FORMALIZED MATHEMATICS DE GRUYTER
Vol. 22 No. 1, Pages 85-88, 2014 = OPEN

—~
G
DOI: 10.2478 /forma-2014-0009 degruyter.com/view/j/forma

Semiring of Sets: Examples
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Summary. This article proposes the formalization of some examples of
semiring of sets proposed by Goguadze [8] and Schmets [13].
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The notation and terminology used in this paper have been introduced in the
following articles: [2], [14], [7], [I7], [15], [5], [16], [9], [12], [19], [10], [18], and [6].

1. PRELIMINARIES

From now on X denotes a set and S denotes a family of subsets of X.
Now we state the propositions:

(1) Let us consider sets X, X2, a family 57 of subsets of X, and a family S
of subsets of Xo. Then {a x b, where a is an element of S1, b is an element
of So:a € S)and b € Sy} = {s, where s is a subset of X; x X5 : there
exist sets a,b such that a € S} and b € Sy and s = a x b}. PROOF: {a X
b, where a is an element of S1,bis an element of Sy : @ € Sy and b €
Sa} C {s, where s is a subset of X; x Xo : there exist sets a,b such that
a €Sy and b€ Sy and s =a x b} by [6, (96)]. O

(2) Let us consider sets X, X9, a non empty family S; of subsets of X;,
and a non empty family Sy of subsets of Xo. Then {s, where s is a subset
of X1 x Xy : there exist sets x1, 2 such that 1 € S; and 29 € Sy and
s = x1 X x2} = the set of all x; x zo where x1 is an element of Sy, z is
an element of S5.

(3) Let us consider sets X1, Xo, a family S; of subsets of X1, and a family
So of subsets of Xa. Suppose
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(i) Sy is N-closed, and
(i1) Sy is N-closed.

Then {s, where s is a subset of X; x X5 : there exist sets x1, x2 such
that z; € S; and z9 € Sy and s = 1 x x3} is N-closed. PROOF: Set
Y = {s, where s is a subset of X; x X5 : there exist sets x1,x2 such that
x1 € S1 and 9 € S and s = 1 X x2}. Y is N-closed by [6], (100)]. O
Let X be a set. Note that every o-field of subsets of X is Ny,-closed and
\%p—closed and has countable cover and empty element.

2. ORDINARY EXAMPLES OF SEMIRINGS OF SETS

Now we state the proposition:
(4) Every o-field of subsets of X is a semiring of sets of X.
Let X be a set. Note that 2% is N fp-closed and \J%p—closed and has countable
cover and empty element as a family of subsets of X.
Now we state the proposition:

(5) 2% is a semiring of sets of X.

Let us consider X. Note that Fin X is Nyy-closed and \%p—closed and has
empty element as a family of subsets of X.

Let D be a denumerable set. Observe that Fin D has countable cover as a
family of subsets of D.

Now we state the propositions:

(6) Fin X is a semiring of sets of X.

(7) Let us consider sets X7, X2, a semiring S7 of sets of X1, and a semiring
Sy of sets of Xy. Then {s, where s is a subset of X; x X5 : there exist
sets x1, xg such that z; € S} and z3 € Sy and s = 1 X x2} is a semiring
of sets of X1 x X5. PROOF: Set Y = {s, where s is a subset of X; x X» :
there exist sets x1,x9 such that x; € S; and x9 € Sp and s = x1 X x2}.
Y has empty element. Y is Ng,-closed by [6, (100)], [4, (8)], [1, (10)]. Y is
\ rp-closed by [1, (10)], [11}, (39)], [4, (8)], [T} (45)]. O

(8) Let us consider non empty sets X7, Xs, a family Sy of subsets of X; with
countable cover, a family So of subsets of X5 with countable cover, and
a family S of subsets of X7 x Xa. Suppose S = {s, where s is a subset
of X1 x X5 : there exist sets x1, x5 such that 1 € 51 and x5 € Sy and
s = x1 Xz2}. Then S has countable cover. PROOF: There exists a countable
subset U of S such that [JU = X; x X2 and U is a subset of S by [6], (2),
(7)), 2 (95)), B, (7)]. O

Let us consider a family .S of subsets of R. Now we state the propositions:

(9) Suppose S = {|a, b], where a,b are real numbers : a < b}. Then



SEMIRING OF SETS: EXAMPLES 87

(i) S is N-closed, and
(ii) S is \fp-closed and has empty element, and
(iii) S has countable cover.
(10) Suppose S = {s, where s is a subset of R : s is left open interval}. Then
(i) S is N-closed, and
(ii) S is \fp-closed and has empty element, and
(iii) S has countable cover.

PROOF: S is N-closed. S has empty element. S is \ p,-closed by [11L, (39)],
[6, (75)]. O

3. NUMERICAL EXAMPLE

The functor sringg yielding a family of subsets of {1,2,3,4} is defined by
the term

(Def. 1) {{1,2,3,4},{1,2,3},{2,3,4}, {1}, ({2}), ({3}), ({4}), (0)}-
One can verify that sringg has empty element and sringé1 is Nyp-closed and
non N-closed and sringd is \ ,-closed.
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