Special Issue: 25 years of the Mizar Mathematical Library

FORMALIZED MATHEMATICS Vol. 22, No. 2, Pages 125–155, 2014 DOI: 10.2478/forma-2014-0015

Term Context

Grzegorz Bancerek Association of Mizar Users Białystok, Poland

Summary. Two construction functors: simple term with a variable and compound term with an operation and argument terms and schemes of term induction are introduced. The degree of construction as a number of used operation symbols is defined. Next, the term context is investigated. An x-context is a term which includes a variable x once only. The compound term is x-context iff the argument terms include an x-context once only. The context induction is shown and used many times. As a key concept, the context substitution is introduced. Finally, the translations and endomorphisms are expressed by context substitution.

MSC: 08A35 03B35

Keywords: construction degree; context; translation; endomorphism

MML identifier: MSAFREE5, version: 8.1.03 5.23.1210

The notation and terminology used in this paper have been introduced in the following articles: [1], [2], [3], [4], [6], [43], [24], [22], [26], [53], [33], [45], [27], [28], [29], [8], [25], [9], [51], [39], [46], [47], [41], [48], [23], [10], [11], [49], [36], [37], [12], [13], [14], [15], [31], [50], [34], [55], [56], [16], [38], [54], [17], [18], [19], [20], [21], [35], and [32].

1. Preliminaries

Let Σ be a non-empty non void many sorted signature, \mathfrak{A} be a non-empty algebra over Σ , and σ be a sort symbol of Σ .

An element of \mathfrak{A} from σ is an element of (the sorts of \mathfrak{A})(σ). From now on a, b denote objects, I, J denote sets, f denotes a function, R denotes a binary relation, i, j, n denote natural numbers, m denotes an element of \mathbb{N} , Σ denotes a non empty non void many sorted signature, σ , σ_1 , σ_2 denote sort symbols of Σ , σ_1 denotes an operation symbol of σ_2 , σ_3 denotes a non-empty many sorted set

indexed by the carrier of Σ , x, x_1 , x_2 denote elements of $X(\sigma)$, x_{11} denotes an element of $X(\sigma_1)$, T denotes a free in itself including Σ -terms over X algebra over Σ with all variables and inheriting operations, g denotes a translation in $\mathfrak{F}_{\Sigma}(X)$ from σ_1 into σ_2 , and h denotes an endomorphism of $\mathfrak{F}_{\Sigma}(X)$.

Let us consider Σ and X. Let T be an including Σ -terms over X algebra over Σ with all variables and ρ be an element of T. The functor ${}^{@}\rho$ yielding an element of $\mathfrak{F}_{\Sigma}(X)$ is defined by the term

(Def. 1) ρ .

Let us consider T. Observe that every element of T is finite and every set which is natural-membered is also \subseteq -linear.

In the sequel ρ , ρ_1 , ρ_2 denote elements of T and τ , τ_1 , τ_2 denote elements of $\mathfrak{F}_{\Sigma}(X)$.

Let us consider Σ . Let \mathfrak{A} be an algebra over Σ . Let us consider a. We say that $a \in \mathfrak{A}$ if and only if

(Def. 2) $a \in \bigcup$ (the sorts of \mathfrak{A}).

Let us consider b. We say that b is a-different if and only if

(Def. 3) $b \neq a$.

Let I be a non trivial set. Note that there exists an element of I which is a-different.

Now we state the proposition:

- (1) Let us consider trees τ , τ_1 and finite sequences p, q of elements of \mathbb{N} . Suppose
 - (i) $p \in \tau$, and
 - (ii) $q \in \tau$ with-replacement (p, τ_1) .

Then

- (iii) if $p \not \leq q$, then $q \in \tau$, and
- (iv) for every finite sequence ρ of elements of $\mathbb N$ such that $q=p^{\smallfrown}\rho$ holds $\rho\in\tau_1.$

PROOF: If $p \npreceq q$, then $q \in \tau$ by [17, (1)]. \square

Let R be a finite binary relation. Let us consider a. Let us note that $\mathrm{Coim}(R,a)$ is finite.

Let us consider finite sequences p, q, ρ . Now we state the propositions:

- (2) If $p \cap q \leq \rho$, then $p \leq \rho$.
- (3) If $p \cap q \leq p \cap \rho$, then $q \leq \rho$.

- (4) Let us consider finite sequences p, q. Suppose $i \leq \text{len } p$. Then $(p \cap q) \upharpoonright \text{Seg } i = p \upharpoonright \text{Seg } i$.
- (5) Let us consider finite sequences p, q, ρ . If $q \leq p \cap \rho$, then $q \leq p$ or $p \leq q$. The theorem is a consequence of (4).

Let us consider Σ . We say that Σ is sufficiently rich if and only if

(Def. 4) There exists o such that $\sigma \in \operatorname{rng} \operatorname{Arity}(o)$.

We say that Σ is growable if and only if

(Def. 5) There exists τ such that height dom $\tau = n$.

Let us consider n. We say that Σ is n-ary operation including if and only if

(Def. 6) There exists o such that len Arity(o) = n.

Let us note that there exists a non empty non void many sorted signature which is *n*-ary operation including and there exists a non empty non void many sorted signature which is sufficiently rich.

Let us consider R. We say that R is nontrivial if and only if

(Def. 7) If $I \in \operatorname{rng} R$, then I is not trivial.

We say that R is infinite-yielding if and only if

(Def. 8) If $I \in \operatorname{rng} R$, then I is infinite.

Let us observe that every binary relation which is nontrivial is also nonempty and every binary relation which is infinite-yielding is also nontrivial.

Let I be a set. Observe that there exists a many sorted set indexed by I which is infinite-yielding and there exists a finite sequence which is infinite-yielding.

Let I be a non empty set, f be a nontrivial many sorted set indexed by I, and a be an element of I. Let us note that f(a) is non trivial.

Let f be an infinite-yielding many sorted set indexed by I. Note that f(a) is infinite.

Let us consider Σ , X, and o. Let us note that every element of $\operatorname{Args}(o, \mathfrak{F}_{\Sigma}(X))$ is decorated tree yielding.

In the sequel Y denotes an infinite-yielding many sorted set indexed by the carrier of Σ , y, y_1 denote elements of $Y(\sigma)$, y_{11} denotes an element of $Y(\sigma_1)$, Q denotes a free in itself including Σ -terms over Y algebra over Σ with all variables and inheriting operations, q, q_1 denote elements of $\operatorname{Args}(o, \mathfrak{F}_{\Sigma}(Y))$, u, u1, u2 denote elements of Q, v, v_1 , v_2 denote elements of $\mathfrak{F}_{\Sigma}(Y)$, Z denotes a nontrivial many sorted set indexed by the carrier of Σ , z, z_1 denote elements of $Z(\sigma)$, z, z denote elements of $Z(\sigma)$, z, z algebra over z with all variables and inheriting operations, and z, z denote elements of z and z denote elements of z algebra over z with all variables and inheriting operations, and z denote elements of z denote e

Let p be a finite sequence. Note that $p \cap \emptyset$ reduces to p and $\emptyset \cap p$ reduces to p.

Let I be a finite sequence-membered set. The functor $p \cap I$ yielding a set is defined by the term

(Def. 9) $\{p \cap q, \text{ where } q \text{ is an element of } I : q \in I\}.$

Let us observe that $p \cap I$ is finite sequence-membered.

Let f be a finite sequence and E be an empty set. One can verify that $f \cap E$ reduces to E.

Let p be a decorated tree yielding finite sequence. Let us consider a. Let us note that p(a) is relation-like and every set which is tree-like is also finite sequence-membered.

Let p be a decorated tree yielding finite sequence. Let us consider a. One can check that dom(p(a)) is finite sequence-membered.

Let τ , τ_1 be trees. One can check that τ_1 with-replacement($\varepsilon_{\mathbb{N}}, \tau$) reduces to τ .

Let d, d_1 be decorated trees. One can check that d_1 with-replacement $(\varepsilon_{\mathbb{N}}, d)$ reduces to d.

Now we state the proposition:

- (6) Let us consider finite sequences ξ , w of elements of \mathbb{N} , tree yielding finite sequences p, q, and trees d, τ . Suppose
 - (i) i < len p, and
 - (ii) $\xi = \langle i \rangle \cap w$, and
 - (iii) d = p(i + 1), and
 - (iv) $q = p + (i + 1, d \text{ with-replacement}(w, \tau))$, and
 - (v) $\xi \in \widehat{p}$.

Then \widehat{p} with-replacement $(\xi, \tau) = \widehat{q}$. The theorem is a consequence of (2).

Let F be a function yielding function and f be a function. Let us consider a. Note that F + (a, f) is function yielding.

Now we state the propositions:

- (7) Let us consider a function yielding function F and a function f. Then $\operatorname{dom}_{\kappa}(F+\cdot(a,f))(\kappa)=\operatorname{dom}_{\kappa}F(\kappa)+\cdot(a,\operatorname{dom} f).$
- (8) Let us consider finite sequences ξ , w of elements of \mathbb{N} , decorated tree yielding finite sequences p, q, and decorated trees d, τ . Suppose
 - (i) i < len p, and
 - (ii) $\xi = \langle i \rangle \cap w$, and
 - (iii) d = p(i + 1), and
 - (iv) $q = p + (i + 1, d \text{ with-replacement}(w, \tau))$, and
 - (v) $\xi \in \widetilde{\operatorname{dom}_{\kappa} p(\kappa)}$.

Then (a-tree(p)) with-replacement $(\xi, \tau) = a\text{-tree}(q)$. The theorem is a consequence of (7), (6), (2), and (3).

(9) Let us consider a set a and a decorated tree yielding finite sequence w. Then $dom(a\text{-tree}(w)) = \{\emptyset\} \cup \bigcup \{\langle i \rangle \cap dom(w(i+1)) : i < \text{len } w\}$. PROOF: Set $\mathfrak{A} = \{\langle i \rangle \cap dom(w(i+1)) : i < \text{len } w\}$. $dom(a\text{-tree}(w)) \subseteq \{\emptyset\} \cup \bigcup \mathfrak{A}$ by [20, (11)]. \square

Let p be a decorated tree yielding finite sequence. Let us consider a and I. Note that $p(a)^{-1}(I)$ is finite sequence-membered.

Now we state the proposition:

(10) Let us consider a finite sequence-membered set I and a finite sequence p. Then $\overline{\overline{p \cap I}} = \overline{\overline{I}}$. PROOF: Define $\mathcal{F}(\text{element of } I) = p \cap \$_1$. Consider f such that dom f = I and for every element q of I such that $q \in I$ holds $f(q) = \mathcal{F}(q)$ from [7, Sch. 2]. rng $f = p \cap I$. f is one-to-one by [22, (33)].

Let I be a finite finite sequence-membered set and p be a finite sequence. Note that $p \cap I$ is finite.

Now we state the proposition:

- (11) Let us consider finite sequence-membered sets I, J and finite sequences p, q. Suppose
 - (i) len p = len q, and
 - (ii) $p \neq q$.

Then $p \cap I$ misses $q \cap J$.

Let us consider i. Let us note that \overline{i} reduces to i. Let us consider j. We identify i + j with i + j.

The scheme CardUnion deals with a unary functor \mathcal{I} yielding a set and a finite sequence f of elements of \mathbb{N} and states that

(Sch. 1)
$$\overline{\bigcup \{\mathcal{I}(i) : i < \text{len } f\}} = \sum f$$
 provided

- for every i and j such that i < len f and j < len f and $i \neq j$ holds $\mathcal{I}(i)$ misses $\mathcal{I}(j)$ and
- for every i such that i < len f holds $\overline{\overline{\mathcal{I}(i)}} = f(i+1)$.

Let f be a finite sequence. Note that $\{f\}$ is finite sequence-membered. Now we state the propositions:

- (12) Let us consider finite sequences f, g. Then $f \cap \{g\} = \{f \cap g\}$.
- (13) Let us consider finite sequence-membered sets I, J and a finite sequence f. Then $I \subseteq J$ if and only if $f \cap I \subseteq f \cap J$.

In the sequel c, c_1 , c_2 denote sets and d, d_1 denote decorated trees. Now we state the proposition:

(14) Leaves(the elementary tree of 0) = $\{\emptyset\}$.

Let us note that sethood property holds for trees.

Now we state the propositions:

(15) Let us consider a non empty tree yielding finite sequence p. Then Leaves $(p) = \{\langle i \rangle \cap q, \text{ where } q \text{ is a finite sequence of elements of } \mathbb{N}, d \text{ is a tree} : q \in \text{Leaves}(d) \text{ and } i+1 \in \text{dom } p \text{ and } d = p(i+1)\}.$ PROOF: Set i_0 = the element of dom p. Leaves $(p) \subseteq \{\langle i \rangle \cap q, \text{ where } q \text{ is a finite sequence of elements of } \mathbb{N}, d \text{ is a tree } : q \in \text{Leaves}(d) \text{ and } i+1 \in \text{dom } p \text{ and } d=p(i+1)\} \text{ by } [13, (11), (13)], [52, (25)], [17, (1)]. \square$

- (16) Leaves(the root tree of c) = $\{c\}$.
- (17) dom $d \subseteq \text{dom } d_{c \leftarrow d_1}$.

Let us consider c and d. Observe that (the root tree of c) $_{c \leftarrow d}$ reduces to d. Now we state the proposition:

(18) Suppose $c_1 \neq c_2$. Then (the root tree of c_1) $_{c_2 \leftarrow d} =$ the root tree of c_1 . PROOF: dom(the root tree of c_1) $_{c_2 \leftarrow d} =$ dom(the root tree of c_1) by [20, (3)], [17, (29)], [40, (15)]. \square

Let f be a non empty function yielding function. Note that $\operatorname{dom}_{\kappa} f(\kappa)$ is non empty and $\operatorname{rng}_{\kappa} f(\kappa)$ is non empty.

Now we state the proposition:

- (19) Let us consider non empty decorated tree yielding finite sequences p, q. Suppose
 - (i) dom q = dom p, and
 - (ii) for every i and d_1 such that $i \in \text{dom } p$ and $d_1 = p(i)$ holds $q(i) = d_{1c \leftarrow d}$.

Then $(b\text{-tree}(p))_{c\leftarrow d} = b\text{-tree}(q)$. PROOF: Leaves $(\operatorname{dom} p(\kappa)) = \{\langle i \rangle \cap q, \text{ where } q \text{ is a finite sequence of elements of } \mathbb{N}, d \text{ is a tree} : q \in \operatorname{Leaves}(d) \text{ and } i+1 \in \operatorname{dom}(\operatorname{dom}_{\kappa} p(\kappa)) \text{ and } d = (\operatorname{dom}_{\kappa} p(\kappa))(i+1)\}. \operatorname{dom}(b\text{-tree}(p))_{c\leftarrow d} = \operatorname{dom}(b\text{-tree}(q)) \text{ by } [17, (22)], [13, (11), (13)], [52, (25)]. \square$

Let us consider Σ and σ . Let \mathfrak{A} be a non empty algebra over Σ and a be an element of \mathfrak{A} . We say that a is σ -sort if and only if

(Def. 10) $a \in (\text{the sorts of } \mathfrak{A})(\sigma)$.

Let \mathfrak{A} be a non-empty algebra over Σ . One can verify that there exists an element of \mathfrak{A} which is σ -sort and every element of (the sorts of \mathfrak{A})(σ) is σ -sort.

Let $\mathfrak A$ be a non empty algebra over Σ . Assume $\mathfrak A$ is disjoint valued. Let a be an element of $\mathfrak A$. The functor the sort of a yielding a sort symbol of Σ is defined by

(Def. 11) $a \in (\text{the sorts of } \mathfrak{A})(it)$.

- (20) Let us consider a disjoint valued non-empty algebra \mathfrak{A} over Σ and a σ -sort element a of \mathfrak{A} . Then the sort of $a = \sigma$.
- (21) Let us consider a disjoint valued non empty algebra $\mathfrak A$ over Σ . Then every element of $\mathfrak A$ is (the sort of a)-sort.
- (22) The sort of ${}^{@}\rho$ = the sort of ρ .

- (23) Let us consider an element ρ of (the sorts of T)(σ). Then the sort of $\rho = \sigma$.
- (24) Let us consider a term u of Σ over X. Suppose $\tau = u$. Then the sort of $\tau =$ the sort of u.

Let us consider Σ , X, o, and T. One can verify that every element of $\operatorname{Args}(o,T)$ is (U)(the sorts of T))-valued.

Now we state the proposition:

(25) Let us consider an element q of Args(o, T). Suppose $i \in \text{dom } q$. Then the sort of $q_i = Arity(o)_i$.

Let us consider Σ . Let \mathfrak{A} , \mathcal{B} be non-empty algebras over Σ and f be a many sorted function from \mathfrak{A} into \mathcal{B} . Assume \mathfrak{A} is disjoint valued. Let a be an element of \mathfrak{A} . The functor f(a) yielding an element of \mathcal{B} is defined by the term

(Def. 12) f(the sort of a)(a).

Let us consider a disjoint valued non-empty algebra \mathfrak{A} over Σ , a non-empty algebra \mathcal{B} over Σ , a many sorted function f from \mathfrak{A} into \mathcal{B} , and an element a of (the sorts of \mathfrak{A})(σ). Now we state the propositions:

- (26) $f(a) = f(\sigma)(a).$
- (27) f(a) is an element of (the sorts of \mathcal{B})(σ). The theorem is a consequence of (26).

Now we state the propositions:

- (28) Let us consider disjoint valued non-empty algebras \mathfrak{A} , \mathcal{B} over Σ , a many sorted function f from \mathfrak{A} into \mathcal{B} , and an element a of \mathfrak{A} . Then the sort of f(a) = the sort of a.
- (29) Let us consider disjoint valued non-empty algebras \mathfrak{A} , \mathcal{B} over Σ , a non-empty algebra \mathcal{C} over Σ , a many sorted function f from \mathfrak{A} into \mathcal{B} , a many sorted function g from \mathcal{B} into \mathcal{C} , and an element g of \mathfrak{A} . Then $g \circ f(g) = g(f(g))$. The theorem is a consequence of (28).
- (30) Let us consider a disjoint valued non-empty algebra \mathfrak{A} over Σ , a non-empty algebra \mathcal{B} over Σ , and many sorted functions f_1 , f_2 from \mathfrak{A} into \mathcal{B} . If for every element a of \mathfrak{A} , $f_1(a) = f_2(a)$, then $f_1 = f_2$. The theorem is a consequence of (26).

Let us consider Σ . Let \mathfrak{A} , \mathcal{B} be algebras over Σ . Assume there exists a many sorted function h from \mathfrak{A} into \mathcal{B} such that h is a homomorphism of \mathfrak{A} into \mathcal{B} .

A homomorphism from $\mathfrak A$ to $\mathcal B$ is a many sorted function from $\mathfrak A$ into $\mathcal B$ and is defined by

(Def. 13) it is a homomorphism of \mathfrak{A} into \mathcal{B} .

Now we state the proposition:

(31) Let us consider a many sorted function h from $\mathfrak{F}_{\Sigma}(X)$ into T. Then h is a homomorphism from $\mathfrak{F}_{\Sigma}(X)$ to T if and only if h is a homomorphism of

 $\mathfrak{F}_{\Sigma}(X)$ into T.

Let us consider Σ , X, and T. Observe that the functor the canonical homomorphism of T yields a homomorphism from $\mathfrak{F}_{\Sigma}(X)$ to T. Let us consider ρ . One can check that (the canonical homomorphism of T)(${}^{@}\rho$) reduces to ρ .

Now we state the proposition:

(32) Suppose τ_2 = (the canonical homomorphism of T)(τ_1). Then (the canonical homomorphism of T)(τ_1) = (the canonical homomorphism of T)(τ_2). The theorem is a consequence of (22) and (28).

2. Constructing Terms

In the sequel w denotes an element of $\operatorname{Args}(o,T)$ and p, p_1 denote elements of $\operatorname{Args}(o,\mathfrak{F}_{\Sigma}(X))$.

Let us consider Σ , X, σ , and x. The functor x-term yielding an element of (the sorts of $\mathfrak{F}_{\Sigma}(X)$)(σ) is defined by the term

(Def. 14) The root tree of $\langle x, \sigma \rangle$.

Let us consider o and p. The functor o-term p yielding an element of $\mathfrak{F}_{\Sigma}(X)$ from the result sort of o is defined by the term

(Def. 15) $\langle o, \text{ the carrier of } \Sigma \rangle$ -tree(p).

Now we state the propositions:

- (33) The sort of x-term = σ .
- (34) The sort of o-term p = the result sort of o. The theorem is a consequence of (24).
- (35) Let us consider an object i. Then $i \in (\text{FreeGenerator}(T))(\sigma)$ if and only if there exists x such that i = x-term.

Let us consider Σ , X, σ , and x. Let us note that x-term is non compound. Let us consider o and p. One can check that o-term p is compound and (the result sort of o)-sort.

Now we state the propositions:

- (36) (i) there exists σ and there exists x such that $\tau = x$ -term, or
 - (ii) there exists o and there exists p such that $\tau = o$ -term p.
- (37) If τ is not compound, then there exists σ and there exists x such that $\tau = x$ -term.
- (38) If τ is compound, then there exists o and there exists p such that $\tau = o$ -term p.
- (39) x-term $\neq o$ -term p.

Let us consider Σ . Let X be a non-empty many sorted set indexed by the carrier of Σ . Note that there exists an element of $\mathfrak{F}_{\Sigma}(X)$ which is compound.

Let us consider X. Let e be a compound element of $\mathfrak{F}_{\Sigma}(X)$. Let us note that the functor main-constr e yields an operation symbol of Σ . One can check that the functor args e yields an element of $\operatorname{Args}(\operatorname{main-constr} e, \mathfrak{F}_{\Sigma}(X))$. Now we state the propositions:

- (40) $\operatorname{args}(x\operatorname{-term}) = \emptyset.$
- (41) Let us consider a compound element τ of $\mathfrak{F}_{\Sigma}(X)$. Then $\tau = \text{main-constr } \tau \text{-term args } \tau$. The theorem is a consequence of (38).
- (42) x-term $\in T$.

Let us consider Σ , X, T, σ , and x. Note that (the canonical homomorphism of T)(x-term) reduces to x-term.

The scheme TermInd deals with a unary predicate \mathcal{P} and a non-empty non void many sorted signature Σ and a non-empty many sorted set \mathcal{X} indexed by the carrier of Σ and an element τ of $\mathfrak{F}_{\Sigma}(\mathcal{X})$ and states that

(Sch. 2) $\mathcal{P}[\tau]$ provided

- for every sort symbol σ of Σ and for every element x of $\mathcal{X}(\sigma)$, $\mathcal{P}[x\text{-term}]$ and
- for every operation symbol o of Σ and for every element p of $\operatorname{Args}(o, \mathfrak{F}_{\Sigma}(\mathcal{X}))$ such that for every element τ of $\mathfrak{F}_{\Sigma}(\mathcal{X})$ such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[o\text{-term }p]$.

The scheme TermAlgebraInd deals with a unary predicate \mathcal{P} and a non empty non void many sorted signature Σ and a non-empty many sorted set \mathcal{X} indexed by the carrier of Σ and a free in itself including Σ -terms over \mathcal{X} algebra \mathfrak{A} over Σ with all variables and inheriting operations and an element τ of \mathfrak{A} and states that

(Sch. 3) $\mathcal{P}[\tau]$ provided

- for every sort symbol σ of Σ and for every element x of $\mathcal{X}(\sigma)$ and for every element ρ of \mathfrak{A} such that $\rho = x$ -term holds $\mathcal{P}[\rho]$ and
- for every operation symbol o of Σ and for every element p of $\operatorname{Args}(o, \mathfrak{F}_{\Sigma}(\mathcal{X}))$ and for every element ρ of \mathfrak{A} such that $\rho = o$ -term p and for every element τ of \mathfrak{A} such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[\rho]$.

3. Construction Degree

Let us consider Σ , X, T, and ρ . The functors: the construction degree of ρ and height ρ yielding natural numbers are defined by terms,

- (Def. 16) $\overline{\rho^{-1}(\alpha \times \{\beta\})}$, where α is the carrier of Σ and β is the carrier of Σ ,
- (Def. 17) height dom ρ ,

respectively. We introduce deg ρ as a synonym of the construction degree of ρ . Now we state the propositions:

- (43) $\deg^{@}\rho = \deg \rho$.
- (44) height ${}^{@}\rho = \text{height }\rho.$
- (45) $\operatorname{height}(x\operatorname{-term}) = 0.$

One can verify that every set which is natural-membered is also ordinal-membered and finite-membered.

Let I be a finite natural-membered set. One can verify that $\bigcup I$ is natural.

Let I be a non empty finite natural-membered set. We identify $\bigcup I$ with max I. Now we state the propositions:

- (46) (i) $\{\text{height } \tau_1 : \tau_1 \in \text{rng } p\}$ is natural-membered and finite, and
 - (ii) $\bigcup \{ \text{height } \tau : \tau \in \text{rng } p \} \text{ is a natural number. }$

PROOF: Set $I = \{ \text{height } \tau : \tau \in \text{rng } p \}$. I is natural-membered. Define $\mathcal{F}(\text{element of } \mathfrak{F}_{\Sigma}(X)) = \text{height } \$_1$. $\{ \mathcal{F}(\tau_1) : \tau_1 \in \text{rng } p \}$ is finite from [44, Sch. 21]. \square

- (47) Suppose Arity(o) $\neq \emptyset$ and $n = \bigcup \{ \text{height } \tau_1 : \tau_1 \in \operatorname{rng} p \}$. Then $\operatorname{height}(o \operatorname{-term} p) = n + 1$. PROOF: Set $I = \{ \text{height } \tau_1 : \tau_1 \in \operatorname{rng} p \}$. I is natural-membered. Define $\mathcal{F}(\text{element of } \mathfrak{F}_{\Sigma}(X)) = \text{height } \mathfrak{F}_1$. $\{ \mathcal{F}(\tau_1) : \tau_1 \in \operatorname{rng} p \}$ is finite from [44, Sch. 21]. \square
- (48) If $Arity(o) = \emptyset$, then height(o-term p) = 0.
- (49) $\deg(x \text{-term}) = 0.$
- (50) $\deg \tau \neq 0$ if and only if there exists o and there exists p such that $\tau = o$ -term p. PROOF: Define $\mathcal{P}[\text{element of } \mathfrak{F}_{\Sigma}(X)] \equiv \deg \$_1 \neq 0$ iff there exists o and there exists p such that $\$_1 = o$ -term p. $\mathcal{P}[x$ -term]. $\mathcal{P}[\tau]$ from TermInd. \square

Let τ be a decorated tree. Let us consider I. Observe that $\tau^{-1}(I)$ is finite sequence-membered.

Let us consider a. Let J, K be sets. Let us observe that the functor IFIN(a, I, J, K) yields a set. Now we state the propositions:

(51) Suppose $J = \langle o, \text{ the carrier of } \Sigma \rangle$. Then $(o \text{-term } p)^{-1}(I) = \text{IFIN}(J, I, \{\emptyset\}, \emptyset) \cup \bigcup \{\langle i \rangle \cap p(i+1)^{-1}(I) : i < \text{len } p\}$. PROOF: Set $X = \{\langle i \rangle \cap p(i+1)^{-1}(I) : i < \text{len } p\}$. $(o \text{-term } p)^{-1}(I) \subseteq \text{IFIN}(J, I, \{\emptyset\}, \emptyset) \cup \bigcup X \text{ by } [20, (10)], [13, (11), (13)], [52, (25)]. \square$

(52) Suppose there exists a finite sequence f of elements of \mathbb{N} such that $i = \sum f$ and dom f = dom Arity(o) and for every i and τ such that $i \in \text{dom Arity}(o)$ and $\tau = p(i)$ holds $f(i) = \text{deg } \tau$. Then deg(o-term p) = i+1. PROOF: Set $\tau = o\text{-term } p$. Set $I = \{\text{the carrier' of } \Sigma\} \times \{\text{the carrier of } \Sigma\}$. Set $\mathfrak{A} = \{\langle i \rangle \cap p(i+1)^{-1}(I) : i < \text{len } p\}$. $\emptyset \notin \bigcup \mathfrak{A}$. $\tau^{-1}(I) = \{\emptyset\} \cup \bigcup \mathfrak{A}$. Define $\mathcal{J}(\text{natural number}) = \langle \$_1 \rangle \cap p(\$_1 + 1)^{-1}(I)$. For every i and j such that i < len f and j < len f and $i \neq j$ holds $\overline{\mathcal{J}(i)}$ misses $\mathcal{J}(j)$ by [22, (40)], (11). For every i such that i < len f holds $\overline{\overline{\mathcal{J}(i)}} = f(i+1)$ by [13, (12), (13)], [52, (25)], [12, (2)]. $\overline{\bigcup \{\mathcal{J}(i) : i < \text{len } f\}} = \sum f$ from CardUnion. \Box

Let us consider Σ , X, T, and i. The functor $T \deg_{\leq} i$ yielding a subset of T is defined by the term

(Def. 18) $\{\rho : \deg \rho \leqslant i\}.$

The functor T height $\leq i$ yielding a subset of T is defined by the term

(Def. 19) $\{\tau : \tau \in T \text{ and height } \tau \leq i\}.$

Now we state the propositions:

- (53) $\rho \in T \deg_{\leq} i$ if and only if $\deg \rho \leq i$.
- (54) $T \deg_{\leqslant} 0 = \text{the set of all } x\text{-term. PROOF: } T \deg_{\leqslant} 0 \subseteq \text{the set of all } x\text{-term}$ by [10, (39)], (36), (50). Consider σ , x such that a = x-term. $\deg(x\text{-term}) = 0 \leqslant 0$ and $x\text{-term} \in T$. Reconsider $\rho = x\text{-term}$ as an element of T. $\deg \rho = \deg^{@} \rho = 0$. \square
- (55) $T \operatorname{height}_{\leq} 0 = \text{the set of all } x \operatorname{-term} p : o \operatorname{-term} p \in T \text{ and } \operatorname{Arity}(o) = \emptyset$. The theorem is a consequence of (36), (46), (47), (42), and (48).
- (56) $T \deg_{\leq} 0 = \bigcup \operatorname{FreeGenerator}(T)$. PROOF: $T \deg_{\leq} 0 = \operatorname{the set}$ of all x-term. $T \deg_{\leq} 0 \subseteq \bigcup \operatorname{FreeGenerator}(T)$ by [5, (2)]. Consider b such that $b \in \operatorname{dom} \operatorname{FreeGenerator}(T)$ and $a \in (\operatorname{FreeGenerator}(T))(b)$. Consider y being a set such that $y \in X(b)$ and $a = \operatorname{the root tree}$ of $\langle y, b \rangle$. \square
- (57) $\rho \in T \text{ height} \leq i \text{ if and only if height } \rho \leq i.$

Let us consider Σ , X, T, and i. One can check that $T \deg_{\leq} i$ is non empty and $T \operatorname{height}_{\leq} i$ is non empty.

Let us assume that $i \leq j$. Now we state the propositions:

- (58) $T \deg_{\leq} i \subseteq T \deg_{\leq} j$.
- (59) $T \operatorname{height}_{\leq} i \subseteq T \operatorname{height}_{\leq} j$.

Now we state the propositions:

(60) $T \deg_{\leq}(i+1) = (T \deg_{\leq} 0) \cup \{o\text{-term } p : \text{ there exists a finite sequence } f$ of elements of \mathbb{N} such that $i \geq \sum f$ and $\dim f = \dim \operatorname{Arity}(o)$ and for every i and τ such that $i \in \dim \operatorname{Arity}(o)$ and $\tau = p(i)$ holds $f(i) = \deg \tau \cap U$ (the sorts of T). PROOF: Set $I = \{o\text{-term } p : \text{ there exists a finite sequence } f$ of elements of \mathbb{N} such that $i \geq \sum f$ and $\dim f = g$

- dom Arity(o) and for every i and τ such that $i \in \text{dom Arity}(o)$ and $\tau = p(i)$ holds $f(i) = \text{deg } \tau$ }. $T \text{deg}_{\leq}(i+1) \subseteq (T \text{deg}_{\leq} 0) \cup I \cap \bigcup (\text{the sorts of } T)$ by [10, (39)], (36), (54), [36, (6)]. $T \text{deg}_{\leq} 0 \subseteq T \text{deg}_{\leq}(i+1)$. $I \cap \bigcup (\text{the sorts of } T) \subseteq T \text{deg}_{\leq}(i+1)$. \square
- (61) $T \operatorname{height}_{\leqslant}(i+1) = (T \operatorname{height}_{\leqslant} 0) \cup \{o \operatorname{-term} p : \bigcup \{\operatorname{height} \tau : \tau \in \operatorname{rng} p\} \subseteq i\} \cap \bigcup \{\operatorname{the sorts of} T\}.$ PROOF: Set $I = \{o \operatorname{-term} p : \bigcup \{\operatorname{height} \tau : \tau \in \operatorname{rng} p\} \subseteq i\}.$ $T \operatorname{height}_{\leqslant}(i+1) \subseteq (T \operatorname{height}_{\leqslant} 0) \cup I \cap \bigcup (\operatorname{the sorts of} T)$ by (36), (55), (46), (47). $T \operatorname{height}_{\leqslant} 0 \subseteq T \operatorname{height}_{\leqslant}(i+1).$ $I \cap \bigcup (\operatorname{the sorts of} T) \subseteq T \operatorname{height}_{\leqslant}(i+1)$ by (46), (47), [13, (39)], (48). \square
- (62) $\operatorname{deg} \tau \geqslant \operatorname{height} \tau$. PROOF: Define $\mathcal{P}[\operatorname{element} \text{ of } \mathfrak{F}_{\Sigma}(X)] \equiv \operatorname{deg} \mathfrak{F}_{1} \geqslant \operatorname{height} \mathfrak{F}_{1}$. For every operation symbol o of Σ and for every element p of $\operatorname{Args}(o,\mathfrak{F}_{\Sigma}(X))$ such that for every element τ of $\mathfrak{F}_{\Sigma}(X)$ such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[o\text{-term} p]$ by (48), [36, (6)], (46), [42, (9)]. $\mathcal{P}[\tau]$ from $\operatorname{TermInd}$. \square
- (63) \bigcup (the sorts of T) = \bigcup { $T \deg_{\leq} i : \text{not contradiction}$ }.
- (64) \bigcup (the sorts of T) = \bigcup {T height \leq i: not contradiction}. The theorem is a consequence of (57).
- (65) $T \deg_{\leqslant} i \subseteq \mathfrak{F}_{\Sigma}(X) \deg_{\leqslant} i$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv T \deg_{\leqslant} \$_1$ $\subseteq \mathfrak{F}_{\Sigma}(X) \deg_{\leqslant} \$_1$. $T \deg_{\leqslant} 0 = \bigcup \text{FreeGenerator}(T) \text{ and } \mathfrak{F}_{\Sigma}(X) \deg_{\leqslant} 0 = \bigcup \text{FreeGenerator}(\mathfrak{F}_{\Sigma}(X))$. For every i, $\mathcal{P}[i]$ from [13, Sch. 2]. \square

4. Context

Let us consider Σ , X, T, σ , x, and ρ . We say that ρ is x-context if and only if (Def. 20) $\overline{\overline{\operatorname{Coim}(\rho,\langle x,\sigma\rangle)}}=1$.

We say that ρ is x-omitting if and only if

(Def. 21) $\operatorname{Coim}(\rho, \langle x, \sigma \rangle) = \emptyset$.

The functor vf ρ yielding a set is defined by the term

(Def. 22) $\pi_1(\operatorname{rng} \rho \cap (\bigcup X \times (\operatorname{the carrier of } \Sigma))).$

Now we state the propositions:

- (66) vf $\rho = \bigcup \operatorname{Var}_X \rho$. PROOF: vf $\rho \subseteq \bigcup \operatorname{Var}_X \rho$ by [32, (87)], [5, (2)], [10, (44)], [23, (9)]. \square
- (67) $vf(x-term) = \{x\}.$
- (68) $\operatorname{vf}(o \operatorname{-term} p) = \bigcup \{\operatorname{vf} \tau : \tau \in \operatorname{rng} p\}. \text{ PROOF: } \operatorname{vf}(o \operatorname{-term} p) \subseteq \bigcup \{\operatorname{vf} \tau : \tau \in \operatorname{rng} p\} \text{ by } (66), [5, (2)], [23, (13)], [55, (167)]. \square$

Let us consider Σ , X, T, and ρ . Note that vf ρ is finite.

Now we state the proposition:

(69) If $x \notin \text{vf } \rho$, then ρ is x-omitting.

Let us consider Σ , X, σ , and τ . We say that τ is σ -context if and only if

(Def. 23) There exists x such that τ is x-context.

Let us consider x. Let us observe that every element of $\mathfrak{F}_{\Sigma}(X)$ which is x-context is also σ -context.

One can verify that x-term is x-context.

One can check that there exists an element of $\mathfrak{F}_{\Sigma}(X)$ which is x-context and non compound and every element of $\mathfrak{F}_{\Sigma}(X)$ which is x-omitting is also non x-context.

Now we state the proposition:

(70) Let us consider sort symbols σ_1 , σ_2 of Σ , an element x_1 of $X(\sigma_1)$, and an element x_2 of $X(\sigma_2)$. Then $\sigma_1 \neq \sigma_2$ or $x_1 \neq x_2$ if and only if x_1 -term is x_2 -omitting.

Let us consider Σ , σ , σ_1 , Z, and z. Let z' be a z-different element of $Z(\sigma_1)$. One can check that z'-term is z-omitting.

One can check that there exists an element of $\mathfrak{F}_{\Sigma}(Z)$ which is z-omitting.

Let us consider σ_1 . Let z_1 be a z-different element of $Z(\sigma_1)$. Observe that there exists an element of $\mathfrak{F}_{\Sigma}(Z)$ which is z-omitting and z_1 -context.

Let us consider X. Let us consider x.

A context of x is an x-context element of $\mathfrak{F}_{\Sigma}(X)$. Now we state the proposition:

(71) Let us consider a sort symbol ρ of Σ and an element y of $X(\rho)$. Then x-term is a context of y if and only if $\rho = \sigma$ and x = y.

Let us consider Σ , X, and σ .

A context of σ and X is a σ -context element of $\mathfrak{F}_{\Sigma}(X)$. In the sequel \mathcal{C} denotes a context of x, \mathcal{C}_1 denotes a context of y, \mathcal{C}' denotes a context of z, \mathcal{C}_{11} denotes a context of x_{11} , \mathcal{C}_{12} denotes a context of y_{11} , and D denotes a context of σ and X.

Now we state the propositions:

- (72) \mathcal{C} is a context of σ and X.
- (73) $x \in \operatorname{vf} \mathcal{C}$.

Let us consider Σ , o, σ , X, x, and p. We say that p is x-context including once only if and only if

- (Def. 24) There exists i such that
 - (i) $i \in \text{dom } p$, and
 - (ii) p(i) is a context of x, and
 - (iii) for every j and τ such that $j \in \text{dom } p$ and $j \neq i$ and $\tau = p(j)$ holds τ is x-omitting.

Let us note that every element of $\operatorname{Args}(o,\mathfrak{F}_{\Sigma}(X))$ which is x-context including once only is also non empty.

- (74) p is x-context including once only if and only if o-term p is a context of x. Proof: Set $I = \{\langle x, \sigma \rangle\}$. Set k = p. (o-term k) $^{-1}(I) = \emptyset \cup \bigcup \{\langle i \rangle \cap k(i+1)^{-1}(I) : i < \text{len } k\}$. If k is x-context including once only, then o-term k is a context of x by [3, (42)], [52, (25)], [13, (10), (13), (11)]. \square
- (75) for every i such that $i \in \text{dom } p$ holds p_i is x-omitting if and only if o-term p is x-omitting. The theorem is a consequence of (51) and (13).
- (76) for every τ such that $\tau \in \operatorname{rng} p$ holds τ is x-omitting if and only if o-term p is x-omitting. The theorem is a consequence of (75).

Let us consider Σ , σ , and o. We say that o is σ -dependent if and only if (Def. 25) $\sigma \in \operatorname{rng} \operatorname{Arity}(o)$.

Let Σ be a sufficiently rich non void non empty many sorted signature and σ be a sort symbol of Σ . Let us note that there exists an operation symbol of Σ which is σ -dependent.

In the sequel Σ' denotes a sufficiently rich non empty non void many sorted signature, σ' denotes a sort symbol of Σ' , σ' denotes a σ' -dependent operation symbol of Σ' , X' denotes a nontrivial many sorted set indexed by the carrier of Σ' , and x' denotes an element of $X'(\sigma')$.

Let us consider Σ' , σ' , o', X', and x'. Let us observe that there exists an element of $\operatorname{Args}(\sigma', \mathfrak{F}_{\Sigma'}(X'))$ which is x'-context including once only.

Let p' be an x'-context including once only element of $\operatorname{Args}(o', \mathfrak{F}_{\Sigma'}(X'))$. One can check that o'-term p' is x'-context.

Let us consider Σ , o, σ , X, x, and p. Assume p is x-context including once only. The functor the x-context position in p yielding a natural number is defined by

(Def. 26) p(it) is a context of x.

The functor the x-context in p yielding a context of x is defined by (Def. 27) $it \in \operatorname{rng} p$.

Now we state the propositions:

- (77) Suppose p is x-context including once only. Then
 - (i) the x-context position in $p \in \text{dom } p$, and
 - (ii) the x-context in p = p(the x-context position in p).
- (78) Suppose p is x-context including once only and the x-context position in $p \neq i \in \text{dom } p$. Then p_i is x-omitting.

Let us assume that p is x-context including once only. Now we state the propositions:

- (79) p yields the x-context in p just once. The theorem is a consequence of (77).
- (80) $p \leftarrow (\text{the } x\text{-context in } p) = \text{the } x\text{-context position in } p$. The theorem is a consequence of (79).

Now we state the proposition:

- (81) (i) C = x-term, or
 - (ii) there exists o and there exists p such that p is x-context including once only and C = o-term p.

The theorem is a consequence of (36), (71), and (74).

Let us consider Σ' , X', σ' , and x'. One can verify that there exists an element of $\mathfrak{F}_{\Sigma'}(X')$ which is x'-context and compound.

The scheme ContextInd deals with a unary predicate \mathcal{P} and a non-empty non void many sorted signature Σ and a sort symbol σ of Σ and a non-empty many sorted set \mathcal{X} indexed by the carrier of Σ and an element x of $\mathcal{X}(\sigma)$ and a context \mathcal{C} of x and states that

- (Sch. 4) $\mathcal{P}[\mathcal{C}]$ provided
 - $\mathcal{P}[x\text{-term}]$ and
 - for every operation symbol o of Σ and for every element w of $\operatorname{Args}(o, \mathfrak{F}_{\Sigma}(\mathcal{X}))$ such that w is x-context including once only holds if $\mathcal{P}[\text{the } x\text{-context in } w]$, then for every context \mathcal{C} of x such that $\mathcal{C} = o$ -term w holds $\mathcal{P}[\mathcal{C}]$.

Now we state the propositions:

- (82) If τ is x-omitting, then $\tau_{\langle x, \sigma \rangle \leftarrow \tau_1} = \tau$.
- (83) Suppose the sort of $\tau_1 = \sigma$. Then $\tau_{\langle x, \sigma \rangle \leftarrow \tau_1} \in (\text{the sorts of } \mathfrak{F}_{\Sigma}(X))(\text{the sort of } \tau)$. PROOF: Define $\mathcal{P}[\text{element of } \mathfrak{F}_{\Sigma}(X)] \equiv \$_1_{\langle x, \sigma \rangle \leftarrow \tau_1} \in (\text{the sorts of } \mathfrak{F}_{\Sigma}(X))(\text{the sort of } \$_1)$. For every σ_1 and for every element y of $X(\sigma_1)$, $\mathcal{P}[y\text{-term}]$. For every o and p such that for every τ_2 such that $\tau_2 \in \text{rng } p$ holds $\mathcal{P}[\tau_2]$ holds $\mathcal{P}[o\text{-term } p]$ by $[20, (20)], (18), [52, (29)], [12, (2)]. \mathcal{P}[\tau]$ from TermInd. \square

Let us consider Σ , X, σ , x, C, and τ . Assume the sort of $\tau = \sigma$. The functor $C[\tau]$ yielding an element of (the sorts of $\mathfrak{F}_{\Sigma}(X)$)(the sort of C) is defined by the term

(Def. 28) $\mathcal{C}_{\langle x, \sigma \rangle \leftarrow \tau}$.

Now we state the proposition:

(84) If the sort of $\tau = \sigma$, then x-term $[\tau] = \tau$.

Let us consider Σ , X, σ , x, and C. Observe that C[x-term] reduces to C. Now we state the propositions:

- (85) Let us consider an element w of $\operatorname{Args}(o, \mathfrak{F}_{\Sigma}(Z))$ and an element τ of $\mathfrak{F}_{\Sigma}(Z)$. Suppose
 - (i) w is z-context including once only, and
 - (ii) the sort of $\tau = \text{Arity}(o)$ (the z-context position in w).

Then $w + \cdot$ (the z-context position in w, τ) $\in \text{Args}(o, \mathfrak{F}_{\Sigma}(Z))$.

- (86) Suppose the sort of $\mathcal{C}' = \sigma_1$. Let us consider a z-different element z_1 of $Z(\sigma_1)$ and a z-omitting context \mathcal{C}_1 of z_1 . Then $\mathcal{C}_1[\mathcal{C}']$ is a context of z. Proof: Define $\mathcal{P}[\text{element of } \mathfrak{F}_{\Sigma}(Z)] \equiv \text{if } \mathfrak{F}_1 \text{ is } z\text{-omitting, then } \mathfrak{F}_1\langle z_1, \sigma_1 \rangle \leftarrow \mathcal{C}'$ is a context of z. For every o and k such that k is $z_1\text{-context including once}$ only holds if $\mathcal{P}[\text{the } z_1\text{-context in } k]$, then for every context \mathcal{C} of z_1 such that $\mathcal{C} = o\text{-term } k$ holds $\mathcal{P}[\mathcal{C}]$. $\mathcal{P}[\mathcal{C}_1]$ from ContextInd. \square
- (87) Let us consider elements w, p of $\operatorname{Args}(o, \mathfrak{F}_{\Sigma}(Z))$ and an element τ of $\mathfrak{F}_{\Sigma}(Z)$. Suppose
 - (i) w is z-context including once only, and
 - (ii) C' = o-term w, and
 - (iii) $p = w + (\text{the } z\text{-context position in } w, (\text{the } z\text{-context in } w)[\tau]), \text{ and}$
 - (iv) the sort of $\tau = \sigma$.

Then $C'[\tau] = o$ -term p. The theorem is a consequence of (77), (78), (82), and (19).

- (88) The sort of $C[\tau]$ = the sort of C.
- (89) If $\tau(a) = \langle x, \sigma \rangle$, then $a \in \text{Leaves}(\text{dom }\tau)$. The theorem is a consequence of (36).
- (90) Let us consider a sort symbol σ_0 of Σ and an element x_0 of $X(\sigma_0)$. Suppose
 - (i) the sort of $\tau = \sigma$, and
 - (ii) \mathcal{C} is x_0 -omitting, and
 - (iii) τ is x_0 -omitting.

Then $\mathcal{C}[\tau]$ is x_0 -omitting. The theorem is a consequence of (89).

- (91) Suppose p is x-context including once only. Then the sort of the x-context in p = Arity(o) (the x-context position in p). The theorem is a consequence of (77).
- (92) Let us consider a disjoint valued non-empty algebra \mathfrak{A} over Σ , a non-empty algebra \mathcal{B} over Σ , an operation symbol o of Σ , elements p, q of $\operatorname{Args}(o,\mathfrak{A})$, a many sorted function h from \mathfrak{A} into \mathcal{B} , an element a of \mathfrak{A} , and i. Suppose
 - (i) $i \in \text{dom } p$, and
 - (ii) q = p + (i, a).

Then h # q = h # p + (i, h(a)).

(93) Let us consider an element τ of $\mathfrak{F}_{\Sigma}(Z)$. Suppose the sort of $\tau = \sigma$. Then (the canonical homomorphism of R)($\mathcal{C}'[\tau]$) = (the canonical homomorphism of R)($\mathcal{C}'[0]$ ((the canonical homomorphism of R)(τ))). Proof: Set H = 0

the canonical homomorphism of R. Define $\mathcal{P}[\text{context of } z] \equiv H(\$_1[\tau]) = H(\$_1[^{@}(H(\tau))])$. The sort of $^{@}(H(\tau)) = \text{the sort of } H(\tau)$. $\mathcal{P}[z\text{-term}]$ by (84), [10, (48)], [28, (15)]. $\mathcal{P}[\mathcal{C}']$ from ContextInd. \square

Let us consider Σ , X, T, σ , and x. Let h be a many sorted function from $\mathfrak{F}_{\Sigma}(X)$ into T. We say that h is x-constant if and only if

- (Def. 29) (i) h(x -term) = x -term, and
 - (ii) for every σ_1 and for every element x_1 of $X(\sigma_1)$ such that $x_1 \neq x$ or $\sigma \neq \sigma_1$ holds $h(x_1$ -term) is x-omitting.

Now we state the proposition:

(94) The canonical homomorphism of T is x-constant. The theorem is a consequence of (70).

Let us consider Σ , X, T, σ , and x. Note that there exists a homomorphism from $\mathfrak{F}_{\Sigma}(X)$ to T which is x-constant.

From now on h_1 denotes an x-constant homomorphism from $\mathfrak{F}_{\Sigma}(X)$ to T and h_2 denotes a y-constant homomorphism from $\mathfrak{F}_{\Sigma}(Y)$ to Q.

Let $x,\,y$ be objects. The functor $x \leftrightarrow y$ yielding a function is defined by the term

(Def. 30) $\{\langle x, y \rangle, \langle y, x \rangle\}$.

Let us observe that the functor is commutative.

Now we state the proposition:

- (95) (i) $dom(a \leftrightarrow b) = \{a, b\}$, and
 - (ii) $(a \leftrightarrow b)(a) = b$, and
 - (iii) $(a \leftrightarrow b)(b) = a$, and
 - (iv) $\operatorname{rng}(a \leftrightarrow b) = \{a, b\}.$

Let $\mathfrak A$ be a non empty set and a, b be elements of $\mathfrak A$. One can verify that $a \leftrightarrow b$ is $\mathfrak A$ -valued and $\mathfrak A$ -defined.

Let \mathfrak{A} be a set, \mathcal{B} be a non empty set, f be a function from \mathfrak{A} into \mathcal{B} , and g be a \mathfrak{A} -defined \mathcal{B} -valued function. Let us note that the functor f+g yields a function from \mathfrak{A} into \mathcal{B} . Let I be a non empty set, \mathfrak{A} , \mathcal{B} be many sorted sets indexed by I, f be a many sorted function from \mathfrak{A} into \mathcal{B} , x be an element of I, and g be a function from $\mathfrak{A}(x)$ into $\mathfrak{B}(x)$. One can verify that the functor f+(x,g) yields a many sorted function from \mathfrak{A} into \mathfrak{B} . Let us consider Σ , X, T, σ , x_1 , and x_2 . The functor $\mathrm{Hom}(T,x_1,x_2)$ yielding an endomorphism of T is defined by

- (Def. 31) (i) $it(\sigma)(x_1 \text{-term}) = x_2 \text{-term}$, and
 - (ii) $it(\sigma)(x_2 \text{-term}) = x_1 \text{-term}$, and
 - (iii) for every σ_1 and for every element y of $X(\sigma_1)$ such that $\sigma_1 \neq \sigma$ or $y \neq x_1$ and $y \neq x_2$ holds $it(\sigma_1)(y$ -term) = y-term.

- (96) Let us consider an endomorphism h of T. Suppose $h(\sigma)(x\text{-term}) = x\text{-term}$. Then $h = \mathrm{id}_{\alpha}$, where α is the sorts of T. PROOF: $h \upharpoonright \mathrm{FreeGenerator}$ $(T) = \mathrm{id}_{\alpha} \upharpoonright \mathrm{FreeGenerator}(T)$, where α is the sorts of T by [27, (49), (18)]. \square
- (97) $\operatorname{Hom}(T, x, x) = \operatorname{id}_{\alpha}$, where α is the sorts of T. The theorem is a consequence of (96).
- (98) $\operatorname{Hom}(T, x_1, x_2) = \operatorname{Hom}(T, x_2, x_1).$
- (99) $\operatorname{Hom}(T, x_1, x_2) \circ \operatorname{Hom}(T, x_1, x_2) = \operatorname{id}_{\alpha}$, where α is the sorts of T. PROOF: Set $h = \operatorname{Hom}(T, x_1, x_2)$. For every σ and x, $(h \circ h)(\sigma)(x$ -term) = x-term by [28, (15)], [36, (2)]. \square
- (100) If ρ is x_1 -omitting and x_2 -omitting, then $(\operatorname{Hom}(T, x_1, x_2))(\rho) = \rho$. Proof: Define $\mathcal{P}[\text{element of } T] \equiv \text{if } \$_1 \text{ is } x_1\text{-omitting and } x_2\text{-omitting, then } (\operatorname{Hom}(T, x_1, x_2))(\text{the sort of } \$_1)(\$_1) = \$_1$. For every σ , x, and ρ such that $\rho = x$ -term holds $\mathcal{P}[\rho]$. For every o, p, and ρ such that $\rho = o$ -term p and for every element τ of T such that $\tau \in \text{rng } p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[\rho]$ by (22), (34), [10, (13)], [36, (6)]. $\mathcal{P}[\rho]$ from TermAlgebraInd. \square

Let us consider Σ , X, T, σ , and x. Let us observe that (the canonical homomorphism of T)(σ)(x-term) reduces to x-term.

- (101) (The canonical homomorphism of T) \circ Hom $(\mathfrak{F}_{\Sigma}(X), x, x_1) = \text{Hom}(T, x, x_1) \circ (\text{the canonical homomorphism of } T)$. Proof: Set H = the canonical homomorphism of T. Set $h = \text{Hom}(T, x, x_1)$. Set $g = \text{Hom}(\mathfrak{F}_{\Sigma}(X), x, x_1)$. Define $\mathcal{P}[\text{element of } \mathfrak{F}_{\Sigma}(X)] \equiv (H \circ g)(\$_1) = (h \circ H)(\$_1)$. For every σ and x, $\mathcal{P}[x\text{-term}]$ by [36, (2)], [28, (15)]. For every operation symbol o of Σ and for every element p of $\text{Args}(o, \mathfrak{F}_{\Sigma}(X))$ such that for every element τ of $\mathfrak{F}_{\Sigma}(X)$ such that $\tau \in \text{rng } p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[o\text{-term } p]$ by [10, (13)], (34), [36, (6)], [52, (29), (25)]. $(H \circ g)(\sigma) = (h \circ H)(\sigma)$. \square
- (102) Let us consider an element ρ of T from σ . Then $(\operatorname{Hom}(T, x_1, x_2))(\sigma)(\rho) =$ ((the canonical homomorphism of T) \circ $\operatorname{Hom}(\mathfrak{F}_{\Sigma}(X), x_1, x_2))(\sigma)(\rho)$. The theorem is a consequence of (101).
- (103) If $x_1 \neq x_2$ and τ is x_2 -omitting, then $(\operatorname{Hom}(\mathfrak{F}_{\Sigma}(X), x_1, x_2))(\tau)$ is x_1 omitting. PROOF: Set $T = \mathfrak{F}_{\Sigma}(X)$. Set $h = \operatorname{Hom}(T, x_1, x_2)$. Define $\mathcal{P}[\text{element}]$ of $T = \inf \$_1$ is x_2 -omitting, then $h(\$_1)$ is x_1 -omitting. For every σ and x, $\mathcal{P}[x\text{-term}]$. For every σ and σ such that for every element τ of σ such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[\sigma\text{-term} p]$ by (34), [10, (13)], [36, (6)], [12, (2)]. $\mathcal{P}[\tau]$ from $\operatorname{TermInd}$. \square
- (104) Let us consider a finite subset \mathfrak{A} of \bigcup (the sorts of $\mathfrak{F}_{\Sigma}(Y)$). Then there exists y such that for every v such that $v \in \mathfrak{A}$ holds v is y-omitting. PROOF: Define $\mathcal{F}(\text{element of }\mathfrak{F}_{\Sigma}(Y)) = \text{vf }\mathfrak{F}_1$. $\{\mathcal{F}(v) : v \in \mathfrak{A}\}$ is finite from [44, Sch. 21]. \square

Let us consider Σ , X, and T. We say that T is structure-invariant if and only if

(Def. 32) Let us consider an element p of $\operatorname{Args}(o,T)$. Suppose $(\operatorname{Den}(o,T))(p) = (\operatorname{Den}(o,\mathfrak{F}_{\Sigma}(X)))(p)$. $(\operatorname{Den}(o,T))(\operatorname{Hom}(T,x_1,x_2)\#p) = (\operatorname{Den}(o,\mathfrak{F}_{\Sigma}(X)))(\operatorname{Hom}(T,x_1,x_2)\#p)$.

Now we state the propositions:

- (105) Suppose T is structure-invariant. Let us consider an element ρ of T from σ . Then $(\operatorname{Hom}(T, x_1, x_2))(\sigma)(\rho) = (\operatorname{Hom}(\mathfrak{F}_{\Sigma}(X), x_1, x_2))(\sigma)(\rho)$. PROOF: Set $h = \operatorname{Hom}(T, x_1, x_2)$. Set $g = \operatorname{Hom}(\mathfrak{F}_{\Sigma}(X), x_1, x_2)$. Define $\mathcal{P}[\text{element} \text{ of } T] \equiv h(\text{the sort of } \$_1)(\$_1) = g(\text{the sort of } \$_1)(\$_1)$. For every σ , x, and ρ such that $\rho = x$ -term holds $\mathcal{P}[\rho]$. For every ρ , ρ , and ρ such that $\rho = \sigma$ -term ρ and for every element τ of T such that $\tau \in \operatorname{rng} \rho$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[\rho]$ by [10, (13)], (22), [36, (6)], [52, (29), (25)]. $\mathcal{P}[\rho]$ from $\operatorname{TermAlgebraInd}$. \square
- (106) If T is structure-invariant and $x_1 \neq x_2$ and ρ is x_2 -omitting, then $(\operatorname{Hom}(T, x_1, x_2))(\rho)$ is x_1 -omitting. PROOF: Set $h = \operatorname{Hom}(T, x_1, x_2)$. Define $\mathcal{P}[\text{element of } T] \equiv \text{if } \$_1$ is x_2 -omitting, then $h(\$_1)$ is x_1 -omitting. For every σ , x, and ρ such that $\rho = x$ -term holds $\mathcal{P}[\rho]$. For every o, p, and ρ such that $\rho = o$ -term p and for every element τ of T such that $\tau \in \operatorname{rng} p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[\rho]$ by (22), (34), [10, (13), (41)]. $\mathcal{P}[\rho]$ from $\operatorname{TermAlgebraInd}$. \square
- (107) Suppose Q is structure-invariant and v is y-omitting. Then (the canonical homomorphism of Q)(v) is y-omitting. The theorem is a consequence of (104), (29), (101), (100), (98), and (106).
- (108) Suppose Q is structure-invariant. Let us consider an element p of $\operatorname{Args}(o, Q)$. Suppose an element τ of Q. If $\tau \in \operatorname{rng} p$, then τ is y-omitting. Let us consider an element τ of Q. If $\tau = (\operatorname{Den}(o, Q))(p)$, then τ is y-omitting. The theorem is a consequence of (76), (34), and (107).
- (109) If Q is structure-invariant and v is y-omitting, then $h_2(v)$ is y-omitting. PROOF: Define $\mathcal{P}[\text{element of } \mathfrak{F}_{\Sigma}(Y)] \equiv \text{if } \$_1 \text{ is } y$ -omitting, then $h_2(\$_1)$ is y-omitting. For every σ and y, $\mathcal{P}[y\text{-term}]$. For every o and q such that for every v such that $v \in \text{rng } q$ holds $\mathcal{P}[v]$ holds $\mathcal{P}[o\text{-term } q]$ by (34), [10, (13)], [36, (6)], [12, (2)]. $\mathcal{P}[v]$ from TermInd. \square

Let us consider a terminating invariant stable many sorted relation R indexed by $\mathfrak{F}_{\Sigma}(X)$ with NF-variables and unique normal form property. Now we state the propositions:

- (110) (i) for every element τ of the algebra of normal forms of R, $(\text{Hom}(\mathfrak{F}_{\Sigma}(X), x_1, x_2))$ (the sort of τ)(τ) = $(\text{Hom}(\text{the algebra of normal forms of } R, x_1, x_2))(\tau)$, and
 - (ii) $\operatorname{Hom}(\mathfrak{F}_{\Sigma}(X), x_1, x_2) \upharpoonright \operatorname{NForms}(R) = \operatorname{Hom}(\operatorname{the algebra of normal})$

forms of R, x_1, x_2).

PROOF: Set $F = \mathfrak{F}_{\Sigma}(X)$. Set T = the algebra of normal forms of R. Set $H_3 = \operatorname{Hom}(F, x_1, x_2)$. Set $H_2 = \operatorname{Hom}(T, x_1, x_2)$. Define $\mathcal{P}[\text{element of } T] \equiv H_3(\text{the sort of } \$_1)(\$_1) = H_2(\$_1)$. For every sort symbol σ of Σ and for every element x of $X(\sigma)$ and for every element ρ of T such that $\rho = x$ -term holds $\mathcal{P}[\rho]$. For every operation symbol σ of Γ and for every element Γ of Γ such that Γ of Γ such that Γ is an anomalog for every element Γ of Γ such that Γ is an anomalog for every element Γ of Γ such that Γ is an anomalog for every element Γ of Γ such that Γ is an anomalog forms of Γ in the element Γ Γ in Γ in the element Γ in Γ in

(111) Suppose $i \in \text{dom } p$ and $R(\text{Arity}(o)_i)$ reduces τ_1 to τ_2 . Then R(the result sort of o) reduces $(\text{Den}(o,\mathfrak{F}_{\Sigma}(X)))(p+\cdot(i,\tau_1))$ to $(\text{Den}(o,\mathfrak{F}_{\Sigma}(X)))(p+\cdot(i,\tau_2))$. PROOF: Consider ρ being a reduction sequence w.r.t. $R(\text{Arity}(o)_i)$ such that $\rho(1) = \tau_1$ and $\rho(\text{len } \rho) = \tau_2$. Define $\mathcal{P}[\text{natural number}] \equiv \text{if } \$_1 \leqslant \text{len } \rho$, then R(the result sort of o) reduces $(\text{Den}(o,\mathfrak{F}_{\Sigma}(X)))(p+\cdot(i,\tau_1))$ to $(\text{Den}(o,\mathfrak{F}_{\Sigma}(X)))(p+\cdot(i,\rho(\$_1)))$. For every i such that $1 \leqslant i$ and $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$ by [13, (13)], [52, (25)], [32, (87)], [12, (7), (2)]. For every i such that $i \geqslant 1$ holds $\mathcal{P}[i]$ from [13, Sch. 8]. \square

Now we state the propositions:

- (112) Let us consider a terminating invariant stable many sorted relation R indexed by $\mathfrak{F}_{\Sigma}(X)$ with NF-variables and unique normal form property and τ . Then R(the sort of τ) reduces τ to (the canonical homomorphism of the algebra of normal forms of R)(τ). PROOF: Set T = the algebra of normal forms of R. Set H = the canonical homomorphism of T. Define $\mathcal{P}[\text{element of }\mathfrak{F}_{\Sigma}(X)] \equiv R(\text{the sort of }\$_1) \text{ reduces }\$_1 \text{ to } H(\$_1)$. For every o and o such that for every σ such that $\sigma \in \text{rng } o$ holds $\sigma \in \mathbb{P}[\sigma]$ holds $\sigma \in \mathbb{P}[\sigma]$ by $\sigma \in \mathbb{P}[\sigma]$ from $\sigma \in \mathbb{P}[\sigma]$ from $\sigma \in \mathbb{P}[\sigma]$ from $\sigma \in \mathbb{P}[\sigma]$
- (113) Let us consider a terminating invariant stable many sorted relation R indexed by $\mathfrak{F}_{\Sigma}(X)$ with NF-variables and unique normal form property, o, and p. Then R(the result sort of o) reduces o-term p to (Den(o, the algebra of normal forms of R))((the canonical homomorphism of the algebra of normal forms of R)#p). The theorem is a consequence of (34) and (112).
- (114) Let us consider a terminating invariant stable many sorted relation R indexed by $\mathfrak{F}_{\Sigma}(X)$ with NF-variables and unique normal form property, o, p, and an element q of $\operatorname{Args}(o, \operatorname{the algebra of normal forms of } R)$. Suppose p = q. Then $R(\operatorname{the result sort of } o)$ reduces o-term p to $(\operatorname{Den}(o, \operatorname{the algebra of normal forms of } R))(q)$. The theorem is a consequence of (113).

Let us consider Σ and X. Let R be a terminating invariant stable many sorted relation indexed by $\mathfrak{F}_{\Sigma}(X)$ with NF-variables and unique normal form property. Observe that the algebra of normal forms of R is structure-invariant.

Let us note that there exists a free in itself including Σ -terms over X algebra

over Σ with all variables and inheriting operations which is structure-invariant.

5. Context vs. Translations

Let us consider Σ , σ_1 , and σ_2 . We say that σ_2 is σ_1 -reachable if and only if (Def. 33) TranslRel(Σ) reduces σ_1 to σ_2 .

One can verify that there exists a sort symbol of Σ which is σ_1 -reachable.

From now on σ_2 denotes a σ_1 -reachable sort symbol of Σ and g_1 denotes a translation in $\mathfrak{F}_{\Sigma}(Y)$ from σ_1 into σ_2 .

Now we state the proposition:

(115) TranslRel(Σ) reduces σ to the sort of \mathcal{C}' . PROOF: Define $\mathcal{P}[\text{element of }\mathfrak{F}_{\Sigma}(Z)] \equiv \text{TranslRel}(\Sigma) \text{ reduces } \sigma \text{ to the sort of } \$_1. \mathcal{P}[\mathcal{C}'] \text{ from } ContextInd.$

Let us consider Σ , X, σ , x, and \mathcal{C} . Observe that the sort of \mathcal{C} is σ -reachable. Let us consider σ_1 , σ_2 , and g. Let τ be an element of (the sorts of $\mathfrak{F}_{\Sigma}(X))(\sigma_1)$. One can check that the functor $g(\tau)$ yields an element of (the sorts of $\mathfrak{F}_{\Sigma}(X))(\sigma_2)$. Let us consider σ , x, and \mathcal{C} . We say that \mathcal{C} is basic if and only if

(Def. 34) There exists o and there exists p such that C = o-term p and the x-context in p = x-term.

The functor transl \mathcal{C} yielding a function from (the sorts of $\mathfrak{F}_{\Sigma}(X)$)(σ) into (the sorts of $\mathfrak{F}_{\Sigma}(X)$)(the sort of \mathcal{C}) is defined by

(Def. 35) If the sort of $\tau = \sigma$, then $it(\tau) = \mathcal{C}[\tau]$.

Now we state the propositions:

- (116) If C = x-term, then transl $C = \mathrm{id}_{\alpha(\sigma)}$, where α is the sorts of $\mathfrak{F}_{\Sigma}(X)$. The theorem is a consequence of (84).
- (117) Suppose C' = o-term k and the z-context in k = z-term and k1 = k + (the z-context position in k, l). Then C'[l] = o-term k1. The theorem is a consequence of (74), (77), (84), and (87).
- (118) If \mathcal{C}' is basic, then transl \mathcal{C}' is an elementary translation in $\mathfrak{F}_{\Sigma}(Z)$ from σ into the sort of \mathcal{C}' . The theorem is a consequence of (34), (74), (77), and (117).
- (119) Let us consider a finite set V. Suppose
 - (i) $m \in \text{dom } q$, and
 - (ii) Arity $(o)_m = \sigma$.

Then there exists y and there exists C_1 and there exists q_1 such that $y \notin V$ and $C_1 = o$ -term q_1 and $q_1 = q + \cdot (m, y$ -term) and q_1 is y-context including once only and m = the y-context position in q_1 and the y-context in $q_1 = y$ -term. Proof: Set y = the element of $Y(\sigma) \setminus (V \cup \pi_1(\operatorname{rng}(o - \operatorname{term} q)))$.

Reconsider $q_1 = q + (m, y \text{-term})$ as an element of $\operatorname{Args}(o, \mathfrak{F}_{\Sigma}(Y))$. q_1 is y-context including once only by [25, (30), (31), (32)], [52, (25)]. \square

- (120) Let us consider sort symbols σ_1 , σ_2 of Σ and a finite set V. Suppose
 - (i) $m \in \text{dom } q$, and
 - (ii) $\sigma_1 = \text{Arity}(o)_m$.

Then there exists an element y of $Y(\sigma_1)$ and there exists a context \mathcal{C} of y and there exists q_1 such that $y \notin V$ and $q_1 = q + (m, y\text{-term})$ and q_1 is y-context including once only and the y-context in $q_1 = y\text{-term}$ and $\mathcal{C} = o\text{-term }q_1$ and m = the y-context position in q_1 and $\text{transl }\mathcal{C} = o_m^{\mathfrak{F}_{\Sigma}(Y)}(q, -)$. The theorem is a consequence of (119) and (117).

Let us consider Σ , X, τ , and a. One can verify that $\mathrm{Coim}(\tau,a)$ is finite sequence-membered.

Now we state the propositions:

- (121) Suppose X is nontrivial and the sort of $\tau = \sigma$. Then $\overline{\text{Coim}(\tau, a)} \subseteq \overline{\text{Coim}(\mathcal{C}[\tau], a)}$. PROOF: Define $\mathcal{P}[\text{context of } x] \equiv \text{for every } \mathcal{C}$ such that $\mathcal{C} = \$_1$ holds $\overline{\text{Coim}(\tau, a)} \subseteq \overline{\text{Coim}(\mathcal{C}[\tau], a)}$. $\mathcal{P}[x\text{-term}]$. For every o and p such that p is $x\text{-context including once only holds if } \mathcal{P}[\text{the } x\text{-context in } p]$, then for every context \mathcal{C} of x such that $\mathcal{C} = o\text{-term } p$ holds $\mathcal{P}[\mathcal{C}]$ by (77), [36, (6)], [13, (10)], [52, (25)]. $\mathcal{P}[\mathcal{C}]$ from ContextInd. \square
- (122) If p is x-context including once only and $i \in \text{dom } p$, then p_i is not x-omitting iff p_i is x-context.

Let us assume that X is nontrivial and the sort of $C = \sigma_1$. Now we state the propositions:

- (123) Let us consider an element x_1 of $X(\sigma_1)$, a context C_1 of x_1 , and a context C_2 of x. Suppose $C_2 = C_1[C]$. If the sort of $\tau = \sigma$, then $C_2[\tau] = C_1[C[\tau]]$. PROOF: Define $\mathcal{P}[\text{context of } x_1] \equiv \text{for every context } C_1 \text{ of } x_1 \text{ for every context } C_2 \text{ of } x \text{ such that } C_1 = \$_1 \text{ and } C_2 = C_1[C] \text{ holds } C_2[\tau] = C_1[C[\tau]]$. $\mathcal{P}[x_1\text{-term}]$. For every o and for every element w of $\text{Args}(o, \mathfrak{F}_{\Sigma}(X))$ such that w is $x_1\text{-context including once only holds if } \mathcal{P}[\text{the } x_1\text{-context in } w]$, then for every context C of x_1 such that C = o-term w holds $\mathcal{P}[C]$ by (77), [36, (6)], [12, (2), (7)]. $\mathcal{P}[C_1]$ from ContextInd. \square
- (124) Let us consider an element x_1 of $X(\sigma_1)$, a context \mathcal{C}_1 of x_1 , and a context \mathcal{C}_2 of x. Suppose $\mathcal{C}_2 = \mathcal{C}_1[\mathcal{C}]$. Then transl $\mathcal{C}_2 = \operatorname{transl} \mathcal{C}_1 \cdot \operatorname{transl} \mathcal{C}$. PROOF: Reconsider $f = \operatorname{transl} \mathcal{C}$ as a function from (the sorts of $\mathfrak{F}_{\Sigma}(X)$)(σ) into (the sorts of $\mathfrak{F}_{\Sigma}(X)$)(σ_1). transl $\mathcal{C}_2 = \operatorname{transl} \mathcal{C}_1 \cdot f$ by [28, (15)], (123). \square Now we state the proposition:
- (125) There exists y_{11} and there exists C_{12} such that the sort of $C_{12} = \sigma_2$ and $g_1 = \text{transl } C_{12}$. PROOF: Define $\mathcal{P}[\text{function, sort symbol of } \Sigma, \text{sort symbol of } \Sigma] \equiv \text{for every finite set } V$, there exists an element x of $Y(\$_2)$ and

there exists a context \mathcal{C} of x such that $x \notin V$ and the sort of $\mathcal{C} = \$_3$ and $\$_1 = \operatorname{transl} \mathcal{C}$. For every σ , $\mathcal{P}[\operatorname{id}_{\alpha(\sigma)}, \sigma, \sigma]$, where α is the sorts of $\mathfrak{F}_{\Sigma}(Y)$. For every sort symbols σ_1 , σ_2 , σ_3 of Σ such that TranslRel(Σ) reduces σ_1 to σ_2 for every translation τ in $\mathfrak{F}_{\Sigma}(Y)$ from σ_1 into σ_2 such that $\mathcal{P}[\tau, \sigma_1, \sigma_2]$ for every function f such that f is an elementary translation in $\mathfrak{F}_{\Sigma}(Y)$ from σ_2 into σ_3 holds $\mathcal{P}[f \cdot \tau, \sigma_1, \sigma_3]$ by [12, (2)], (120), (73), (69). For every sort symbols σ_1 , σ_2 of Σ such that TranslRel(Σ) reduces σ_1 to σ_2 for every translation τ in $\mathfrak{F}_{\Sigma}(Y)$ from σ_1 into σ_2 , $\mathcal{P}[\tau, \sigma_1, \sigma_2]$ from [12, Sch. 1].

The scheme LambdaTerm deals with a non empty non void many sorted signature Σ and a non-empty many sorted set \mathcal{X} indexed by the carrier of Σ and including Σ -terms over \mathcal{X} algebras T_1 , T_2 over Σ with all variables and inheriting operations and a unary functor \mathcal{F} yielding an element of T_2 and states that

- (Sch. 5) There exists a many sorted function f from T_1 into T_2 such that for every element τ of T_1 , $f(\tau) = \mathcal{F}(\tau)$ provided
 - for every element τ of T_1 , the sort of τ = the sort of $\mathcal{F}(\tau)$.

Now we state the propositions:

- (126) There exists an endomorphism g of T such that
 - (i) (the canonical homomorphism of T) $\circ h = g \circ$ (the canonical homomorphism of T), and
 - (ii) for every element τ of T, $g(\tau) =$ (the canonical homomorphism of $T)(h(^{@}\tau))$.

The theorem is a consequence of (29).

(127) (The canonical homomorphism of T) $(h(\tau)) =$ (the canonical homomorphism of T) $(h(^{@}(the canonical homomorphism of <math>T)(\tau)))$). The theorem is a consequence of (126) and (29).

6. Context vs. Endomorphism

Let us consider Σ . Let \mathcal{B} be a non empty finite sequence of elements of the carrier of Σ and i be an element of dom \mathcal{B} . Note that the functor $\mathcal{B}(i)$ yields a sort symbol of Σ . Let us consider X. Let \mathcal{B} be a finite sequence of elements of the carrier of Σ and V be a finite sequence of elements of $\bigcup X$. We say that V is \mathcal{B} -sorting if and only if

- (Def. 36) (i) $\operatorname{dom} V = \operatorname{dom} \mathcal{B}$, and
 - (ii) for every i such that $i \in \text{dom } \mathcal{B} \text{ holds } V(i) \in X(\mathcal{B}(i))$.

Let us observe that there exists a finite sequence of elements of $\bigcup X$ which is \mathcal{B} -sorting.

Let \mathcal{B} be a non empty finite sequence of elements of the carrier of Σ . One can check that every finite sequence of elements of $\bigcup X$ which is \mathcal{B} -sorting is also non empty.

Let V be a \mathcal{B} -sorting finite sequence of elements of $\bigcup X$ and i be an element of dom \mathcal{B} . Note that the functor V(i) yields an element of $X(\mathcal{B}(i))$. Let \mathcal{B} be a finite sequence of elements of the carrier of Σ and D be a finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$. We say that D is \mathcal{B} -sorting if and only if

- (Def. 37) (i) dom $D = \text{dom } \mathcal{B}$, and
 - (ii) for every i such that $i \in \text{dom } \mathcal{B} \text{ holds } D(i) \in (\text{the sorts of } \mathfrak{F}_{\Sigma}(X))(\mathcal{B}(i)).$

Note that there exists a finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$ which is \mathcal{B} sorting.

Let \mathcal{B} be a non empty finite sequence of elements of the carrier of Σ . One can verify that every finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$ which is \mathcal{B} -sorting is also non empty.

Let D be a \mathcal{B} -sorting finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$ and i be an element of dom \mathcal{B} . Let us note that the functor D(i) yields an element of (the sorts of $\mathfrak{F}_{\Sigma}(X))(\mathcal{B}(i))$. Let V be a \mathcal{B} -sorting finite sequence of elements of $\bigcup X$ and F be a finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$. We say that F is V-context sequence if and only if

- (Def. 38) (i) dom $F = \text{dom } \mathcal{B}$, and
 - (ii) for every element i of dom \mathcal{B} , F(i) is a context of V(i).

Let us observe that every finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$ which is V-context sequence is also non empty.

The scheme FinSeqLambda deals with a non empty finite sequence \mathcal{B} and a unary functor \mathcal{F} yielding an object and states that

(Sch. 6) There exists a non empty finite sequence p such that $\operatorname{dom} p = \operatorname{dom} \mathcal{B}$ and for every element i of $\operatorname{dom} \mathcal{B}$, $p(i) = \mathcal{F}(i)$.

The scheme FinSeqRecLambda deals with a non empty finite sequence \mathcal{B} and an object \mathfrak{A} and a binary functor \mathcal{F} yielding a set and states that

(Sch. 7) There exists a non empty finite sequence p such that $\operatorname{dom} p = \operatorname{dom} \mathcal{B}$ and $p(1) = \mathfrak{A}$ and for every elements i, j of $\operatorname{dom} \mathcal{B}$ such that j = i + 1 holds $p(j) = \mathcal{F}(i, p(i))$.

The scheme FinSeqRec2Lambda deals with a non empty finite sequence \mathcal{B} and a decorated tree \mathfrak{A} and a binary functor \mathcal{F} yielding a decorated tree and states that

(Sch. 8) There exists a non empty decorated tree yielding finite sequence p such that dom $p = \text{dom } \mathcal{B}$ and $p(1) = \mathfrak{A}$ and for every elements i, j of dom \mathcal{B}

such that j = i + 1 for every decorated tree d such that d = p(i) holds $p(j) = \mathcal{F}(i, d)$.

Let us consider Σ and X. Let \mathcal{B} be a non empty finite sequence of elements of the carrier of Σ and V be a \mathcal{B} -sorting finite sequence of elements of $\bigcup X$. One can check that there exists a finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$ which is V-context sequence.

Let F be a V-context sequence finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$ and i be an element of dom \mathcal{B} . One can verify that the functor F(i) yields a context of V(i). Let V_1 , V_2 be \mathcal{B} -sorting finite sequences of elements of $\bigcup X$. We say that V_2 is V_1 -omitting if and only if

- (Def. 39) $\operatorname{rng} V_1$ misses $\operatorname{rng} V_2$.
 - Let D be a \mathcal{B} -sorting finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$ and F be a V_2 context sequence finite sequence of elements of $\mathfrak{F}_{\Sigma}(X)$. We say that F is (V_1, V_2, D) -consequent context sequence if and only if
- (Def. 40) Let us consider elements i, j of dom \mathcal{B} . If i+1=j, then $F(j)[V_1(j)$ -term] = F(i)[D(i)].

Let V be a \mathcal{B} -sorting finite sequence of elements of $\bigcup X$. We say that V is D-omitting if and only if

(Def. 41) If $\tau \in \operatorname{rng} D$, then vf τ misses $\operatorname{rng} V$.

Now we state the proposition:

(128) Let us consider a non empty finite sequence \mathcal{B} of elements of the carrier of Σa \mathcal{B} -sorting finite sequence D of elements of $\mathfrak{F}_{\Sigma}(X)a$ \mathcal{B} -sorting finite sequence V of elements of $\bigcup X$. Suppose V is D-omitting. Let us consider elements b_1 , b_2 of dom \mathcal{B} . Then $D(b_1)$ is $(V(b_2))$ -omitting. The theorem is a consequence of (69).

Let us consider Σ and Y. Let \mathcal{B} be a non empty finite sequence of elements of the carrier of Σ , V be a \mathcal{B} -sorting finite sequence of elements of $\bigcup Y$, and D be a \mathcal{B} -sorting finite sequence of elements of $\mathfrak{F}_{\Sigma}(Y)$. Let us observe that there exists a \mathcal{B} -sorting finite sequence of elements of $\bigcup Y$ which is one-to-one, V-omitting, and D-omitting.

Let us consider X and τ .

A vf-sequence of τ is a finite sequence and is defined by

- (Def. 42) There exists a one-to-one finite sequence f such that
 - (i) rng $f = \{\xi, \text{ where } \xi \text{ is an element of } \text{dom } \tau : \text{ there exists } \sigma \text{ and there exists } x \text{ such that } \tau(\xi) = \langle x, \sigma \rangle \}$, and
 - (ii) dom it = dom f, and
 - (iii) for every i such that $i \in \text{dom } it \text{ holds } it(i) = \tau(f(i))$.

Let f be a finite sequence. Let us observe that pr1(f) is finite sequence-like and pr2(f) is finite sequence-like.

- (129) Let us consider a vf-sequence f of τ . Then pr2(f) is a finite sequence of elements of the carrier of Σ .
- (130) Let us consider a vf-sequence f of τ and a finite sequence \mathcal{B} of elements of the carrier of Σ . Suppose $\mathcal{B} = \operatorname{pr2}(f)$. Then $\operatorname{pr1}(f)$ is a \mathcal{B} -sorting finite sequence of elements of $\bigcup X$.

Let f be a non empty finite sequence. One can verify that $1 \in \text{dom } f$ reduces to 1 and $(\text{len } f) \in \text{dom } f$ reduces to len f.

Now we state the propositions:

- (131) Let us consider an element ξ of dom τ . Suppose $\tau(\xi) = \langle x, \sigma \rangle$. Suppose the sort of $\tau_1 = \sigma$. Then τ with-replacement (ξ, τ_1) is an element of $\mathfrak{F}_{\Sigma}(X)$ from the sort of τ . PROOF: Define $\mathcal{P}[\text{element of }\mathfrak{F}_{\Sigma}(X)] \equiv \text{for every element } \xi \text{ of dom } \$_1 \text{ for every } x_1 \text{ and } \tau \text{ such that } \$_1(\xi) = \langle x_1, \sigma \rangle \text{ and } \tau = \$_1 \text{ holds } \$_1 \text{ with-replacement}(\xi, \tau_1) \text{ is an element of } \mathfrak{F}_{\Sigma}(X) \text{ from the sort of } \tau$. $\mathcal{P}[x_{11}\text{-term}] \text{ by } [20, (3)], [17, (29)].$ For every o and p such that for every τ such that $\tau \in \text{rng } p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[o\text{-term } p]$ by $[20, (10)], [13, (12), (13)], [52, (25)]. \mathcal{P}[\tau]$ from TermInd. \square
- (132) Suppose X is nontrivial. Let us consider an element ξ of dom \mathcal{C} . Suppose $\mathcal{C}(\xi) = \langle x, \sigma \rangle$. If the sort of $\tau = \sigma$, then $\mathcal{C}[\tau] = \mathcal{C}$ with-replacement (ξ, τ) . PROOF: Define $\mathcal{P}[\text{element of } \mathfrak{F}_{\Sigma}(X)] \equiv \text{for every context } \mathcal{C} \text{ of } x \text{ such that } \mathcal{C} = \$_1 \text{ for every element } \xi \text{ of dom } \mathcal{C} \text{ such that } \mathcal{C}(\xi) = \langle x, \sigma \rangle \text{ holds } \mathcal{C}[\tau] = \mathcal{C} \text{ with-replacement}(\xi, \tau). \mathcal{P}[x \text{-term}] \text{ by } [17, (29)], [20, (3)], (84). For every operation symbol <math>o$ of Σ and for every element w of $\text{Args}(o, \mathfrak{F}_{\Sigma}(X))$ such that w is x-context including once only holds if $\mathcal{P}[\text{the } x\text{-context in } w]$, then for every context \mathcal{C} of x such that $\mathcal{C} = o$ -term w holds $\mathcal{P}[\mathcal{C}]$ by $[20, (10)], [19, (38)], [13, (12), (13)]. \mathcal{P}[\mathcal{C}]$ from C-ontextInd. \square
- (133) Let us consider finite sequences ξ_1 , ξ_2 . Suppose
 - (i) $\xi_1 \neq \xi_2$, and
 - (ii) $\xi_1, \, \xi_2 \in \operatorname{dom} \tau$.

Let us consider sort symbols σ_1 , σ_2 of Σ , an element x_1 of $X(\sigma_1)$, and an element x_2 of $X(\sigma_2)$. Suppose $\tau(\xi_1) = \langle x_1, \sigma_1 \rangle$. Then $\xi_1 \not \leq \xi_2$. The theorem is a consequence of (36).

Let us consider τ , τ_1 , and an element ξ of dom τ . Now we state the propositions:

- (134) If $\tau_1 = \tau$ with-replacement $(\xi, x$ -term) and τ is x-omitting, then τ_1 is a context of x. Proof: Coim $(\tau_1, \langle x, \sigma \rangle) = \{\xi\}$ by [17, (1), (29)], [20, (3)], [22, (87)]. \square
- (135) If $\tau(\xi) = \langle x, \sigma \rangle$, then dom $\tau \subseteq \text{dom}(\tau \text{ with-replacement}(\xi, \tau_1))$. The theorem is a consequence of (89).

- (136) Let us consider an element ξ of dom τ . Suppose $\tau(\xi) = \langle x, \sigma \rangle$. Then dom $\tau = \text{dom}(\tau \text{ with-replacement}(\xi, x_1 \text{-term}))$. PROOF: dom $\tau \subseteq \text{dom}(\tau \text{ with-replacement}(\xi, x_1 \text{-term}))$. dom $(\tau \text{ with-replacement}(\xi, x_1 \text{-term})) \subseteq \text{dom } \tau \text{ by } [17, (29)], [20, (3)]$. \square
- (137) Let us consider trees τ , τ_1 and an element ξ of τ . Then $(\tau \text{ with-replacement}(\xi, \tau_1)) | \xi = \tau_1$. The theorem is a consequence of (1).
- (138) Let us consider decorated trees τ , τ_1 and a node ξ of τ . Then $(\tau \text{ with-replacement}(\xi, \tau_1)) \upharpoonright \xi = \tau_1$. The theorem is a consequence of (137).

Let us consider a node ξ of τ . Now we state the propositions:

- (139) If $\tau_1 = \tau \upharpoonright \xi$, then $h(\tau) \upharpoonright \xi = h(\tau_1)$. PROOF: Define $\mathcal{P}[\text{element of } \mathfrak{F}_{\Sigma}(X)] \equiv$ for every node ξ of $\$_1$ for every τ_1 such that $\tau_1 = \$_1 \upharpoonright \xi$ holds $h(\$_1) \upharpoonright \xi = h(\tau_1)$ and $\xi \in \text{dom}(h(\$_1))$. $\mathcal{P}[x\text{-term}]$ by [17, (29)], [20, (3)], [21, (1)], [17, (22)]. For every o and p such that for every τ such that $\tau \in \text{rng } p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[o\text{-term } p]$ by [20, (11)], [21, (1)], [17, (22)], [21, (3)]. $\mathcal{P}[\tau]$ from TermInd. \square
- (140) If $\tau(\xi) = \langle x, \sigma \rangle$, then $\tau \upharpoonright \xi = x$ -term. The theorem is a consequence of (36).

Now we state the propositions:

- (141) Let us consider trees τ , τ_1 and elements ξ , ν of τ . Suppose
 - (i) $\xi \not\subseteq \nu$, and
 - (ii) $\nu \not\subseteq \xi$.

Then $(\tau \text{ with-replacement}(\xi, \tau_1)) \upharpoonright \nu = \tau \upharpoonright \nu$. The theorem is a consequence of (2) and (5).

- (142) Let us consider decorated trees τ , τ_1 and nodes ξ , ν of τ . Suppose
 - (i) $\xi \not\subseteq \nu$, and
 - (ii) $\nu \not\subseteq \xi$.

Then $(\tau \text{ with-replacement}(\xi, \tau_1)) \upharpoonright \nu = \tau \upharpoonright \nu$. The theorem is a consequence of (141) and (5).

- (143) If $\tau \subseteq \tau_1$, then $\tau = \tau_1$. PROOF: Define $\mathcal{P}[\text{element of } \mathfrak{F}_{\Sigma}(X)] \equiv \text{for every } \tau_1 \text{ such that } \$_1 \subseteq \tau_1 \text{ holds } \$_1 = \tau_1$. $\mathcal{P}[x\text{-term}]$ by [17, (22)], [30, (2)], [20, (3)], (36). For every o and p such that for every τ such that $\tau \in \text{rng } p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[o\text{-term } p]$ by [17, (22)], [30, (2)], (36), [20, (3)]. $\mathcal{P}[\tau]$ from TermInd. \square
- (144) Let us consider an endomorphism h of $\mathfrak{F}_{\Sigma}(X)$. Then
 - (i) dom $\tau \subseteq \text{dom}(h(\tau))$, and

(ii) for every I such that $I = \{\xi, \text{ where } \xi \text{ is an element of } \operatorname{dom} \tau : \text{ there } \operatorname{exists } \sigma \text{ and there exists } x \text{ such that } \tau(\xi) = \langle x, \sigma \rangle \} \operatorname{holds} \tau \upharpoonright (\operatorname{dom} \tau \setminus I) = h(\tau) \upharpoonright (\operatorname{dom} \tau \setminus I).$

PROOF: Define $\mathcal{P}[\text{element of }\mathfrak{F}_{\Sigma}(X)] \equiv \text{dom}\,\$_1 \subseteq \text{dom}(h(\$_1))$ and for every I such that $I = \{\xi, \text{ where } \xi \text{ is an element of dom }\$_1 : \text{ there exists } \sigma \text{ and there exists } x \text{ such that } \$_1(\xi) = \langle x, \sigma \rangle \} \text{ holds } \$_1 \upharpoonright (\text{dom }\$_1 \setminus I) = h(\$_1) \upharpoonright (\text{dom }\$_1 \setminus I). \mathcal{P}[x \text{-term}] \text{ by } [17, (22)], [20, (3)], [17, (29)]. \text{ For every } \sigma \text{ and } p \text{ such that for every } \tau \text{ such that } \tau \in \text{rng } p \text{ holds } \mathcal{P}[\tau] \text{ holds } \mathcal{P}[\sigma \text{-term } p] \text{ by } (34), [10, (13)], [20, (11)], [17, (22)]. \mathcal{P}[\tau] \text{ from } TermInd. \square$

- (145) Suppose $I = \{\xi, \text{ where } \xi \text{ is an element of } \text{dom } \tau : \text{ there exists } \sigma \text{ and }$ there exists x such that $\tau(\xi) = \langle x, \sigma \rangle \}$. Let us consider a node ξ of $h(\tau)$. Then
 - (i) $\xi \in \operatorname{dom} \tau \setminus I$, or
 - (ii) there exists an element ν of dom τ such that $\nu \in I$ and there exists a node μ of $h(\tau) \upharpoonright \nu$ such that $\xi = \nu \cap \mu$.

PROOF: Define $\mathcal{P}[\text{element of }\mathfrak{F}_{\Sigma}(X)] \equiv \text{for every } I \text{ such that } I = \{\xi, \text{ where } \xi \text{ is an element of } \text{dom } \$_1 : \text{ there exists } \sigma \text{ and there exists } x \text{ such that } \$_1(\xi) = \langle x, \sigma \rangle \}$ for every node ξ of $h(\$_1)$, $\xi \in \text{dom } \$_1 \setminus I$ or there exists an element ν of dom $\$_1$ such that $\nu \in I$ and there exists a node μ of $h(\$_1) \upharpoonright \nu$ such that $\xi = \nu \cap \mu$. $\mathcal{P}[x\text{-term}]$ by [17, (22)], [20, (3)], [21, (1)]. For every σ and p such that for every τ such that $\tau \in \text{rng } p$ holds $\mathcal{P}[\tau]$ holds $\mathcal{P}[\sigma\text{-term } p]$ by (34), [10, (13)], [20, (11)], [17, (22)]. $\mathcal{P}[\tau]$ from TermInd. \square

- (146) Let us consider an endomorphism h of $\mathfrak{F}_{\Sigma}(Y)$ a one-to-one finite sequence g of elements of dom v. Suppose
 - (i) rng $g = \{\xi, \text{ where } \xi \text{ is an element of } \text{dom } v : \text{ there exists } \sigma \text{ and there exists } y \text{ such that } v(\xi) = \langle y, \sigma \rangle \}$, and
 - (ii) dom $v \subseteq \text{dom } v_1$, and
 - (iii) $v \upharpoonright (\operatorname{dom} v \setminus \operatorname{rng} g) = v_1 \upharpoonright (\operatorname{dom} v \setminus \operatorname{rng} g)$, and
 - (iv) for every i such that $i \in \text{dom } g$ holds $h(v) \upharpoonright (g_i \text{ qua node of } v) = v_1 \upharpoonright (g_i \text{ qua node of } v)$.

Then $h(v) = v_1$. PROOF: $h(v) \upharpoonright (\operatorname{dom} v \setminus \operatorname{rng} g) = v_1 \upharpoonright (\operatorname{dom} v \setminus \operatorname{rng} g)$. $h(v) \subseteq v_1$ by [27, (1)], (145), [27, (49)], (144). \square

(147) Let us consider an endomorphism h of $\mathfrak{F}_{\Sigma}(Y)$ and a vf-sequence f of v. Suppose $f \neq \emptyset$. Then there exists a non empty finite sequence \mathcal{B} of elements of the carrier of Σ and there exists a \mathcal{B} -sorting finite sequence V_1 of elements of $\bigcup Y$ such that dom $\mathcal{B} = \text{dom } f$ and $\mathcal{B} = \text{pr2}(f)$ and $V_1 = \text{pr1}(f)$ and there exists a \mathcal{B} -sorting finite sequence D of elements

of $\mathfrak{F}_{\Sigma}(Y)$ and there exists a V_1 -omitting D-omitting \mathcal{B} -sorting finite sequence V_2 of elements of $\bigcup Y$ such that for every element i of dom \mathcal{B} , $D(i) = h(V_1(i) \text{-term})$ and there exists a V_2 -context sequence finite sequence F of elements of $\mathfrak{F}_{\Sigma}(Y)$ such that F is (V_1, V_2, D) -consequent context sequence and $F(1 \in \text{dom } \mathcal{B})[V_1(1 \in \text{dom } \mathcal{B})) \text{-term}] = v$ and $h(v) = F((\operatorname{len} \mathcal{B})(\in \operatorname{dom} \mathcal{B}))[D((\operatorname{len} \mathcal{B})(\in \operatorname{dom} \mathcal{B}))].$ Proof: Reconsider $\mathcal{B} = \operatorname{pr2}(f)$ as a non empty finite sequence of elements of the carrier of Σ . Consider g being a one-to-one finite sequence such that rng $g = \{\xi, \text{ where } \}$ ξ is an element of dom v: there exists σ and there exists y such that $v(\xi) = \langle y, \sigma \rangle$ and dom f = dom g and for every i such that $i \in \text{dom } f$ holds f(i) = v(g(i)). rng $g \subseteq \text{dom } v$. Reconsider $V_1 = \text{pr1}(f)$ as a \mathcal{B} sorting finite sequence of elements of $\bigcup Y$. Define $\mathcal{F}(\text{element of dom }\mathcal{B}) =$ $h(V_1(\$_1)$ -term). Consider D being a non empty finite sequence such that $\operatorname{dom} D = \operatorname{dom} \mathcal{B}$ and for every element i of $\operatorname{dom} \mathcal{B}$, $D(i) = \mathcal{F}(i)$ from Fin-SeqLambda. D is a finite sequence of elements of $\mathfrak{F}_{\Sigma}(Y)$. D is \mathcal{B} -sorting. Set V_2 = the one-to-one V_1 -omitting D-omitting \mathcal{B} -sorting finite sequence of elements of $\bigcup Y$. Define $\mathcal{H}(\text{element of dom }\mathcal{B}, \text{decorated tree}) = (\$_2 \text{ with-}$ replacement (($(g_{\$_1}$ qua element of dom v) qua finite sequence of elements of \mathbb{N}), $D(\$_1)$) with-replacement (($(g_{\$_1+1}$ qua element of dom v) qua finite sequence of elements of \mathbb{N}), the root tree of $\langle V_2(\$_1+1), \mathcal{B}(\$_1+1) \rangle$). Consider F being a non empty decorated tree yielding finite sequence such that dom $F = \text{dom } \mathcal{B}$ and F(1) = v with-replacement (($(g_1 \text{ qua element})$ of dom v) qua finite sequence of elements of N), the root tree of $\langle V_2(1), \rangle$ $\mathcal{B}(1)$ and for every elements i, j of dom \mathcal{B} such that j=i+1 for every decorated tree d such that d = F(i) holds $F(j) = \mathcal{H}(i,d)$ from FinSeqRec2Lambda. rng $F \subseteq \bigcup$ (the sorts of $\mathfrak{F}_{\Sigma}(Y)$) by (131), [22, (87)], [20, (3)], (133). Define $\mathcal{Q}[\text{natural number}] \equiv \text{for every element } b \text{ of dom } \mathcal{B} \text{ such }$ that $\$_1 = b$ holds F(b) is a context of $V_2(b)$ and dom $v \subseteq \text{dom}(F(b))$ and $F(b)(g_b) = \langle V_2(b), \mathcal{B}(b) \rangle$ and for every element b_1 of dom \mathcal{B} such that $b_1 > b$ holds F_b is $(V_2(b_1))$ -omitting and $F(b)(g_{b_1}) = \langle V_1(b_1), \mathcal{B}(b_1) \rangle$. $\mathcal{Q}[1]$ by [27, (102)], (134), (135), [22, (87)]. For every i such that $1 \leq i$ and $\mathcal{Q}[i]$ holds Q[i+1] by [52, (25)], [13, (13)], [27, (102)], (132). For every i such that $i \ge 1$ holds $\mathcal{Q}[i]$ from [13, Sch. 8]. F is V_2 -context sequence by [52, (25)]. F is (V_1, V_2, D) -consequent context sequence by [52, (25)], [13, (12), (13)], (132). Set $b = 1 \in \text{dom } \mathcal{B}$. Reconsider $\nu = g_b, \xi = g_{\text{len } \mathcal{B}}$ as a node of v. Consider μ being a node of v such that $\nu = \mu$ and there exists σ and there exists y such that $v(\mu) = \langle y, \sigma \rangle$. dom(F(b)) = dom v. Reconsider $\tau = V_1(b)$ -term as an element of $\mathfrak{F}_{\Sigma}(Y)$. Consider μ being a finite sequence of elements of \mathbb{N} such that $\mu \in \text{dom}(V_2(b)\text{-term})$ and $\nu = \nu \cap \mu$ and $F(b)(\nu) = V_2(b)$ -term (μ) . $F(b)[\tau] = F(b)$ with-replacement (ν, τ) . Define $\Sigma[\text{natural number}] \equiv \text{for every elements } b, b_1 \text{ of dom } \mathcal{B} \text{ such that } \$_1 = b$ and $b_1 \leq b$ holds $(F(b)[D(b)]) \upharpoonright (g_{b_1}$ qua node of $v) = h(v) \upharpoonright (g_{b_1}$ qua node of

v) and $(F(b)[D(b)]) \upharpoonright (\operatorname{dom} v \setminus \operatorname{rng} g) = v \upharpoonright (\operatorname{dom} v \setminus \operatorname{rng} g)$. $\Sigma[1]$ by [52, (25)], (132), (138), (140). For every i such that $i \geq 1$ and $\Sigma[i]$ holds $\Sigma[i+1]$ by [52, (25)], [13, (13)], (132), (135). Set $b = (\operatorname{len} \mathcal{B}) (\in \operatorname{dom} \mathcal{B})$. Set $v_1 = F(b)[D(b)]$. For every i such that $i \geq 1$ holds $\Sigma[i]$ from $[13, \operatorname{Sch.} 8]$. $v_1 = F(b)$ with-replacement $((g_b \operatorname{\mathbf{qua}} \operatorname{node} \operatorname{of} v), D(b))$. $\operatorname{dom}(F(b)) \subseteq \operatorname{dom} v_1$. \square

REFERENCES

- [1] Grzegorz Bancerek. Towards the construction of a model of Mizar concepts. Formalized Mathematics, 16(2):207–230, 2008. doi:10.2478/v10037-008-0027-x.
- [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [3] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
- [4] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
- $[5] \ \ Grzegorz \ Bancerek. \ On \ powers \ of \ cardinals. \ \textit{Formalized Mathematics}, \ 3 (\textbf{1}): 89-93, \ 1992.$
- [6] Grzegorz Bancerek. Algebra of morphisms. Formalized Mathematics, 6(2):303–310, 1997.
- [7] Grzegorz Bancerek. Tarski's classes and ranks. Formalized Mathematics, 1(3):563-567, 1990.
- [8] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547–552, 1991.
- [9] Grzegorz Bancerek. Institution of many sorted algebras. Part I: Signature reduct of an algebra. Formalized Mathematics, 6(2):279–287, 1997.
- [10] Grzegorz Bancerek. Free term algebras. Formalized Mathematics, 20(3):239–256, 2012. doi:10.2478/v10037-012-0029-6.
- [11] Grzegorz Bancerek. Terms over many sorted universal algebra. Formalized Mathematics, 5(2):191–198, 1996.
- [12] Grzegorz Bancerek. Translations, endomorphisms, and stable equational theories. Formalized Mathematics, 5(4):553–564, 1996.
- [13] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [14] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [15] Grzegorz Bancerek. Veblen hierarchy. Formalized Mathematics, 19(2):83–92, 2011. doi:10.2478/v10037-011-0014-5.
- [16] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469–478, 1996.
- [17] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
- [18] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397–402, 1991.
- [19] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195–204, 1992.
- [20] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77–82, 1993.
- [21] Grzegorz Bancerek. Subtrees. Formalized Mathematics, 5(2):185–190, 1996.
- [22] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [23] Grzegorz Bancerek and Artur Korniłowicz. Yet another construction of free algebra. Formalized Mathematics, 9(4):779–785, 2001.
- [24] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91–101, 1993.
- [25] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- [26] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [27] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
- [28] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.

- [29] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(3):521–527, 1990.
- [30] Czesław Byliński. Graphs of functions. Formalized Mathematics, 1(1):169–173, 1990.
- [31] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [32] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [33] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [34] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841–845, 1990.
- [35] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4): 573–577, 1997.
- [36] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61–65, 1996.
- [37] Małgorzata Korolkiewicz. Many sorted quotient algebra. Formalized Mathematics, 5(1): 79–84, 1996.
- [38] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477–481, 1990.
- [39] Yatsuka Nakamura. Determinant of some matrices of field elements. Formalized Mathematics, 14(1):1–5, 2006. doi:10.2478/v10037-006-0001-4.
- [40] Hiroyuki Okazaki, Yuichi Futa, and Yasunari Shidama. Constructing binary Huffman tree. Formalized Mathematics, 21(2):133–143, 2013. doi:10.2478/forma-2013-0015.
- [41] Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1): 67–74, 1996.
- [42] Karol Pak. Abstract simplicial complexes. Formalized Mathematics, 18(1):95–106, 2010. doi:10.2478/v10037-010-0013-y.
- [43] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115–122, 1990.
- [44] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1 (3):495–500, 1990.
- [45] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.
- [46] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [47] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341–347, 2003.
- [48] Andrzej Trybulec. A scheme for extensions of homomorphisms of many sorted algebras. Formalized Mathematics, 5(2):205–209, 1996.
- [49] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
- [50] Andrzej Trybulec. Many sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
- [51] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [52] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [53] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [54] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [55] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.
- [56] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990

Received June 13, 2014