Introduction to Diophantine Approximation

Yasushige Watase
Suginami-ku Matsunoki 6
3-21 Tokyo, Japan

Summary. In this article we formalize some results of Diophantine approximation, i.e. the approximation of an irrational number by rationals. A typical example is finding an integer solution \((x, y)\) of the inequality \(|x\theta - y| \leq 1/x\), where \(\theta\) is a real number. First, we formalize some lemmas about continued fractions. Then we prove that the inequality has infinitely many solutions by continued fractions. Finally, we formalize Dirichlet’s proof (1842) of existence of the solution [12], [1].

MSC: 11A55 11J68 03B35

Keywords: irrational number; approximation; continued fraction; rational number; Dirichlet’s proof

MML identifier: DIOPHAN1 version: 8.1.04 5.32.1237

The notation and terminology used in this paper have been introduced in the following articles: [24], [2], [6], [22], [14], [5], [11], [7], [8], [28], [20], [26], [3], [25], [19], [4], [9], [32], [15], [13], [21], [30], [31], [18], [23], [29], and [10].

1. Irrational Numbers and Continued Fractions

From now on \(i, j, k, m, n, m_1, n_1\) denote natural numbers, \(a, r, r_1, r_2\) denote real numbers, \(m_0, c_3, c_1\) denote integers, and \(x_1, x_2, o\) denote objects.

Now we state the proposition:

\[
\begin{align*}
(1) \quad & (i) \quad r = (\text{rfs } r)(0), \\
& (\text{ii}) \quad r = (\text{scf } r)(0) + (1/(\text{rfs } r)(1)), \\
& \quad \text{(iii) } (\text{rfs } r)(n) = (\text{scf } r)(n) + (1/(\text{rfs } r)(n+1)).
\end{align*}
\]

Let us assume that \(r\) is irrational. Now we state the propositions:
(2) \((\text{rfs } r)(n)\) is irrational.

Proof: Reconsider \(r_3 = (\text{rfs } r)(n)\) as a real number. \((\text{scf } r_3)(m) = (\text{scf } r)(n + m)\) and \((\text{rfs } r_3)(m) = (\text{rfs } r)(n + m)\). Consider \(n_1\) such that for every \(m_1\) such that \(m_1 \geq n_1\) holds \((\text{scf } r_3)(m_1) = 0\). For every \(m_1\) such that \(m_1 \geq n_1\) holds \((\text{scf } r)(n + m_1) = 0\). For every \(m\) such that \(m \geq n_1 + n\) holds \((\text{scf } r)(m) = 0\) by [28, (3)]. □

(3) (i) \((\text{rfs } r)(n) \neq 0\), and
(ii) \((\text{rfs } r)(1) \cdot (\text{rfs } r)(2) \neq 0\), and
(iii) \((\text{scf } r)(1) \cdot (\text{rfs } r)(2) + 1 \neq 0\).

Proof: \((\text{rfs } r)(n) \neq 0\) by [21, (28), (42)]. \((\text{rfs } r)(1) \neq 0\) and \((\text{rfs } r)(2) \neq 0\). \((\text{rfs } r)(1) = (\text{scf } r)(1) + (1/(\text{rfs } r)(1+1)). □

(4) (i) \((\text{scf } r)(n) < (\text{rfs } r)(n) < (\text{scf } r)(n) + 1\), and
(ii) \(1 < (\text{rfs } r)(n+1)\).

The theorem is a consequence of (2) and (1).

(5) \(0 < (\text{scf } r)(n + 1)\). The theorem is a consequence of (4).

Let us consider \(r\) and \(n\). Observe that \((cn r)(n)\) is integer.

Let us assume that \(r\) is irrational. Now we state the propositions:

(6) \((cd r)(n + 1) \geq (cd r)(n)\).

Proof: Define \(\mathcal{P}[\text{natural number}] \equiv (cd r)(\$1) \leq (cd r)(\$1 + 1)\). \(\mathcal{P}[0]\) by (4), [28, (7)]. For every natural number \(n\) such that \(\mathcal{P}[n]\) holds \(\mathcal{P}[n + 1]\) by (4), [28, (7)], [21, (51)]. For every natural number \(n\), \(\mathcal{P}[n]\) from [3, Sch. 2]. □

(7) \((cd r)(n) \geq 1\).

Proof: Define \(\mathcal{P}[\text{natural number}] \equiv (cd r)(\$1) \geq 1\). For every natural number \(n\) such that \(\mathcal{P}[n]\) holds \(\mathcal{P}[n + 1]\). For every natural number \(n\), \(\mathcal{P}[n]\) from [3, Sch. 2]. □

(8) \((cd r)(n + 2) > (cd r)(n + 1)\). The theorem is a consequence of (5) and (7).

(9) \((cd r)(n) \geq n\).

Proof: Define \(\mathcal{P}[\text{natural number}] \equiv (cd r)(\$1) \geq \$1\). For every natural number \(n\) such that \(\mathcal{P}[n]\) holds \(\mathcal{P}[n + 1]\) by (7), (5), [21, (40)]. For every natural number \(n\), \(\mathcal{P}[n]\) from [3, Sch. 2]. □

Now we state the proposition:

(10) If \(c_3 = (cn r)(n)\) and \(c_1 = (cd r)(n)\) and \(c_3 \neq 0\), then \(c_3\) and \(c_1\) are relatively prime.

Let us assume that \(r\) is irrational. Now we state the propositions:

(11) (i) \((cd r)(n + 1) \cdot (\text{rfs } r)(n + 2) + (cd r)(n) > 0\), and
(ii) \((cd r)(n + 1) \cdot (rfs r)(n + 2) - (cd r)(n) > 0\).
The theorem is a consequence of (7), (4), and (6).

(12) \((cd r)(n + 1) \cdot ((cd r)(n + 1) \cdot (rfs r)(n + 2) + (cd r)(n)) > 0\). The theorem is a consequence of (7) and (11).

(13) \(r = (cn r)(n + 1) \cdot (rfs r)(n + 2) + (cn r)(n)/((cd r)(n + 1) \cdot (rfs r)(n + 2) + (cd r)(n))\).

Proof: Define \(P[nat\ number] \equiv r = (cn r)(n + 1) \cdot (rfs r)(n + 2) + (cn r)(n)/((cd r)(n + 1) \cdot (rfs r)(n + 2) + (cd r)(n)) \cdot P[0]\). For every natural number \(n\) such that \(P[n]\) holds \(P[n + 1]\). For every natural number \(n\), \(P[n]\) from \(\Box\) Sch. 2.

Now we state the propositions:

(15) If \(r\) is irrational and \(n\) is even and \(n > 0\), then \(r > (cn r)(n)/(cd r)(n)\).
The theorem is a consequence of (12) and (14).

(16) If \(r\) is irrational and \(n\) is odd, then \(r < (cn r)(n)/(cd r)(n)\).
The theorem is a consequence of (12) and (14).

(17) Suppose \(r\) is irrational and \(n > 0\). Then \(|r - ((cn r)(n)/(cd r)(n))| + |r - ((cn r)(n + 1)/(cd r)(n + 1))| = |((cn r)(n)/(cd r)(n)) - ((cn r)(n + 1)/(cd r)(n + 1))|.
The theorem is a consequence of (15) and (16).

Let us assume that \(r\) is irrational. Now we state the propositions:

(18) \(|r - ((cn r)(n)/(cd r)(n))| > 0\).

(19) \((cd r)(n + 2) > 2 \cdot (cd r)(n)\). The theorem is a consequence of (5), (7), and (6).

(20) \(|r - ((cn r)(n + 1)/(cd r)(n + 1))| < 1/(cd r)(n + 1)/(cd r)(n + 2)\). The theorem is a consequence of (7), (4), and (14).

(21) (i) \(|r \cdot (cd r)(n + 1) - (cn r)(n + 1)| < |r \cdot (cd r)(n) - (cn r)(n)|\), and
(ii) \(|r - ((cn r)(n + 1)/(cd r)(n + 1))| < |r - ((cn r)(n)/(cd r)(n))|\).
The theorem is a consequence of (13), (11), (4), (7), (18), and (6).

Now we state the propositions:

(22) If \(r\) is irrational and \(m > n\), then \(|r - ((cn r)(n)/(cd r)(n))| > |r - ((cn r)(m)/(cd r)(m))|\).
Proof: Define \(P[nat\ number] \equiv |r - ((cn r)(n)/(cd r)(n))| > |r - ((cn r)(n + 1 + s_1)/(cd r)(n + 1 + s_1))| \cdot P[0]\). For every natural number \(k\) such that \(P[k]\) holds \(P[k + 1]\). For every natural number \(k\), \(P[k]\) from \(\Box\) Sch. 2.

(23) If \(r\) is irrational, then \(|r - ((cn r)(n)/(cd r)(n))| < 1/(cd r)(n)^2\).
\textbf{Proof: } $|r - ((cnr)(n)/(cdr)(n))| < 1/(cdr)(n)^2$ by [28] (43), (7), [16] (1), (6). □

(24) Let us consider a subset S of \mathbb{Q}, and r. Suppose r is irrational and $S = \{p, \text{ where } p \text{ is an element of } \mathbb{Q} : |r - p| < 1/(\text{den } p)^2\}$. Then S is infinite.

\textbf{Proof: } Define f being a sequence of real numbers such that for every natural number n, $f(n) = \mathcal{F}(n)$ from [17, Sch. 1]. For every real number o such that $o \in \text{rng } f$ holds $o \in S$ by [21] (50), (7), [15] (28), [16] (1). f is one-to-one. □

(25) If r is irrational, then $\text{cof } r$ is convergent and $\lim \text{cof } r = r$.

\textbf{Proof: } For every real number p such that $0 < p$ there exists n such that for every m such that $n \leq m$ holds $|(\text{cof } r)(m) - r| < p$ by [27] (25), [28] (3), [17] (8), [6] (52). □

2. Integer Solution of $|x\theta - y| \leq 1/x$

Let us observe that there exists a natural number which is greater than 1. From now on t denotes a greater than 1 natural number.

Let us consider t. The functor $\text{EDI}(t)$ yielding a sequence of subsets of \mathbb{R} is defined by

\text{(Def. 1)} for every natural number n, $it(n) = [n/t, n+1/t[$.

Now we state the propositions:

(26) (The partial unions of $\text{EDI}(t))(i) = [0, i + 1/t[$.

\textbf{Proof: } Define $\mathcal{P}[\text{natural number}] = (\text{the partial unions of } \text{EDI}(t))(s_1) = [0, s_1 + 1/i[$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k + 1]$. For every natural number n, $\mathcal{P}[n]$ from [3] Sch. 2. □

(27) Let us consider a real number r, and a natural number i. If $[r \cdot t] = i$, then $r \in (\text{EDI}(t))(i)$.

(28) If $r_1, r_2 \in (\text{EDI}(t))(i)$, then $|r_1 - r_2| < t^{-1}$.

(29) (The partial unions of $\text{EDI}(t))(t - 1) = [0, 1[$. The theorem is a consequence of (26).

(30) Let us consider a real number r. Suppose $r \in [0, 1[$. Then there exists a natural number i such that

\begin{enumerate}
 \item $i \leq t - 1$, and
 \item $r \in (\text{EDI}(t))(i)$.
\end{enumerate}

The theorem is a consequence of (29).

(31) Let us consider a real number r, and a natural number i. If $r \in (\text{EDI}(t))(i)$, then $[r \cdot t] = i$.
Let us consider a real number r. Suppose $r \in [0, 1]$. Then there exists a natural number i such that

(i) $i \leq t - 1$, and
(ii) $\lfloor r \cdot t \rfloor = i$.

The theorem is a consequence of (30) and (31).

Let us consider t and a. The functor $\text{FDP}(t, a)$ yielding a finite sequence of elements of \mathbb{Z}_t is defined by

(Def. 2) $\text{len } it = t + 1$ and for every i such that $i \in \text{dom } it$ holds $it(i) = \lfloor \frac{(i - 1) \cdot a}{t} \rfloor$.

Let us note that $\text{rng FDP}(t, a)$ is non empty.

Now we state the proposition:

(33) $\overline{\text{rng FDP}(t, a)} \subseteq \overline{\text{dom FDP}(t, a)}$.

Let us consider t and a. One can verify that $\text{FDP}(t, a)$ is non one-to-one.

3. Proof of Dirichlet’s Theorem

Now we state the proposition:

(34) Dirichlet’s approximation theorem:
There exist integers x, y such that

(i) $|x \cdot a - y| < 1/t$, and
(ii) $0 < x \leq t$.

The theorem is a consequence of (27) and (28).

REFERENCES

Received April 19, 2015