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Summary. Different properties of rings and fields are discussed [12], [41]
and [17]. We introduce ring homomorphisms, their kernels and images, and prove
the First Isomorphism Theorem, namely that for a homomorphism f : R −→
S we have R/ker(f)

∼= Im(f). Then we define prime and irreducible elements
and show that every principal ideal domain is factorial. Finally we show that
polynomial rings over fields are Euclidean and hence also factorial.
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1. Preliminaries

Let R be a non empty set, f be a non empty finite sequence of elements of
R, and x be an element of dom f . Note that the functor f(x) yields an element
of R. Let X be a set and F1, F2 be X-valued finite sequences. One can verify
that F1

a F2 is X-valued.
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Now we state the propositions:

(1) Let us consider an add-associative, right zeroed, right complementable,
distributive, well unital, non empty double loop structure R, and a finite
sequence F of elements of R. Suppose there exists a natural number i such
that i ∈ domF and F (i) = 0R. Then

∏
F = 0R.

(2) Let us consider an add-associative, right zeroed, right complementable,
well unital, distributive, integral domain-like, non degenerated double
loop structure R, and a finite sequence F of elements of R. Then

∏
F = 0R

if and only if there exists a natural number i such that i ∈ domF and
F (i) = 0R. The theorem is a consequence of (1).

Let X be a set.
A chain of X is a sequence of X. Let X be a non empty set and C be a

chain of X. We say that C is ascending if and only if

(Def. 1) for every natural number i, C(i) ⊆ C(i+ 1).

We say that C is stagnating if and only if

(Def. 2) there exists a natural number i such that for every natural number j
such that j  i holds C(j) = C(i).

Let x be an element of X. One can check that N 7−→ x is ascending and
stagnating as a chain of X and there exists a chain of X which is ascending and
stagnating.

Now we state the proposition:

(3) Let us consider a non empty set X, an ascending chain C of X, and
natural numbers i, j. If i ¬ j, then C(i) ⊆ C(j).

Let R be a ring. The functor IdealsR yielding a family of subsets of the
carrier of R is defined by the term

(Def. 3) the set of all I where I is an ideal of R.

One can verify that IdealsR is non empty.
Now we state the propositions:

(4) Let us consider a commutative ring R, an ideal I of R, and an element
a of R. If a ∈ I, then {a}–ideal ⊆ I.

(5) Let us consider a ring R, and an ascending chain C of IdealsR. Then⋃
the set of all C(i) where i is a natural number is an ideal of R.

Let R be a non empty double loop structure and S be a right zeroed, non
empty double loop structure. Let us note that R 7−→ 0S is additive.

Let S be an add-associative, right zeroed, right complementable, right
distributive, non empty double loop structure. Observe that R 7−→ 0S is mul-
tiplicative.
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Let R be a well unital, non empty double loop structure and S be a well
unital, non degenerated double loop structure. Note that R 7−→ 0S is non unity-
preserving.

Let R be a non empty double loop structure. One can verify that idR is
additive, multiplicative, and unity-preserving and idR is monomorphic and epi-
morphic.

Let S be a right zeroed, non empty double loop structure. Observe that
there exists a function from R into S which is additive.

Let S be an add-associative, right zeroed, right complementable, right
distributive, non empty double loop structure. Let us observe that there exists
a function from R into S which is multiplicative.

Let R, S be well unital, non empty double loop structures. One can verify
that there exists a function from R into S which is unity-preserving.

Let R be a non empty double loop structure and S be an add-associative,
right zeroed, right complementable, right distributive, non empty double loop
structure. One can verify that there exists a function from R into S which is
additive and multiplicative.

2. Homomorphisms, Kernel and Image

Let R, S be rings. We say that S is R-homomorphic if and only if

(Def. 4) there exists a function f from R into S such that f inherits ring homo-
morphism.

LetR be a ring. One can verify that there exists a ring which isR-homomorphic.
Let R be a commutative ring. Let us observe that there exists a commutative

ring which is R-homomorphic and there exists a ring which is R-homomorphic.
Let R be a field. Observe that there exists a field which is R-homomorphic

and there exists a commutative ring which is R-homomorphic and there exists
a ring which is R-homomorphic.

Let R be a ring and S be an R-homomorphic ring. Note that there exists a
function from R into S which is additive, multiplicative, and unity-preserving.

A homomorphism fromR to S is an additive, multiplicative, unity-preserving
function from R into S. Let R, S, T be rings, f be a unity-preserving function
from R into S, and g be a unity-preserving function from S into T . Observe
that g · f is unity-preserving as a function from R into T .

Let R be a ring and S be an R-homomorphic ring. Note that every S-
homomorphic ring is R-homomorphic.

Let R, S be non empty double loop structures. We introduce R and S are
isomorphic as a synonym of R is ring isomorphic to S.

Now we state the propositions:
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(6) Let us consider an add-associative, right zeroed, right complementable,
non empty double loop structure R, an add-associative, right zeroed, right
complementable, right distributive, non empty double loop structure S,
and an additive function f from R into S. Then f(0R) = 0S .

(7) Let us consider an add-associative, right zeroed, right complementable,
non empty double loop structure R, an add-associative, right zeroed, right
complementable, right distributive, non empty double loop structure
S, an additive function f from R into S, and an element x of R. Then
f(−x) = −f(x). The theorem is a consequence of (6).

(8) Let us consider an add-associative, right zeroed, right complementable,
non empty double loop structure R, an add-associative, right zeroed, right
complementable, right distributive, non empty double loop structure S,
an additive function f from R into S, and elements x, y of R. Then
f(x− y) = f(x)− f(y). The theorem is a consequence of (7).

(9) Let us consider a right unital, non empty double loop structure R, an
add-associative, right zeroed, right complementable, right unital, Abe-
lian, right distributive, integral domain-like, non empty double loop
structure S, and a multiplicative function f from R into S. Then

(i) f(1R) = 0S , or

(ii) f(1R) = 1S .

Let us consider fields E, F and an additive, multiplicative function f from
E into F . Now we state the propositions:

(10) f(1E) = 0F if and only if f = E 7−→ 0F .

(11) f(1E) = 1F if and only if f is monomorphic.

Let E, F be fields. One can check that every function from E into F which
is additive, multiplicative, and unity-preserving is also monomorphic.

Let R be a ring and I be an ideal of R. The canonical homomorphism of I
into quotient field yielding a function from R into R/I is defined by

(Def. 5) for every element a of R, it(a) = [a]EqRel(R,I).

Let us note that the canonical homomorphism of I into quotient field is
additive, multiplicative, and unity-preserving and the canonical homomorphism
of I into quotient field is epimorphic and R/I is R-homomorphic.

Let R be an add-associative, right zeroed, right complementable, non empty
double loop structure, S be an add-associative, right zeroed, right complemen-
table, right distributive, non empty double loop structure, and f be an additive
function from R into S. One can check that ker f is non empty.

Let R be a non empty double loop structure and S be an add-associative,
right zeroed, right complementable, non empty double loop structure. One can
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check that ker f is closed under addition.
Let S be an add-associative, right zeroed, right complementable, right

distributive, non empty double loop structure and f be a multiplicative function
from R into S. Observe that ker f is left ideal.

Let S be an add-associative, right zeroed, right complementable, distri-
butive, non empty double loop structure. Let us observe that ker f is right
ideal.

Let R be a well unital, non empty double loop structure, S be a well unital,
non degenerated double loop structure, and f be a unity-preserving function
from R into S. Observe that ker f is proper.

Now we state the propositions:

(12) Let us consider a ring R, an R-homomorphic ring S, and a homomor-
phism f from R to S. Then f is monomorphic if and only if ker f = {0R}.
The theorem is a consequence of (6) and (8).

(13) Let us consider a ring R, and an ideal I of R. Then ker the canonical
homomorphism of I into quotient field = I.

(14) Let us consider a ring R, and a subset I of R. Then I is an ideal of
R if and only if there exists an R-homomorphic ring S and there exists
a homomorphism f from R to S such that ker f = I. The theorem is a
consequence of (13).

Let R be a ring, S be an R-homomorphic ring, and f be a homomorphism
from R to S. The functor Im f yielding a strict double loop structure is defined
by

(Def. 6) the carrier of it = rng f and the addition of it = (the addition of S) �
rng f and the multiplication of it = (the multiplication of S) � rng f and
the one of it = 1S and the zero of it = 0S .

Note that Im f is non empty and Im f is Abelian, add-associative, right
zeroed, and right complementable and Im f is associative, well unital, and di-
stributive.

Let R be a commutative ring and S be an R-homomorphic commutative
ring. One can verify that Im f is commutative.

Let R be a ring and S be an R-homomorphic ring. Let us note that the
functor Im f yields a strict subring of S. The canonical homomorphism of f
into quotient field yielding a function from R/ker f into Im f is defined by

(Def. 7) for every element a of R, it([a]EqRel(R,ker f)) = f(a).

One can check that the canonical homomorphism of f into quotient field is
additive, multiplicative, and unity-preserving and the canonical homomorphism
of f into quotient field is monomorphic and epimorphic.
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Let us consider a ring R, an R-homomorphic ring S, and a homomorphism
f from R to S. Now we state the propositions:

(15) R/ker f and Im f are isomorphic.

(16) If f is onto, then R/ker f and S are isomorphic.

Now we state the proposition:

(17) Let us consider a ring R. Then R/{0R} and R are isomorphic. The the-
orem is a consequence of (12).

Let R be a ring. Let us note that R/ΩR is trivial.

3. Units and Non Units

Let L be a right unital, non empty multiplicative loop structure. Let us note
that there exists an element of L which is unital.

A unit of L is a unital element of L. Let L be an add-associative, right
zeroed, right complementable, left distributive, non degenerated double loop
structure. One can check that there exists an element of L which is non unital.

A non-unit of L is a non unital element of L. Note that 0L is non unital.
Let L be a right unital, non empty multiplicative loop structure. Let us note

that 1L is unital.
Let L be an add-associative, right zeroed, right complementable, left di-

stributive, right unital, non degenerated double loop structure. One can verify
that every unit of L is non zero.

Let F be a field. Note that every non zero element of F is unital.
Let R be an integral domain and u, v be unital elements of R. One can check

that u · v is unital.
Let us consider a commutative ring R and elements a, b of R. Now we state

the propositions:

(18) a | b if and only if b ∈ {a}–ideal.

(19) a | b if and only if {b}–ideal ⊆ {a}–ideal. The theorem is a consequence
of (18).

Now we state the propositions:

(20) Let us consider a commutative ring R, and an element a of R. Then a is
a unit of R if and only if {a}–ideal = ΩR. The theorem is a consequence
of (18).

(21) Let us consider a commutative ring R, and elements a, b of R. Then a
is associated to b if and only if {a}–ideal = {b}–ideal.
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4. Prime and Irreducible Elements

Let R be a right unital, non empty double loop structure and x be an element
of R. We say that x is prime if and only if

(Def. 8) x 6= 0R and x is not a unit of R and for every elements a, b of R such
that x | a · b holds x | a or x | b.

We say that x is irreducible if and only if

(Def. 9) x 6= 0R and x is not a unit of R and for every element a of R such that
a | x holds a is unit of R or associated to x.

We introduce x is reducible as an antonym for x is irreducible.

Note that there exists an element of R which is non prime and there exists
an element of ZR which is prime.

Let R be a right unital, non empty double loop structure. Let us observe
that every element of R which is prime is also non zero and non unital and every
element of R which is irreducible is also non zero and non unital.

Let R be an integral domain. Observe that every element of R which is prime
is also irreducible.

Let F be a field. Let us note that every element of F is reducible.

Let R be a right unital, non empty double loop structure. The functor
IRR(R) yielding a subset of R is defined by the term

(Def. 10) {x, where x is an element of R : x is irreducible}.

Let F be a field. One can check that IRR(F ) is empty.

Now we state the propositions:

(22) Let us consider an integral domain R, a non zero element c of R, and
elements b, a, d of R. Suppose a · b is associated to c ·d and a is associated
to c. Then b is associated to d.

(23) Let us consider an integral domain R, and elements a, b of R. Suppose
a is irreducible and b is associated to a. Then b is irreducible.

Let us consider a non degenerated commutative ring R and a non zero ele-
ment a of R. Now we state the propositions:

(24) a is prime if and only if {a}–ideal is prime. The theorem is a consequence
of (18).

(25) If {a}–ideal is maximal, then a is irreducible. The theorem is a consequ-
ence of (19) and (18).
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5. Principal Ideal Domains and Factorial Rings

Note that every field is PID and there exists a non empty double loop struc-
ture which is PID.

A principal ideal domain is a PID integral domain. Now we state the pro-
position:

(26) Let us consider a principal ideal domain R, and a non zero element a of
R. Then {a}–ideal is maximal if and only if a is irreducible. The theorem
is a consequence of (19), (20), (18), and (25).

Let R be a principal ideal domain. Observe that every element of R which is
irreducible is also prime and every commutative ring which is Euclidean is also
PID.

Let R be a principal ideal domain. One can verify that every chain of IdealsR
which is ascending is also stagnating.

Let R be a right unital, non empty double loop structure, x be an element
of R, and F be a non empty finite sequence of elements of R. We say that F is
a factorization of x if and only if

(Def. 11) x =
∏
F and for every element i of domF , F (i) is irreducible.

We say that x is factorizable if and only if

(Def. 12) there exists a non empty finite sequence F of elements of R such that F
is a factorization of x.

Assume x is factorizable.
A factorization of x is a non empty finite sequence of elements of R and is

defined by

(Def. 13) it is a factorization of x.

We say that x is uniquely factorizable if and only if

(Def. 14) x is factorizable and for every factorizations F , G of x, there exists a
function B from domF into domG such that B is bijective and for every
element i of domF , G(B(i)) is associated to F (i).

One can verify that every element of R which is uniquely factorizable is also
factorizable.

Let R be an integral domain. Let us observe that every element of R which
is factorizable is also non zero and non unital.

Let R be a right unital, non empty double loop structure. Let us note that
every element of R which is irreducible is also factorizable.

Now we state the propositions:

(27) Let us consider a right unital, non empty double loop structure R, and
an element a of R. Then a is irreducible if and only if 〈a〉 is a factorization
of a.
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(28) Let us consider a well unital, associative, non empty double loop struc-
ture R, elements a, b of R, and non empty finite sequences F , G of elements
of R. Suppose F is a factorization of a and G is a factorization of b. Then
F a G is a factorization of a · b.

Let R be a principal ideal domain. Observe that every element of R which
is factorizable is also uniquely factorizable.

Let R be a non degenerated ring. We say that R is factorial if and only if

(Def. 15) for every non zero element a of R such that a is a non-unit of R holds a
is uniquely factorizable.

One can check that there exists a non degenerated ring which is factorial.
Let R be a factorial, non degenerated ring. Note that every element of R

which is non zero and non unital is also factorizable.
A factorial ring is a factorial, non degenerated ring. One can check that every

integral domain which is PID is also factorial.

6. Polynomial Rings over Fields

Let L be a field and p be a polynomial of L. The functor deg∗ p yielding a
natural number is defined by the term

(Def. 16)

{
deg p, if p 6= 0. L,
0, otherwise.

The functor deg∗L yielding a function from Polynom-RingL into N is defi-
ned by

(Def. 17) for every polynomial p of L, it(p) = deg∗ p.
Now we state the propositions:

(29) Let us consider a field L, a polynomial p of L, and a non zero polynomial
q of L. Then deg(p mod q) < deg q.

(30) Let us consider a field L, an element p of Polynom-RingL, and a non
zero element q of Polynom-RingL. Then there exist elements u, r of
Polynom-RingL such that

(i) p = u · q + r, and

(ii) r = 0Polynom-RingL or (deg∗L)(r) < (deg∗L)(q).

The theorem is a consequence of (29).

Let L be a field. One can check that Polynom-RingL is Euclidean.
Note that the functor deg∗L yields a DegreeFunction of Polynom-RingL.
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[17] Heinz Lüneburg. Die grundlegenden Strukturen der Algebra (in German). Oldenbourg

Wisenschaftsverlag, 1999.
[18] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339–346, 2001.
[19] Michał Muzalewski. Opposite rings, modules and their morphisms. Formalized Mathe-
matics, 3(1):57–65, 1992.

[20] Michał Muzalewski. Category of rings. Formalized Mathematics, 2(5):643–648, 1991.
[21] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring.
Formalized Mathematics, 2(1):3–11, 1991.

[22] Michał Muzalewski and Wojciech Skaba. From loops to Abelian multiplicative groups
with zero. Formalized Mathematics, 1(5):833–840, 1990.

[23] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[24] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction.
Formalized Mathematics, 1(3):441–444, 1990.

[25] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number
of variables. Formalized Mathematics, 9(1):95–110, 2001.

[26] Christoph Schwarzweller. The correctness of the generic algorithms of Brown and Henrici
concerning addition and multiplication in fraction fields. Formalized Mathematics, 6(3):
381–388, 1997.

[27] Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers.
Formalized Mathematics, 8(1):29–34, 1999.

[28] Christoph Schwarzweller. The field of quotients over an integral domain. Formalized
Mathematics, 7(1):69–79, 1998.

[29] Christoph Schwarzweller. Introduction to rational functions. Formalized Mathematics, 20
(2):181–191, 2012. doi:10.2478/v10037-012-0021-1.

[30] Christoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Schur’s theorem on the
stability of networks. Formalized Mathematics, 14(4):135–142, 2006. doi:10.2478/v10037-
006-0017-9.

[31] Yasunari Shidama, Hikofumi Suzuki, and Noboru Endou. Banach algebra of bounded

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/15/15 11:10 AM

http://fm.mizar.org/2001-9/pdf9-3/ideal_1.pdf
http://fm.mizar.org/1990-1/pdf1-2/card_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/nat_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/ordinal1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
http://fm.mizar.org/1990-1/pdf1-3/realset1.pdf
http://fm.mizar.org/1990-1/pdf1-1/funct_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/funct_2.pdf
http://fm.mizar.org/1990-1/pdf1-2/partfun1.pdf
http://fm.mizar.org/1990-1/pdf1-1/zfmisc_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finset_1.pdf
http://fm.mizar.org/1990-1/pdf1-5/rat_1.pdf
http://fm.mizar.org/2005-13/pdf13-4/ring_1.pdf
http://fm.mizar.org/2003-11/pdf11-1/vectsp10.pdf
http://fm.mizar.org/1990-1/pdf1-2/vectsp_1.pdf
http://fm.mizar.org/1990-1/pdf1-2/vectsp_1.pdf
http://fm.mizar.org/2001-9/pdf9-2/polynom3.pdf
http://fm.mizar.org/1992-3/pdf3-1/mod_4.pdf
http://fm.mizar.org/1991-2/pdf2-5/ringcat1.pdf
http://fm.mizar.org/1991-2/pdf2-1/vectsp_2.pdf
http://fm.mizar.org/1990-1/pdf1-5/algstr_1.pdf
http://fm.mizar.org/1990-1/pdf1-5/algstr_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/setfam_1.pdf
http://fm.mizar.org/1990-1/pdf1-3/eqrel_1.pdf
http://fm.mizar.org/2001-9/pdf9-1/polynom1.pdf
http://fm.mizar.org/2001-9/pdf9-1/polynom1.pdf
http://fm.mizar.org/1997-6/pdf6-3/gcd_1.pdf
http://fm.mizar.org/1997-6/pdf6-3/gcd_1.pdf
http://fm.mizar.org/1999-8/pdf8-1/int_3.pdf
http://fm.mizar.org/1998-7/pdf7-1/quofield.pdf
http://dx.doi.org/10.2478/v10037-012-0021-1
http://dx.doi.org/10.2478/v10037-006-0017-9
http://dx.doi.org/10.2478/v10037-006-0017-9


The first isomorphism theorem and other properties of ... 301

functionals. Formalized Mathematics, 16(2):115–122, 2008. doi:10.2478/v10037-008-0017-
z.

[32] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):
115–122, 1990.

[33] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1
(2):329–334, 1990.

[34] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):
341–347, 2003.

[35] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[36] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[37] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized
Mathematics, 2(1):41–47, 1991.

[38] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,
1990.

[39] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of
groups. Quotient group. Formalized Mathematics, 2(4):573–578, 1991.

[40] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[41] B.L. van der Waerden. Algebra I. 4th edition. Springer, 2003.
[42] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1

(1):73–83, 1990.
[43] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received November 29, 2014

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/15/15 11:10 AM

http://dx.doi.org/10.2478/v10037-008-0017-z
http://dx.doi.org/10.2478/v10037-008-0017-z
http://fm.mizar.org/1990-1/pdf1-1/domain_1.pdf
http://fm.mizar.org/1990-1/pdf1-2/funcop_1.pdf
http://fm.mizar.org/2003-11/pdf11-4/membered.pdf
http://fm.mizar.org/1990-1/pdf1-3/int_1.pdf
http://fm.mizar.org/1990-1/pdf1-5/group_1.pdf
http://fm.mizar.org/1991-2/pdf2-1/group_4.pdf
http://fm.mizar.org/1990-1/pdf1-2/rlvect_1.pdf
http://fm.mizar.org/1991-2/pdf2-4/group_6.pdf
http://fm.mizar.org/1991-2/pdf2-4/group_6.pdf
http://fm.mizar.org/1990-1/pdf1-1/subset_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/relat_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/relset_1.pdf

