Semiring of Sets: Examples

Roland Coghetto
Rue de la Brasserie 5
7100 La Louvière, Belgium

Summary. This article proposes the formalization of some examples of semiring of sets proposed by Goguadze [8] and Schmets [13].

MSC: 28A05 03E02 03E30 03B35

Keywords: semiring of sets

The notation and terminology used in this paper have been introduced in the following articles: [2], [14], [7], [17], [15], [5], [16], [9], [12], [19], [10], [18], and [6].

1. Preliminaries

From now on X denotes a set and S denotes a family of subsets of X. Now we state the propositions:

(1) Let us consider sets X_1, X_2, a family S_1 of subsets of X_1, and a family S_2 of subsets of X_2. Then \{ $a \times b$, where a is an element of S_1, b is an element of S_2 : $a \in S_1$ and $b \in S_2$ \} = \{ s, where s is a subset of $X_1 \times X_2$: there exist sets a, b such that $a \in S_1$ and $b \in S_2$ and $s = a \times b$ \}. PROOF: \{ $a \times b$, where a is an element of S_1, b is an element of S_2 : $a \in S_1$ and $b \in S_2$ \} \subseteq \{ s, where s is a subset of $X_1 \times X_2$: there exist sets a, b such that $a \in S_1$ and $b \in S_2$ and $s = a \times b$ \} by [6] (96). ☐

(2) Let us consider sets X_1, X_2, a non empty family S_1 of subsets of X_1, and a non empty family S_2 of subsets of X_2. Then \{ s, where s is a subset of $X_1 \times X_2$: there exist sets x_1, x_2 such that $x_1 \in S_1$ and $x_2 \in S_2$ and $s = x_1 \times x_2$ \} = the set of all $x_1 \times x_2$ where x_1 is an element of S_1, x_2 is an element of S_2.

(3) Let us consider sets X_1, X_2, a family S_1 of subsets of X_1, and a family S_2 of subsets of X_2. Suppose
(i) \(S_1 \) is \(\cap \)-closed, and
(ii) \(S_2 \) is \(\cap \)-closed.

Then \(\{ s \text{, where } s \text{ is a subset of } X \times X : \text{there exist sets } x_1, x_2 \text{ such that } x_1 \in S_1 \text{ and } x_2 \in S_2 \text{ and } s = x_1 \times x_2 \} \) is \(\cap \)-closed. \(\text{PROOF: Set } \) \(Y = \{ s \text{, where } s \text{ is a subset of } X \times X : \text{there exist sets } x_1, x_2 \text{ such that } x_1 \in S_1 \text{ and } x_2 \in S_2 \text{ and } s = x_1 \times x_2 \} \). \(Y \) is \(\cap \)-closed by [6] (100). \(\square \)

Let \(X \) be a set. Note that every \(\sigma \)-field of subsets of \(X \) is \(\cap_{fp} \)-closed and \(\setminus_{fp} \)-closed and has countable cover and empty element.

2. Ordinary Examples of Semirings of Sets

Now we state the proposition:

(4) Every \(\sigma \)-field of subsets of \(X \) is a semiring of sets of \(X \).

Let \(X \) be a set. Note that \(2^X \) is \(\cap_{fp} \)-closed and \(\setminus_{fp} \)-closed and has countable cover and empty element as a family of subsets of \(X \).

Now we state the proposition:

(5) \(2^X \) is a semiring of sets of \(X \).

Let us consider \(X \). Note that \(\text{Fin} \ X \) is \(\cap_{fp} \)-closed and \(\setminus_{fp} \)-closed and has empty element as a family of subsets of \(X \).

Let \(D \) be a denumerable set. Observe that \(\text{Fin} \ D \) has countable cover as a family of subsets of \(D \).

Now we state the propositions:

(6) \(\text{Fin} \ X \) is a semiring of sets of \(X \).

(7) Let us consider sets \(X_1, X_2 \), a semiring \(S_1 \) of sets of \(X_1 \), and a semiring \(S_2 \) of sets of \(X_2 \). Then \(\{ s \text{, where } s \text{ is a subset of } X_1 \times X_2 : \text{there exist sets } x_1, x_2 \text{ such that } x_1 \in S_1 \text{ and } x_2 \in S_2 \text{ and } s = x_1 \times x_2 \} \) is a semiring of sets of \(X_1 \times X_2 \). \(\text{PROOF: Set } Y = \{ s \text{, where } s \text{ is a subset of } X_1 \times X_2 : \text{there exist sets } x_1, x_2 \text{ such that } x_1 \in S_1 \text{ and } x_2 \in S_2 \text{ and } s = x_1 \times x_2 \} \). \(Y \) has empty element. \(Y \) is \(\cap_{fp} \)-closed by [6] (100), [4] (8), [11] (10). \(Y \) is \(\setminus_{fp} \)-closed by [11] (10), [11] (39), [4] (8), [11] (45). \(\square \)

(8) Let us consider non empty sets \(X_1, X_2 \), a family \(S_1 \) of subsets of \(X_1 \) with countable cover, a family \(S_2 \) of subsets of \(X_2 \) with countable cover, and a family \(S \) of subsets of \(X_1 \times X_2 \). Suppose \(S = \{ s \text{, where } s \text{ is a subset of } X_1 \times X_2 : \text{there exist sets } x_1, x_2 \text{ such that } x_1 \in S_1 \text{ and } x_2 \in S_2 \text{ and } s = x_1 \times x_2 \} \). Then \(S \) has countable cover. \(\text{PROOF: There exists a countable subset } U \text{ of } S \text{ such that } \bigcup U = X_1 \times X_2 \text{ and } U \text{ is a subset of } S \text{ by [6] (2), (77), [2] (95), [3] (7)). } \) \(\square \)

Let us consider a family \(S \) of subsets of \(\mathbb{R} \). Now we state the propositions:

(9) Suppose \(S = \{ [a, b], \text{ where } a, b \text{ are real numbers } : a \leq b \} \). Then
Semiring of sets: examples

(i) S is \cap-closed, and
(ii) S is \setminus_{FP}-closed and has empty element, and
(iii) S has countable cover.

(10) Suppose $S = \{ s, \text{ where } s \text{ is a subset of } \mathbb{R} : s \text{ is left open interval} \}$. Then
(i) S is \cap-closed, and
(ii) S is \setminus_{FP}-closed and has empty element, and
(iii) S has countable cover.

Proof: S is \cap-closed. S has empty element. S is \setminus_{FP}-closed by [11, (39)], [6] (75). □

3. Numerical Example

The functor $\text{sring}_{\mathbb{Z}}$ yielding a family of subsets of $\{1, 2, 3, 4\}$ is defined by the term

(Def. 1) $\{ \{1, 2, 3, 4\}, \{1, 2, 3\}, \{2, 3, 4\}, \{1\}, \{\{2\}\}, \{\{3\}\}, \{\{4\}\}, \emptyset \}$.

One can verify that $\text{sring}_{\mathbb{Z}}$ has empty element and $\text{sring}_{\mathbb{Z}}$ is \setminus_{FP}-closed and non \cap-closed and $\text{sring}_{\mathbb{Z}}$ is \setminus_{FP}-closed.

References

Received March 31, 2014