¬ m2 holds f1(n1,m1) ¬ f1(n2,m2)
and for every natural numbers n1, m1, n2, m2 such that n1 ¬ n2 and
m1 ¬ m2 holds f2(n1,m1) ¬ f2(n2,m2) and for every natural numbers n,
m, f1(n,m) + f2(n,m) = f(n,m). Then
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(i) f is P-convergent, and

(ii) P-lim f = sup rng f , and

(iii) P-lim f = P-lim f1 + P-lim f2, and

(iv) sup rng f = sup rng f1 + sup rng f2.

The theorem is a consequence of (96) and (101).

Let us consider a without −∞ function f1 from N×N into R, a function f2
from N× N into R, and a real number c. Now we state the propositions:

(104) Suppose 0 ¬ c and for every natural numbers n, m, f2(n,m) = c ·
f1(n,m). Then

(i) sup rng f2 = c · sup rng f1, and

(ii) f2 is without −∞.

The theorem is a consequence of (102) and (101).

(105) Suppose 0 ¬ c and for every natural numbers n1, m1, n2, m2 such that
n1 ¬ n2 and m1 ¬ m2 holds f1(n1,m1) ¬ f1(n2,m2) and for every natural
numbers n, m, f2(n,m) = c · f1(n,m). Then

(i) for every natural numbers n1, m1, n2, m2 such that n1 ¬ n2 and
m1 ¬ m2 holds f2(n1,m1) ¬ f2(n2,m2), and

(ii) f2 is without −∞ and P-convergent, and

(iii) P-lim f2 = sup rng f2, and

(iv) P-lim f2 = c · P-lim f1.

The theorem is a consequence of (96) and (104).
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