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Summary. In this article, the separability of real normed spaces and its
properties are mainly formalized. In the first section, it is proved that a real
normed subspace is separable if it is generated by a countable subset. We used
here the fact that the rational numbers form a dense subset of the real numbers.
In the second section, the basic properties of the separable normed spaces are
discussed. It is applied to isomorphic spaces via bounded linear operators and
double dual spaces. In the last section, it is proved that the completeness and
reflexivity are transferred to sublinear normed spaces. The formalization is based
on [34], and also referred to [7], [14] and [16].
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The notation and terminology used in this paper have been introduced in the
following articles: [2], [4], [8], [26], [20], [21], [13], [9], [10], [22], [1], [25], [24],
[15], [19], [6], [11], [23], [17], [32], [33], [27], [28], [29], [30], [31], [18], and [12].

1. Separability of Real Normed Space

Let X be a real linear space and A be a subset of X. The functor SumsQA

yielding a subset of X is defined by the term

(Def. 1) {
∑
l, where l is a linear combination of A : rng l ⊆ Q}.

Let us consider a real normed space V and a real normed subspace V1 of V .
Now we state the propositions:
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(1) TopSpaceNormV1 is a subspace of TopSpaceNormV .
Proof: For every points x, y of MetricSpaceNormV1, (the distance of
MetricSpaceNormV1)(x, y) = (the distance of MetricSpaceNormV )(x, y)
by [28, (16)], [19, (28)]. �

(2) LinearTopSpaceNormV1 is a subspace of LinearTopSpaceNormV . The
theorem is a consequence of (1).

Now we state the proposition:

(3) Let us consider a real normed space X, and real normed subspaces Y, Z
of X. Suppose there exists a subset A of X such that A = the carrier of Y
and A = the carrier of Z. Let us consider a subset D0 of Y, and a subset
D of Z. If D0 is dense and D0 = D, then D is dense.
Proof: LinearTopSpaceNormZ is a subspace of LinearTopSpaceNormX
and LinearTopSpaceNormY is a subspace of LinearTopSpaceNormX. For
every subset S of Z such that S 6= ∅ and S is open holds D meets S by
[15, (16), (20)], [19, (5), (17), (4)]. �

Let us consider an additive loop structure X and subsets A, B of X. Now
we state the propositions:

(4) There exists a function F from A+B into A×B such that F is one-to-
one.
Proof: Set D = A+B. Define P[object, object] ≡ there exist points a, b
of X such that $1 = a+ b and a ∈ A and b ∈ B and $2 = 〈〈a, b〉〉. For every
object x such that x ∈ D there exists an object y such that y ∈ A×B and
P[x, y] by [12, (87)]. Consider F being a function from D into A×B such
that for every object x such that x ∈ D holds P[x, F (x)] from [10, Sch. 1].
For every objects x1, x2 such that x1, x2 ∈ domF and F (x1) = F (x2)
holds x1 = x2. �

(5) If A is countable and B is countable, then A + B is countable. The
theorem is a consequence of (4).

Now we state the proposition:

(6) Let us consider a non empty additive loop structure X, subsets A, B of
X, a linear combination l1 of A, and a linear combination l2 of B. Suppose
A misses B. Then there exists a linear combination l of A ∪B such that

(i) the support of l = (the support of l1) ∪ (the support of l2), and

(ii) l = l1 + l2.

Proof: Define P[object, object] ≡ if $1 ∈ the support of l1, then $2 =
l1($1) and if $1 ∈ the support of l2, then $2 = l2($1) and if $1 /∈ the support
of l1 and $1 /∈ the support of l2, then $2 = 0. Consider l being a func-
tion from the carrier of X into R such that for every object x such
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that x ∈ the carrier of X holds P[x, l(x)] from [10, Sch. 1]. Reconsider
T = (the support of l1) ∪ (the support of l2) as a finite subset of X. For
every element x of X such that x /∈ T holds l(x) = 0. For every element v
of X, l(v) = l1(v) + l2(v). �

Let us consider a non empty additive loop structure X, subsets A, B of X,
and a linear combination l of A ∪B. Now we state the propositions:

(7) There exists a linear combination l1 of A such that

(i) the support of l1 = (the support of l) \B, and

(ii) for every element x of X such that x ∈ the support of l1 holds l1(x) =
l(x).

Proof: Reconsider T1 = (the support of l) \ B as a finite subset of X.
Define Q[object, object] ≡ if $1 ∈ T1, then $2 = l($1) and if $1 /∈ T1, then
$2 = 0. Consider l1 being a function from the carrier of X into R such
that for every object x such that x ∈ the carrier of X holds Q[x, l1(x)]
from [10, Sch. 1]. �

(8) Suppose A misses B. Then there exists a linear combination l1 of A
and there exists a linear combination l2 of B such that the support of
l = (the support of l1)∪(the support of l2) and l = l1+l2 and the support
of l1 = (the support of l)\B and the support of l2 = (the support of l)\A.
The theorem is a consequence of (7).

Now we state the propositions:

(9) Let us consider a real linear space X, subsets A, B of X, a linear combi-
nation l1 of A, and a linear combination l2 of B. Suppose rng l1 ⊆ Q and
rng l2 ⊆ Q and A misses B. Then there exists a linear combination l of
A ∪B such that

(i) the support of l = (the support of l1) ∪ (the support of l2), and

(ii) rng l ⊆ Q, and

(iii)
∑
l =
∑
l1 +
∑
l2.

The theorem is a consequence of (6).

(10) Let us consider a real linear space X, subsets A, B of X, and a linear
combination l of A ∪ B. Suppose rng l ⊆ Q and A misses B. Then there
exists a linear combination l1 of A and there exists a linear combination
l2 of B such that rng l1 ⊆ Q and rng l2 ⊆ Q and

∑
l =
∑
l1 +
∑
l2. The

theorem is a consequence of (8).

(11) Let us consider a real linear space X, and finite subsets A, B of X.
Suppose A misses B. Then SumsQA + SumsQB = SumsQ(A ∪ B). The
theorem is a consequence of (9) and (10).
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Let X be a real linear space and A be a finite subset of X. Observe that
SumsQA is countable.

Now we state the proposition:

(12) Let us consider a real linear space X, a sequence x of X, and a finite
subset A of X. Suppose A ⊆ rng x. Then there exists a natural number n
such that A ⊆ rng(x�Zn).
Proof: Define P[natural number] ≡ for every finite subset A of X such
that A = $1 and A ⊆ rng x there exists a natural number n such that
A ⊆ rng(x�Zn). P[0]. For every natural number k such that P[k] holds
P[k + 1] by [3, (44)], [12, (31)], [3, (42)], [10, (11)]. For every natural
number k, P[k] from [5, Sch. 2]. �

Let X be a real linear space and x be a sequence of X. One can verify that
SumsQ rng x is countable.

Now we state the propositions:

(13) Let us consider a real normed space X, and a sequence x of X. Then
SumsQ rng x is a subset of the carrier of NLin rng x.
Proof: Set D = SumsQ rng x. For every object z such that z ∈ D holds
z ∈ the carrier of NLin rng x by [30, (14)]. �

(14) Let us consider a real normed space X, and a subset Y of X. Then

(i) the carrier of NLinY ⊆ the carrier of ClNLin(Y ), and

(ii) there exists a subset Z of X such that Z = the carrier of NLinY and
Z = the carrier of ClNLin(Y ).

(15) Let us consider a real normed space X, and a sequence x of X. Then
SumsQ rng x is a countable subset of the carrier of ClNLin(rng x). The
theorem is a consequence of (13) and (14).

(16) Let us consider real numbers z, e. Suppose 0 < e. Then there exists an
element q of Q such that

(i) q 6= 0, and

(ii) |z − q| < e.

(17) Let us consider a real normed space X, a point w of X, a real number
e, and a linear combination l of {w}. Suppose 0 < e. Then there exists a
linear combination m of {w} such that

(i) the support of m = the support of l, and

(ii) rngm ⊆ Q, and

(iii) ‖
∑
l −
∑
m‖ < e.

The theorem is a consequence of (16).
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(18) Let us consider a real normed space X, a subset A of X, a real number
e, and a linear combination l of A. Suppose 0 < e. Then there exists a
linear combination m of A such that

(i) the support of m = the support of l, and

(ii) rngm ⊆ Q, and

(iii) ‖
∑
l −
∑
m‖ < e.

Proof: Define P[natural number] ≡ for every real number e for every
linear combination l of A such that 0 < e and the support of l = $1
there exists a linear combination m of A such that the support of m =
the support of l and rngm ⊆ Q and ‖

∑
l −
∑
m‖ < e. P[0] by [29, (34),

(44), (42)], [30, (2)]. For every natural number k such that P[k] holds
P[k+ 1] by [3, (44)], [12, (31)], [3, (42)], (8). For every natural number k,
P[k] from [5, Sch. 2]. �

Let us consider a real normed space X and a sequence x of X. Now we state
the propositions:

(19) SumsQ rng x is a dense subset of the carrier of NLin rng x.

(20) SumsQ rng x is a dense subset of the carrier of ClNLin(rng x).

Now we state the proposition:

(21) Let us consider a real normed space X. Suppose there exists a subset
D of the carrier of X such that D is dense and countable. Then X is
separable.

2. Basic Properties of Separable Spaces

Let X be a real normed space and x be a sequence of X. Let us observe that
ClNLin(rng x) is separable.

Now we state the propositions:

(22) Let us consider a real normed space X, a real normed subspace Y of X,
and a Lipschitzian linear functional L in X. Then L�(the carrier of Y ) is
a Lipschitzian linear functional in Y.
Proof: Set Y1 = the carrier of Y. Reconsider L1 = L�Y1 as a functional
in Y. L1 is additive by [9, (49)], [19, (28)]. L1 is homogeneous by [9, (49)],
[19, (28)]. Consider K being a real number such that 0 ¬ K and for every
point x of X, |L(x)| ¬ K · ‖x‖. For every point x of Y, |L1(x)| ¬ K · ‖x‖
by [19, (28)], [9, (49)]. �

(23) Let us consider real normed spaces X, Y, a subset A of X, a subset B
of Y, and a Lipschitzian linear operator L from X into Y. Suppose L is
isomorphism and B = L◦A. Then A is dense if and only if B is dense.
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(24) Let us consider real normed spaces X, Y. Suppose there exists a Lipschit-
zian linear operator L from X into Y such that L is isomorphism. Then
X is separable if and only if Y is separable. The theorem is a consequence
of (23).

(25) Let us consider a real normed space X. Suppose X is non trivial and
reflexive. Then X is separable if and only if DualSp(DualSp(X)) is sepa-
rable. The theorem is a consequence of (24).

3. Completeness and Reflexivity of Sublinear Normed Spaces

Now we state the proposition:

(26) Let us consider a real normed space X, and subsets Y, Z of X. Suppose
Z = the carrier of Lin(Y ). Then the carrier of Lin(Z) = Z.

Let us consider a real Banach space X and a subset Y of X. Now we state
the propositions:

(27) There exists a subset Z of X such that

(i) Z = the carrier of Lin(Y ), and

(ii) ClNLin(Y ) = NLinZ, and

(iii) Z is linearly closed, and

(iv) Z 6= ∅.
(28) ClNLin(Y ) is a real Banach space. The theorem is a consequence of (27).

(29) If X is reflexive, then ClNLin(Y ) is reflexive. The theorem is a consequ-
ence of (27).

Acknowledgement: We would like to thank Keiko Narita and Yasunari
Shidama.
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