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Summary.We consider special events of Borel sets with the aim to prove,
that the set of the irrational numbers is an event of the Borel sets. The set of
the natural numbers, the set of the integer numbers and the set of the rational
numbers are countable, so we can use the literature [10] (pp. 78-81) as a basis
for the similar construction of the proof. Next we prove, that different sets can
construct the Borel sets [16] (pp. 9-10). Literature [16] (pp. 9-10) and [11] (pp.
11-12) gives an overview, that there exists some other sets for this construction.
Last we define special functions as random variables for stochastic finance in
discrete time. The relevant functions are implemented in the article [15], see [9]
(p. 4). The aim is to construct events and random variables, which can easily be
used with a probability measure. See as an example theorems (10) and (14) in
[20]. Then the formalization is more similar to the presentation used in the book
[9]. As a background, further literatures is [3] (pp. 9-12), [13] (pp. 17-20), and [8]
(pp.32-35).
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1. Events of Borel Sets

Now we state the propositions:

(1) 1, −1 ∈ R.

(2) e ∈ R \Q.

(3) e ∈ R \ Z.

(4) e ∈ R \ N.

One can verify that R \ Q is non empty and R \ Z is non empty and R \ N
is non empty.

Now we state the propositions:

(5) Let us consider a real number k. Then {k} ∈ the Borel sets.

(6) Let us consider real numbers k1, k2. Then ]k1, k2] is an event of the Borel
sets. The theorem is a consequence of (5).

The family of left closed half-lines yielding a family of subsets of R is defined
by the term

(Def. 1) the set of all [r,+∞[ where r is an element of R.

Now we state the propositions:

(7) Let us consider an extended real E. Then {E} is a subset of R.

(8) Let us consider a set Y and a natural number k. If Y = R \ {k}, then Y
is an event of the Borel sets. The theorem is a consequence of (5).

Now we state the propositions:

(9) There exists a sequence A of subsets of N such that for every natural
number n, A(n) = {n}.
Proof: Define U(natural number) = {$1(∈ N)}. For every element x of
N, U(x) ∈ 2N by [7, (31)]. Consider f being a sequence of subsets of N
such that for every element d of N, f(d) = U(d) from [5, Sch. 8]. �

(10) Let us consider a sequence A of subsets of N. Suppose for every natu-
ral number n, A(n) = {n}. Let us consider a natural number n. Then
(the partial unions of A)(n) ∈ the Borel sets.
Proof: Define J [natural number] ≡ (the partial unions of A)($1) ∈
the Borel sets. (The partial unions of A)(0) ∈ the Borel sets. For every
natural number n such that J [n] holds J [n + 1] by (5), [19, (3)]. For
every natural number n, (the partial unions of A)(n) ∈ the Borel sets. �

(11) R is an event of the Borel sets. The theorem is a consequence of (5).

(12) N is an event of the Borel sets.
Proof: Consider A being a sequence of subsets of the Borel sets such that
for every natural number n, A(n) = {n}.

⋃
A = N by [19, (12)]. �
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(13) R\N is an event of the Borel sets. The theorem is a consequence of (12).

(14) Let us consider a sequence A1 of subsets of R. Then there exists a se-
quence A of subsets of R such that for every natural number n, A(n) =
(the partial unions of A1)(n).
Proof: Define U(natural number) = (the partial unions of A1)($1). Con-
sider f being a sequence of subsets of R such that for every element d of
N, f(d) = U(d) from [5, Sch. 4]. �

(15) Z is an event of the Borel sets.
Proof: Consider A1 being a sequence of subsets of R such that for every
natural number n, A1(n) = {n}. Consider A2 being a sequence of subsets
of R such that for every natural number n, A2(n) = {−n}. For every
natural number n, (the partial unions of A1)(n) is an event of the Borel
sets by (5), [19, (21)]. Define J [natural number] ≡ (the partial unions of
A2)($1) ∈ the Borel sets. J [0]. For every natural number n, (the partial
unions of A2)(n) is an event of the Borel sets by (5), [19, (21)]. Consider
B1 being a sequence of subsets of R such that for every natural number n,
B1(n) = (the partial unions of A1)(n). For every natural number n, B1(n)
is an event of the Borel sets. Consider B2 being a sequence of subsets of
R such that for every natural number n, B2(n) = (the partial unions of
A2)(n). For every natural number n, B2(n) is an event of the Borel sets.⋃
B1 ∪

⋃
B2 = Z by [19, (12)], [30, (13)]. �

Let k be a natural number and p be an element of R. The functor { p·kn+1}n∈N
yielding a sequence of subsets of R is defined by

(Def. 2) for every natural number n, it(n) = {p · k · (n+ 1)−1}.
Note that the functor { p·kn+1}n∈N yields a sequence of subsets of the Borel

sets. One can check that { p·kn+1}n∈N is (the Borel sets)-valued.
Now we state the proposition:

(16) Let us consider an element p of R and a natural number k. If k > 0 and
p 6= 0, then { p·kn+1}n∈N is one-to-one.

Let k be a natural number and p be an element of R.
The functor (

⋃n
i=0{

p·k
i+1})n∈N yielding a sequence of subsets of R is defined

by

(Def. 3) it(0) = ({ p·kn+1}n∈N)(0) and for every natural number n, it(n + 1) =

it(n) ∪ ({ p·kn+1}n∈N)(n+ 1).

Note that the functor (
⋃n
i=0{

p·k
i+1})n∈N yields a sequence of subsets of the

Borel sets. One can verify that (
⋃n
i=0{

p·k
i+1})n∈N is (the Borel sets)-valued and

(
⋃n
i=0{

p·k
i+1})n∈N is non descending.
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The functor { p·kn+1 : k, n ∈ N} yielding a sequence of subsets of R is defined
by

(Def. 4) it(0) =
⋃

((
⋃n
i=0{

p·0
i+1})n∈N) and for every natural number n, it(n+ 1) =

it(n) ∪
⋃

((
⋃n
i=0{

p·(n+1)
i+1 })n∈N).

One can check that the functor { p·kn+1 : k, n ∈ N} yields a sequence of subsets

of the Borel sets. Let us note that { p·kn+1 : k, n ∈ N} is (the Borel sets)-valued

and { p·kn+1 : k, n ∈ N} is non descending.
Now we state the propositions:

(17) Let us consider elements a, b of R. Suppose a = 1 and b = −1. Then⋃
{ a·kn+1 : k, n ∈ N} ∪

⋃
{ b·kn+1 : k, n ∈ N} = Q.

Proof: For every object x, x ∈
⋃
{ a·kn+1 : k, n ∈ N} ∪

⋃
{ b·kn+1 : k, n ∈ N} iff

x ∈ Q by [19, (12)], [1, (6)], [17, (8)], [27, (2)]. �

(18) Q is an event of the Borel sets. The theorem is a consequence of (1) and
(17).

(19) R\Z is an event of the Borel sets. The theorem is a consequence of (15).

(20) R\Q is an event of the Borel sets. The theorem is a consequence of (18).

(21) IQ is an event of the Borel sets. The theorem is a consequence of (18).

2. Construction of Borel Sets

Now we state the proposition:

(22) The Borel sets = σ(the family of left closed half-lines).
Proof: σ(the family of left closed half-lines) ⊆ σ(Halflines) by [15, (3)].
σ(Halflines) ⊆ σ(the family of left closed half-lines) by [15, (2)], [19, (15)].
�

3. Random Variables for Stochastic Finance in Discrete Time

In the sequel Ω denotes non empty set, Σ denotes a σ-field of subsets of Ω,
and X, Y, Z denote functions from Ω into R.

Let us consider random variables X, Y of Σ and the Borel sets. Now we
state the propositions:

(23) X + Y is a random variable of Σ and the Borel sets.

(24) X − Y is a random variable of Σ and the Borel sets.

(25) X · Y is a random variable of Σ and the Borel sets.

Now we state the proposition:
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(26) Let us consider a real number r and a random variable X of Σ and the
Borel sets. Then r ·X is a random variable of Σ and the Borel sets.

Let Ω, Ω1 be non empty sets, F be a σ-field of subsets of Ω, F1 be a σ-field
of subsets of Ω1, and X be a set. Assume X = the set of random variables on
F and F1. Let k be an element of X. Let us observe that the change element
to function F , F1, and k yields a random variable of F and F1. Let Ω be a non
empty set and X be a non empty set. Let us note that the random variables
for future elements of portfolio value of F and k yields a random variable of F
and the Borel sets. Let p1 be a natural number, Ω, Ω1 be non empty sets, F1
be a σ-field of subsets of Ω1, and X be a set. Assume X = the set of random
variables on F and F1. Let G be a sequence of X. Let us note that the element
of F , F1, G, and p1 yields a random variable of F and F1. Let Ω be a non
empty set, X be a non empty set, ϕ be a sequence of real numbers, and n be a
natural number. The random variables for the future elements of portfolio value
of (ϕ,F ,G,n) yielding a function from Ω into R is defined by

(Def. 5) for every element w of Ω, it(w) = (the random variables for future
elements of portfolio value of F and G(n))(w) · ϕ(n).

One can verify that the random variables for the future elements of portfolio
value of (ϕ,F ,G,n) yields a random variable of F and the Borel sets. Let w be
an element of Ω. The elements of the random variables for the future elements
of portfolio value of (ϕ,F ,G,w) yielding a sequence of real numbers is defined
by

(Def. 6) for every natural number n, it(n) = (the random variables for the future
elements of portfolio value of (ϕ,F ,G,n))(w).

Let d be a natural number. Let us note that the portfolio value for future
extension of d, ϕ, F , G, and w yields a real number and is defined by the term

(Def. 7) (
∑κ
α=0(the elements of the random variables for the future elements of

portfolio value of (ϕ,F ,G,w))(α))κ∈N(d).
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