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Summary. Let us recall that a topological space M is a topological ma-
nifold if M is second-countable Hausdorff and locally Euclidean, i.e. each point
has a neighborhood that is homeomorphic to an open ball of En for some n.
However, if we would like to consider a topological manifold with a boundary,
we have to extend this definition. Therefore, we introduce here the concept of a
locally Euclidean space that covers both cases (with and without a boundary),
i.e. where each point has a neighborhood that is homeomorphic to a closed ball
of En for some n.

Our purpose is to prove, using the Mizar formalism, a number of properties
of such locally Euclidean spaces and use them to demonstrate basic properties of
a manifold. Let T be a locally Euclidean space. We prove that every interior point
of T has a neighborhood homeomorphic to an open ball and that every boundary
point of T has a neighborhood homeomorphic to a closed ball, where additionally
this point is transformed into a point of the boundary of this ball. When T is
n-dimensional, i.e. each point of T has a neighborhood that is homeomorphic to
a closed ball of En, we show that the interior of T is a locally Euclidean space
without boundary of dimension n and the boundary of T is a locally Euclidean
space without boundary of dimension n − 1. Additionally, we show that every
connected component of a compact locally Euclidean space is a locally Euclidean
space of some dimension. We prove also that the Cartesian product of locally
Euclidean spaces also forms a locally Euclidean space. We determine the interior
and boundary of this product and show that its dimension is the sum of the
dimensions of its factors. At the end, we present several consequences of these
results for topological manifolds. This article is based on [14].
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The notation and terminology used in this paper have been introduced in the
following articles: [30], [15], [19], [1], [10], [23], [24], [28], [11], [5], [12], [6], [7],
[29], [3], [4], [8], [26], [33], [25], [32], [20], [34], [13], [21], and [9].

1. Preliminaries

From now on n, m denote natural numbers.
Now we state the proposition:

(1) Let us consider a non empty topological space M , a point q of M , a
real number r, and a point p of EnT. Suppose r > 0. Let us consider a
neighbourhood U of q. Suppose M�U and Br(p) are homeomorphic. Then
there exists a neighbourhood W of q such that

(i) W ⊆ IntU , and

(ii) M�W and Tdisk(p, r) are homeomorphic.

2. Locally Euclidean Spaces

In the sequel M , M1, M2 denote non empty topological spaces.
Let us consider M . We say that M is locally Euclidean if and only if

(Def. 1) Let us consider a point p of M . Then there exists a neighbourhood U of
p and there exists n such that M�U and Tdisk(0EnT , 1) are homeomorphic.

Let us consider n. We say that M is n-locally Euclidean if and only if

(Def. 2) Let us consider a point p of M . Then there exists a neighbourhood U of
p such that M�U and Tdisk(0EnT , 1) are homeomorphic.

Observe that Tdisk(0EnT , 1) is n-locally Euclidean.
Note that there exists a non empty topological space which is n-locally Euc-

lidean.
Observe that every non empty topological space which is n-locally Euclidean

is also locally Euclidean.

3. Locally Euclidean Spaces With and Without a Boundary

Let M be a locally Euclidean non empty topological space. The functor
IntM yielding a subset of M is defined by

(Def. 3) Let us consider a point p of M . Then p ∈ it if and only if there exists a
neighbourhood U of p and there exists n such that M�U and B1(0EnT) are
homeomorphic.

Observe that IntM is non empty and open.
The functor FrM yielding a subset of M is defined by the term
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(Def. 4) (IntM)c.

Now we state the proposition:

(2) Boundary Points of Locally Euclidean Spaces:
Let us consider a locally Euclidean non empty topological space M and a
point p of M . Then p ∈ FrM if and only if there exists a neighbourhood
U of p and there exists a natural number n and there exists a function h

from M�U into Tdisk(0EnT , 1) such that h is a homeomorphism and h(p) ∈
Sphere(0EnT , 1). Proof: If p ∈ FrM , then there exists a neighbourhood
U of p and there exists a natural number n and there exists a function
h from M�U into Tdisk(0EnT , 1) such that h is a homeomorphism and
h(p) ∈ Sphere(0EnT , 1) by [34, (16)], [18, (25)], [6, (94)], [20, (18)]. �

4. Interior and Boundary of Locally Euclidean Spaces

Let M be a locally Euclidean non empty topological space. We say that M
is without boundary if and only if

(Def. 5) IntM = the carrier of M .

Let us consider n. Let us observe that B1(0EnT) is n-locally Euclidean and
B1(0EnT) is without boundary.

Let n be a non zero natural number. Let us observe that Tdisk(0EnT , 1) has
boundary.

Let us consider n. One can check that there exists an n-locally Euclidean
non empty topological space which is without boundary.

Let n be a non zero natural number. One can verify that there exists an
n-locally Euclidean non empty topological space which is compact and has bo-
undary.

LetM be a without boundary locally Euclidean non empty topological space.
Let us observe that FrM is empty.

Let M be a locally Euclidean non empty topological space with boundary.
Observe that FrM is non empty.

Let n be a zero natural number. Let us observe that every n-locally Euclidean
non empty topological space is without boundary.

Now we state the propositions:

(3) M is a without boundary locally Euclidean non empty topological space
if and only if for every point p of M , there exists a neighbourhood U of p
and there exists n such that M�U and B1(0EnT) are homeomorphic.

(4) Let us consider a locally Euclidean non empty topological space M with
boundary, a point p of M , and n. Suppose there exists a neighbourhood U
of p such thatM�U and Tdisk(0En+1T

, 1) are homeomorphic. Let us consider
a point p1 of M� FrM . Suppose p = p1. Then there exists a neighbourhood
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U of p1 such that (M� FrM)�U and B1(0EnT) are homeomorphic. Proof:
Set n1 = n + 1. Set T1 = En1T . Consider W being a neighbourhood of p
such that M�W and Tdisk(0T1 , 1) are homeomorphic. Set T2 = EnT. Set
S = Sphere(0T1 , 1). Set F = FrM . Set M4 = M�F . Consider U being a
neighbourhood of p, m being a natural number, h being a function from
M�U into Tdisk(0EmT , 1) such that h is a homeomorphism and h(p) ∈
Sphere(0EmT , 1). Reconsider I3 = IntU as a subset of M�U . Set M6 =
M�U . Reconsider F1 = F ∩ IntU as a non empty subset of M6. Consider
W being a subset of T1 such that W ∈ the topology of T1 and h◦I3 =
W ∩ ΩTdisk(0T1 ,1). Reconsider h14 = h(p) as a point of T1. Reconsider
H3 = h14 as a point of En1 . Consider s being a real number such that
s > 0 and Ball(H3, s) ⊆W . Set m = min( s2 ,

1
2). Set V0 = S ∩Ball(h14,m).

Set h9 = h−1(V0). h9 ⊆ F by [20, (9)], (2). Reconsider h8 = h◦F1 as a
subset of T1. V0 ⊆ h8. h8 ∩ Ball(h14,m) ⊆ V0 by [11, (67)], [34, (23)], [33,
(123)], [31, (5)]. �

LetM be a locally Euclidean non empty topological space. Note thatM� IntM
is locally Euclidean and M� IntM is without boundary.

Let M be a locally Euclidean non empty topological space with boundary.
Note that M� FrM is locally Euclidean and M� FrM is without boundary.

5. Cartesian Product of Locally Euclidean Spaces

Let N , M be locally Euclidean non empty topological spaces. Note that N×
M is locally Euclidean.

Let us consider locally Euclidean non empty topological spaces N , M . Now
we state the propositions:

(5) Int(N ×M) = IntN × IntM . Proof: Set N1 = N ×M . Set I2 = IntN .
Set I1 = IntM . IntN1 ⊆ I2×I1 by [9, (87)], (2), [20, (19)], [27, (19), (15)].
�

(6) Fr(N ×M) = ΩN × FrM ∪ FrN × ΩM . The theorem is a consequence
of (5).

Let N , M be without boundary locally Euclidean non empty topological
spaces. Let us observe that N ×M is without boundary.

Let N be a locally Euclidean non empty topological space and M be a locally
Euclidean non empty topological space with boundary. Note that N ×M has
boundary and M ×N has boundary.
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6. Fixed Dimension Locally Euclidean Spaces

Let us consider n. Let M be an n-locally Euclidean non empty topological
space. Observe that the functor IntM yields a subset of M and is defined by

(Def. 6) Let us consider a point p of M . Then p ∈ it if and only if there exists a
neighbourhood U of p such that M�U and B1(0EnT) are homeomorphic.

Let us note that the functor FrM yields a subset of M and is defined by

(Def. 7) Let us consider a point p of M . Then p ∈ it if and only if there exists
a neighbourhood U of p and there exists a function h from M�U into
Tdisk(0EnT , 1) such that h is a homeomorphism and h(p) ∈ Sphere(0EnT , 1).

Now we state the propositions:

(7) If M1 is locally Euclidean and M1 and M2 are homeomorphic, then M2
is locally Euclidean.

(8) If M1 is n-locally Euclidean and M2 is locally Euclidean and M1 and M2
are homeomorphic, then M2 is n-locally Euclidean.

Now we state the propositions:

(9) Topological Invariance of Dimension of Locally Euclidean
Spaces:
If M is n-locally Euclidean and m-locally Euclidean, then n = m.

(10) M is a without boundary n-locally Euclidean non empty topological
space if and only if for every point p of M , there exists a neighbourhood
U of p such that M�U and B1(0EnT) are homeomorphic. Proof: M is n-
locally Euclidean by [20, (16)], [16, (9)], [17, (21)], [34, (16)]. M is without
boundary. �

Let n, m be elements of N, N be an n-locally Euclidean non empty topolo-
gical space, and M be an m-locally Euclidean non empty topological space.

Dimension of the Cartesian Product of Locally Euclidean Spa-
ces: N ×M is (n+m)-locally Euclidean.

Let us consider n. Let M be an n-locally Euclidean non empty topological
space.

Dimension of the Interior of Locally Euclidean Spaces: M� IntM
is n-locally Euclidean as a non empty topological space.

Let n be a non zero natural number and M be an n-locally Euclidean non
empty topological space with boundary.

Dimension of the Boundary of Locally Euclidean Spaces:M� FrM
is (n−′ 1)-locally Euclidean as a non empty topological space.
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7. Connected Components of Locally Euclidean Spaces

Now we state the proposition:

(11) Let us consider a compact locally Euclidean non empty topological space
M and a subset C of M . Suppose C is a component. Then

(i) C is open, and

(ii) there exists n such that M�C is an n-locally Euclidean non empty
topological space.

Proof: Define P[point of M, subset of M ] ≡ $2 is a neighbourhood of $1
and there exists n such that M�$2 and Tdisk(0EnT , 1) are homeomorphic.
Consider p being an object such that p ∈ C. For every point x of M , there
exists an element y of 2α such that P[x, y], where α is the carrier of M .
Consider W being a function from M into 2(the carrier of M) such that for
every point x of M , P[x,W (x)] from [7, Sch. 3]. Reconsider M3 = M�C
as a non empty connected topological space. Define D[object, object] ≡
$2 ∈ C and for every subset A of M such that A = W ($2) holds IntA = $1.
Set I5 = {IntU , where U is a subset of M : U ∈ rng(W �C)}. I5 ⊆ 2α,
where α is the carrier of M . Reconsider R = I5 ∪ {Cc} as a family of
subsets of M . For every subset A of M such that A ∈ R holds A is open
by [9, (136)]. For every subset A of M such that A ∈ rngW holds A is
connected and IntA is not empty by [33, (113)], [23, (14)]. The carrier
of M ⊆

⋃
R by [33, (57)], [6, (47)], [9, (136)]. Consider R1 being a family

of subsets of M such that R1 ⊆ R and R1 is a cover of M and R1 is
finite. Set R2 = R1 \ {Cc}. Consider x1 being a set such that p ∈ x1 and
x1 ∈ R2. For every set x, x ∈ C iff there exists a subset Q of M such that
Q is open and Q ⊆ C and x ∈ Q by [34, (16)], [22, (16)].

⋃
R2 ⊆ C by [9,

(56), (136)], [34, (16)], [6, (47)]. For every object x such that x ∈ R2 there
exists an object y such that D[x, y] by [9, (56), (136)], [6, (47)]. Consider
c being a function such that dom c = R2 and for every object x such that
x ∈ R2 holds D[x, c(x)] from [2, Sch. 1]. Reconsider c3 = c(x1) as a point of
M . Consider n such that M�W (c3) and Tdisk(0EnT , 1) are homeomorphic.

Define P[natural number] ≡ if $1 ¬ R2 , then there exists a family R3
of subsets of M such that R3 = $1 and R3 ⊆ R2 and

⋃
(W ◦(c◦R3)) is a

connected subset of M and for every subsets A, B of M such that A ∈ R3
and B = W (c(A)) holds M�B and Tdisk(0EnT , 1) are homeomorphic. For
every natural number k such that P[k] holds P[k+1] by [3, (13), (44)], [1,
(68)], [9, (56), (136), (74)]. P[0] by [9, (2)]. For every natural number k,
P[k] from [3, Sch. 2]. For every point p of M3, there exists a neighbourhood
U of p such that M3�U and Tdisk(0EnT , 1) are homeomorphic by [34, (16)],
[22, (16), (28)], [34, (22)]. �
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Let us consider a compact locally Euclidean non empty topological space
M . Now we state the propositions:

(12) There exists a partition P of the carrier of M such that for every subset
A of M such that A ∈ P holds A is open and a component and there
exists n such that M�A is an n-locally Euclidean non empty topological
space. Proof: Set P = {the component of p, where p is a point of M :
not contradiction}. P ⊆ 2α, where α is the carrier of M . The carrier of
M ⊆

⋃
P by [23, (38)]. For every subset A of M such that A ∈ P holds

A 6= ∅ and for every subset B of M such that B ∈ P holds A = B or A
misses B by [23, (42)]. �

(13) If M is connected, then there exists n such that M is n-locally Euclidean.
The theorem is a consequence of (11) and (8).

8. Topological Manifold

Let us consider n. Observe that there exists a non empty topological space
which is second-countable, Hausdorff, and n-locally Euclidean.

A topological manifold is a second-countable Hausdorff locally Euclidean non
empty topological space. Let us consider n. Let M be a topological manifold.
We introduce M is n-dimensional as a synonym of M is n-locally Euclidean.

Note that there exists a topological manifold which is n-dimensional and
without boundary.

Let n be a non zero natural number. Note that there exists a topological
manifold which is n-dimensional and compact and has boundary.

Let M be a topological manifold. Let us observe that every non empty
subspace of M is second-countable and Hausdorff.

Let M1, M2 be topological manifolds. Observe that M1 × M2 is second-
countable and Hausdorff.
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