Differential Equations on Functions from \mathbb{R} into Real Banach Space

Keiko Narita
Hirosaki-city
Aomori, Japan

Noboru Endou
Gifu National College of Technology
Gifu, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article, we describe the differential equations on functions from \mathbb{R} into real Banach space. The descriptions are based on the article [20]. As preliminary to the proof of these theorems, we proved some properties of differentiable functions on real normed space. For the proof we referred to descriptions and theorems in the article [21] and the article [32]. And applying the theorems of Riemann integral introduced in the article [22], we proved the ordinary differential equations on real Banach space. We referred to the methods of proof in [30].

MSC: 46B99 34A99 03B35

Keywords: formalization of differential equations

MML identifier: ORDEQ_02 version: 8.1.02 5.22.1194

The notation and terminology used in this paper have been introduced in the following articles: [29], [5], [11], [3], [6], [7], [19], [13], [34], [31], [33], [1], [15], [25], [32], [18], [24], [23], [26], [27], [20], [2], [8], [14], [16], [28], [12], [37], [38], [9], [35], [36], [17], and [10].

1. Some Properties of Differentiable Functions on Real Normed Space

From now on Y denotes a real normed space.

Now we state the propositions:

\footnote{This work was supported by JSPS KAKENHI 22300285 and 23500029.}
Let us consider a real normed space Y, a function J from $\langle E^1, \| \cdot \| \rangle$ into \mathbb{R}, a point x_0 of $\langle E^1, \| \cdot \| \rangle$, an element y_0 of \mathbb{R}, a partial function g from \mathbb{R} to Y, and a partial function f from $\langle E^1, \| \cdot \| \rangle$ to Y. Suppose

(i) $J = \text{proj}(1, 1)$, and

(ii) $x_0 \in \text{dom} f$, and

(iii) $y_0 \in \text{dom} g$, and

(iv) $x_0 = \langle y_0 \rangle$, and

(v) $f = g \cdot J$.

Then f is continuous in x_0 if and only if g is continuous in y_0. Proof: If f is continuous in x_0, then g is continuous in y_0 by [14, (2)], [6, (39)], [37, (36)]. □

Let us consider a real normed space Y, a function I from \mathbb{R} into $\langle E^1, \| \cdot \| \rangle$, a point x_0 of $\langle E^1, \| \cdot \| \rangle$, an element y_0 of \mathbb{R}, a partial function g from \mathbb{R} to Y, and a partial function f from $\langle E^1, \| \cdot \| \rangle$ to Y. Suppose

(i) $I = (\text{proj}(1, 1) \text{ qua function})^{-1}$, and

(ii) $x_0 \in \text{dom} f$, and

(iii) $y_0 \in \text{dom} g$, and

(iv) $x_0 = \langle y_0 \rangle$, and

(v) $f \cdot I = g$.

Then f is continuous in x_0 if and only if g is continuous in y_0. Proof: If f is continuous in x_0, then g is continuous in y_0 by [14, (1)], [21, (33)], [26, (15)]. □

Let us consider a function I from \mathbb{R} into $\langle E^1, \| \cdot \| \rangle$. Suppose $I = (\text{proj}(1, 1) \text{ qua function})^{-1}$. Then

(i) for every rest R of $\langle E^1, \| \cdot \| \rangle$, $Y, R \cdot I$ is a rest of Y, and

(ii) for every linear operator L from $\langle E^1, \| \cdot \| \rangle$ into Y, $L \cdot I$ is a linear of Y.

Proof: For every rest R of $\langle E^1, \| \cdot \| \rangle$, $Y, R \cdot I$ is a rest of Y by [15, (23)], [5, (47)], [14, (3)]. Reconsider $L_0 = L$ as a function from \mathbb{R}^1 into Y. Reconsider $L_1 = L_0 \cdot I$ as a partial function from \mathbb{R} to Y. Reconsider $r = L_1(jj)$ as a point of Y. For every real number p, $L_{1p} = p \cdot r$ by [6, (13)], [14, (3)], [6, (12)]. □

Let us consider a function J from $\langle E^1, \| \cdot \| \rangle$ into \mathbb{R}. Suppose $J = \text{proj}(1, 1)$. Then

(i) for every rest R of Y, $R \cdot J$ is a rest of $\langle E^1, \| \cdot \| \rangle$, Y, and

(ii) for every linear L of Y, $L \cdot J$ is a Lipschitzian linear operator from $\langle E^1, \| \cdot \| \rangle$ into Y.

Proof: For every rest R of Y, $R \cdot J$ is a rest of $\langle \mathcal{E}^1, \| \cdot \| \rangle$, Y by \cite{14} (4), \cite{15} (6), \cite{13} (47). Consider r being a point of Y such that for every real number p, $L_p = p \cdot r$. □

(5) Let us consider a function I from \mathbb{R} into $\langle \mathcal{E}^1, \| \cdot \| \rangle$, a point x_0 of $\langle \mathcal{E}^1, \| \cdot \| \rangle$, an element y_0 of \mathbb{R}, a partial function g from \mathbb{R} to Y, and a partial function f from $\langle \mathcal{E}^1, \| \cdot \| \rangle$ to Y. Suppose

(i) $I = (\text{proj}(1,1) \text{ qua function})^{-1}$, and

(ii) $x_0 \in \text{dom } f$, and

(iii) $y_0 \in \text{dom } g$, and

(iv) $x_0 = \langle y_0 \rangle$, and

(v) $f \cdot I = g$, and

(vi) f is differentiable in x_0.

Then

(vii) g is differentiable in y_0, and

(viii) $g'(y_0) = f'(x_0)(\langle 1 \rangle)$, and

(ix) for every element r of \mathbb{R}, $f'(x_0)(\langle r \rangle) = r \cdot g'(y_0)$.

The theorem is a consequence of (3). Proof: Consider N_1 being a neighbourhood of x_0 such that $N_1 \subseteq \text{dom } f$ and there exists a point L of the real norm space of bounded linear operators from $\langle \mathcal{E}^1, \| \cdot \| \rangle$ into Y and there exists a rest R of $\langle \mathcal{E}^1, \| \cdot \| \rangle$, Y such that for every point x of $\langle \mathcal{E}^1, \| \cdot \| \rangle$ such that $x \in N_1$ holds $f_x - f_{x_0} = L(x - x_0) + R_{x - x_0}$. Consider e being a real number such that $0 < e$ and $\{ z, \text{ where } z \text{ is a point of } \langle \mathcal{E}^1, \| \cdot \| \rangle : \| z - x_0 \| < e \} \subseteq N_1$. Consider L being a point of the real norm space of bounded linear operators from $\langle \mathcal{E}^1, \| \cdot \| \rangle$ into Y, R being a rest of $\langle \mathcal{E}^1, \| \cdot \| \rangle, Y$ such that for every point x_3 of $\langle \mathcal{E}^1, \| \cdot \| \rangle$ such that $x_3 \in N_1$ holds $f_{x_3} - f_{x_0} = L(x_3 - x_0) + R_{x_3 - x_0}$. Reconsider $R_0 = R \cdot I$ as a rest of Y. Reconsider $L_0 = L \cdot I$ as a linear of Y. Set $N = \{ z, \text{ where } z \text{ is a point of } \langle \mathcal{E}^1, \| \cdot \| \rangle : \| z - x_0 \| < e \}$. $N \subseteq \text{the carrier of } \langle \mathcal{E}^1, \| \cdot \| \rangle$. Set $N_0 = \{ z, \text{ where } z \text{ is an element of } \mathbb{R} : \| z - y_0 \| < e \}$. $y_0 - e, y_0 + e \subseteq N_0$ by \cite{28} (1). $N_0 \subseteq \| y_0 - e, y_0 + e \|$ by \cite{28} (1). For every real number y_1 such that $y_1 \in N_0$ holds $(f \cdot I)_{y_1} - (f \cdot I)_{y_0} = L_{y_1 - y_0} + R_{y_1 - y_0}$ by \cite{26} (12), \cite{17} (35), \cite{14} (3). □

(6) Let us consider a function I from \mathbb{R} into $\langle \mathcal{E}^1, \| \cdot \| \rangle$, a point x_0 of $\langle \mathcal{E}^1, \| \cdot \| \rangle$, a real number y_0, a partial function g from \mathbb{R} to Y, and a partial function f from $\langle \mathcal{E}^1, \| \cdot \| \rangle$ to Y. Suppose

(i) $I = (\text{proj}(1,1) \text{ qua function})^{-1}$, and

(ii) $x_0 \in \text{dom } f$, and

(iii) $y_0 \in \text{dom } g$, and
(iv) \(x_0 = \langle y_0 \rangle \), and
(v) \(f \cdot I = g \).

Then \(f \) is differentiable in \(x_0 \) if and only if \(g \) is differentiable in \(y_0 \). The theorem is a consequence of (5) and (4). **Proof:** Reconsider \(J = \text{proj}(1, 1) \) as a function from \(\langle \mathcal{E}, \| \cdot \| \rangle \) into \(\mathbb{R} \). Consider \(N_0 \) being a neighbourhood of \(y_0 \) such that \(N_0 \subseteq \text{dom}(f \cdot I) \) and there exists a linear \(L \) of \(Y \) and there exists a rest \(R \) of \(Y \) such that for every real number \(y \) such that \(y \in N_0 \) holds \((f \cdot I)y - (f \cdot I)y_0 = L_{y-y_0} + R_{y-y_0} \). Consider \(e_0 \) being a real number such that \(0 < e_0 \) and \(N_0 = \{ y_0 - e_0, y_0 + e_0 \} \). Reconsider \(e = e_0 \) as an element of \(\mathbb{R} \). Set \(N = \{ z, \text{ where } z \text{ is a point of } \langle \mathcal{E}, \| \cdot \| \rangle : \| z - x_0 \| < e \} \). Consider \(L \) being a linear of \(Y \), \(R \) being a rest of \(Y \) such that for every real number \(y_1 \) such that \(y_1 \in N_0 \) holds \((f \cdot I)y_1 - (f \cdot I)y_0 = L_{y_1-y_0} + R_{y_1-y_0} \). Reconsider \(R_0 = R \cdot J \) as a rest of \(\langle \mathcal{E}, \| \cdot \| \rangle \), \(Y \). Reconsider \(L_0 = L \cdot J \) as a Lipschitzian linear operator from \(\langle \mathcal{E}, \| \cdot \| \rangle \) into \(Y \). \(N \subseteq \) the carrier of \(\langle \mathcal{E}, \| \cdot \| \rangle \). For every point \(y \) of \(\langle \mathcal{E}, \| \cdot \| \rangle \) such that \(y \in N \) holds \(f_y - f_{x_0} = L_0(y-y_0) + R_{0y-x_0} \) by \([6] \ (13)), \ [7] \ (35)), \ [14] \ (4)) \). \(\square \)

(7) Let us consider a function \(J \) from \(\langle \mathcal{E}, \| \cdot \| \rangle \) into \(\mathbb{R} \), a point \(x_0 \) of \(\langle \mathcal{E}, \| \cdot \| \rangle \), an element \(y_0 \) of \(\mathbb{R} \), a partial function \(g \) from \(\mathbb{R} \) to \(Y \), and a partial function \(f \) from \(\langle \mathcal{E}, \| \cdot \| \rangle \) to \(Y \). Suppose
(i) \(J = \text{proj}(1, 1) \), and
(ii) \(x_0 \in \text{dom} f \), and
(iii) \(y_0 \in \text{dom} g \), and
(iv) \(x_0 = \langle y_0 \rangle \), and
(v) \(f = g \cdot J \).

Then \(f \) is differentiable in \(x_0 \) if and only if \(g \) is differentiable in \(y_0 \). The theorem is a consequence of (6).

(8) Let us consider a function \(I \) from \(\mathbb{R} \) into \(\langle \mathcal{E}, \| \cdot \| \rangle \), a point \(x_0 \) of \(\langle \mathcal{E}, \| \cdot \| \rangle \), an element \(y_0 \) of \(\mathbb{R} \), a partial function \(g \) from \(\mathbb{R} \) to \(Y \), and a partial function \(f \) from \(\langle \mathcal{E}, \| \cdot \| \rangle \) to \(Y \). Suppose
(i) \(I = \text{proj}(1, 1) \text{ qua function}^{-1} \), and
(ii) \(x_0 \in \text{dom} f \), and
(iii) \(y_0 \in \text{dom} g \), and
(iv) \(x_0 = \langle y_0 \rangle \), and
(v) \(f \cdot I = g \), and
(vi) \(f \) is differentiable in \(x_0 \).

Then \(\| g'(y_0) \| = \| f'(x_0) \| \). The theorem is a consequence of (5). **Proof:** Reconsider \(d_1 = f'(x_0) \) as a Lipschitzian linear operator from \(\langle \mathcal{E}, \| \cdot \| \rangle \) into \(Y \). Set \(A = \text{PreNorms}(d_1) \). For every real number \(r \) such that \(r \in A \) holds \(r \leq \| g'(y_0) \| \) by \([14] \ (1), \ (4)) \). \(\square \)
Let us consider real numbers a, b, z and points p, q, x of $\langle E^1, \| \cdot \| \rangle$. Now we state the propositions:

(9) Suppose $p = \langle a \rangle$ and $q = \langle b \rangle$ and $x = \langle z \rangle$. Then
 (i) if $z \in [a, b]$, then $x \in]p, q[$, and
 (ii) if $x \in]p, q[$, then $a \neq b$ and if $a < b$, then $z \in]a, b[$ and if $a > b$, then $z \in]b, a[.$

(10) Suppose $p = \langle a \rangle$ and $q = \langle b \rangle$ and $x = \langle z \rangle$. Then
 (i) if $z \in [a, b]$, then $x \in]p, q[$, and
 (ii) if $x \in]p, q[$, then if $a \leq b$, then $z \in [a, b]$ and if $a > b$, then $z \in [b, a]$.

Now we state the propositions:

(11) Let us consider real numbers a, b, points p, q of $\langle E^1, \| \cdot \| \rangle$, and a function I from \mathbb{R} into $\langle E^1, \| \cdot \| \rangle$. Suppose
 (i) $p = \langle a \rangle$, and
 (ii) $q = \langle b \rangle$, and
 (iii) $I = (\text{proj}(1, 1) \text{ qua function})^{-1}$.

Then
 (iv) if $a \leq b$, then $I^0[a, b] =]p, q[,$ and
 (v) if $a < b$, then $I^0[a, b[=]p, q[.$

The theorem is a consequence of (10) and (9).

(12) Let us consider a real normed space Y, a partial function g from \mathbb{R} to the carrier of Y, and real numbers a, b, M. Suppose
 (i) $a \leq b$, and
 (ii) $[a, b] \subseteq \text{dom } g$, and
 (iii) for every real number x such that $x \in [a, b]$ holds g is continuous in x, and
 (iv) for every real number x such that $x \in]a, b[$ holds g is differentiable in x, and
 (v) for every real number x such that $x \in]a, b[$ holds $\|g'(x)\| \leq M$.

Then $\|g_b - g_a\| \leq M \cdot |b - a|$. The theorem is a consequence of (11), (10), (1), (9), (7), and (8).
2. Differential Equations

In the sequel X, Y denote real Banach spaces, Z denotes an open subset of \mathbb{R}, a, b, c, d, e, r, x_0 denote real numbers, y_0 denotes a vector of X, and G denotes a function from X into X.

Now we state the propositions:

(13) Let us consider a real Banach space X, a partial function F from \mathbb{R} to the carrier of X, and a continuous partial function f from \mathbb{R} to the carrier of X. Suppose

(i) $[a, b] \subseteq \text{dom } f$, and
(ii) $]a, b[\subseteq \text{dom } F$, and

(iii) for every real number x such that $x \in]a, b[\$ holds $F_x = \int_a^x f(x)dx$, and

(iv) $x_0 \in]a, b[$, and
(v) f is continuous in x_0.

Then

(ivi) F is differentiable in x_0, and
(vii) $F'(x_0) = f_{x_0}$.

(14) Let us consider a partial function F from \mathbb{R} to the carrier of X and a continuous partial function f from \mathbb{R} to the carrier of X. Suppose

(i) $\text{dom } f = [a, b]$, and

(ii) $\text{dom } F = [a, b]$, and

(iii) for every real number t such that $t \in [a, b]$ holds $F_t = \int_a^t f(x)dx$.

Let us consider a real number x. If $x \in [a, b]$, then F is continuous in x.

(15) Let us consider a continuous partial function f from \mathbb{R} to the carrier of X. If $a \in \text{dom } f$, then $\int_a^a f(x)dx = 0_X$.

Let us consider a continuous partial function f from \mathbb{R} to the carrier of X and a partial function g from \mathbb{R} to the carrier of X. Now we state the propositions:

(16) Suppose $a \leq b$ and $\text{dom } f = [a, b]$ and for every real number t such that $t \in [a, b]$ holds $g_t = y_0 + \int_a^t f(x)dx$. Then $g_a = y_0$.
(17) Suppose \(\text{dom } f = [a, b] \) and \(\text{dom } g = [a, b] \) and \(Z =]a, b[\) and for every real number \(t \) such that \(t \in [a, b] \) holds \(g_t = y_0 + \int_a^t f(x)dx \). Then

(i) \(g \) is continuous and differentiable on \(Z \), and

(ii) for every real number \(t \) such that \(t \in Z \) holds \(g'(t) = f_t \).

Let us consider a partial function \(f \) from \(\mathbb{R} \) to the carrier of \(X \). Now we state the propositions:

(18) Suppose \(a \leq b \) and \([a, b] \subseteq \text{dom } f \) and for every real number \(x \) such that \(x \in [a, b] \) holds \(f \) is continuous in \(x \) and \(f \) is differentiable on \(]a, b[\) and for every real number \(x \) such that \(x \in]a, b[\) holds \(f'(x) = 0_X \). Then \(f_b = f_a \).

(19) Suppose \([a, b] \subseteq \text{dom } f \) and for every real number \(x \) such that \(x \in [a, b] \) holds \(f \) is continuous in \(x \) and \(f \) is differentiable on \(]a, b[\) and for every real number \(x \) such that \(x \in]a, b[\) holds \(f'(x) = 0_X \). Then \(f|]a, b[\) is constant.

Now we state the propositions:

(20) Let us consider a continuous partial function \(f \) from \(\mathbb{R} \) to the carrier of \(X \). Suppose

(i) \([a, b] = \text{dom } f \), and

(ii) \(f|]a, b[\) is constant.

Let us consider a real number \(x \). If \(x \in [a, b] \), then \(f_x = f_a \).

(21) Let us consider continuous partial functions \(y, G_1 \) from \(\mathbb{R} \) to the carrier of \(X \) and a partial function \(g \) from \(\mathbb{R} \) to the carrier of \(X \). Suppose

(i) \(a \leq b \), and

(ii) \(Z =]a, b[\), and

(iii) \(\text{dom } y = [a, b] \), and

(iv) \(\text{dom } g = [a, b] \), and

(v) \(\text{dom } G_1 = [a, b] \), and

(vi) \(y \) is differentiable on \(Z \), and

(vii) \(y_a = y_0 \), and

(viii) for every real number \(t \) such that \(t \in Z \) holds \(y'(t) = G_1(t) \), and

(ix) for every real number \(t \) such that \(t \in [a, b] \) holds \(g_t = y_0 + \int_a^t G_1(x)dx \).

Then \(y = g \). The theorem is a consequence of (17), (16), (19), and (20).

Proof: Recomconsider \(h = y - g \) as a continuous partial function from \(\mathbb{R} \) to the carrier of \(X \). For every real number \(x \) such that \(x \in \text{dom } h \) holds \(h_x = 0_X \) by [35] (15)]. For every element \(x \) of \(\mathbb{R} \) such that \(x \in \text{dom } y \) holds \(y(x) = g(x) \) by [35] (21)]. □
Let X be a real Banach space, y_0 be a vector of X, G be a function from X into X, and a, b be real numbers. Assume $a \leq b$ and G is continuous on $\text{dom} G$. The functor $\text{Fredholm}(G, a, b, y_0)$ yielding a function from the \mathbb{R}-norm space of continuous functions of $[a, b]$ and X into the \mathbb{R}-norm space of continuous functions of $[a, b]$ and X is defined by

(Def. 1) Let us consider a vector x of the \mathbb{R}-norm space of continuous functions of $[a, b]$ and X. Then there exist continuous partial functions f, g, G_1 from \mathbb{R} to the carrier of X such that

(i) $x = f$, and
(ii) $it(x) = g$, and
(iii) $\text{dom} f = [a, b]$, and
(iv) $\text{dom} g = [a, b]$, and
(v) $G_1 = G \cdot f$, and
(vi) for every real number t such that $t \in [a, b]$ holds $g_t = y_0 + \int_a^t G_1(x)dx$.

Now we state the propositions:

(22) Suppose $a \leq b$ and $0 < r$ and for every vectors y_1, y_2 of X, $\|G_{y_1} - G_{y_2}\| \leq r \cdot \|y_1 - y_2\|$. Let us consider vectors u, v of the \mathbb{R}-norm space of continuous functions of $[a, b]$ and X and continuous partial functions g, h from \mathbb{R} to the carrier of X. Suppose

(i) $g = (\text{Fredholm}(G, a, b, y_0))(u)$, and
(ii) $h = (\text{Fredholm}(G, a, b, y_0))(v)$.

Let us consider a real number t. Suppose $t \in [a, b]$. Then $\|g_t - h_t\| \leq (r \cdot (t - a)) \cdot \|u - v\|$. PROOF: Set $F = \text{Fredholm}(G, a, b, y_0)$. Consider f_1, g_1, G_3 being continuous partial functions from \mathbb{R} to the carrier of X such that $u = f_1$ and $F(u) = g_1$ and $\text{dom} f_1 = [a, b]$ and $\text{dom} g_1 = [a, b]$ and $G_3 = G \cdot f_1$ and for every real number t such that $t \in [a, b]$ holds $g_{1t} = y_0 + \int_a^t G_3(x)dx$. Consider f_2, g_2, G_5 being continuous partial functions from \mathbb{R} to the carrier of X such that $v = f_2$ and $F(v) = g_2$ and $\text{dom} f_2 = [a, b]$ and $\text{dom} g_2 = [a, b]$ and $G_5 = G \cdot f_2$ and for every real number t such that $t \in [a, b]$ holds $g_{2t} = y_0 + \int_a^t G_5(x)dx$. Set $G_4 = G_3 - G_5$.

For every real number x such that $x \in [a, t]$ holds $\|G_{4x}\| \leq r \cdot \|u - v\|$ by (20) (26), [5] (12)]. □

(23) Suppose $a \leq b$ and $0 < r$ and for every vectors y_1, y_2 of X, $\|G_{y_1} - G_{y_2}\| \leq r \cdot \|y_1 - y_2\|$. Let us consider vectors u, v of the \mathbb{R}-norm space of
Differential equations on functions from \(\mathbb{R} \) ...

continuous functions of \([a, b]\) and \(X\), an element \(m\) of \(\mathbb{N}\), and continuous partial functions \(g, h\) from \(\mathbb{R}\) to the carrier of \(X\). Suppose

(i) \(g = (\text{Fredholm}(G, a, b, y_0))^{m+1}(u)\), and

(ii) \(h = (\text{Fredholm}(G, a, b, y_0))^{m+1}(v)\).

Let us consider a real number \(t\). Suppose \(t \in [a, b]\). Then \(\|g_t - h_t\| \leq \frac{(r \cdot |t-a|)^{m+1}}{(m+1)!} \cdot \|u - v\|\). The theorem is a consequence of (22). Proof: Set \(F = \text{Fredholm}(G, a, b, y_0)\). Define \(P[\text{natural number}] \equiv \) for every continuous partial functions \(g, h\) from \(\mathbb{R}\) to the carrier of \(X\) such that \(g = F^{m+1}(u_1)\) and \(h = F^{m+1}(v_1)\) for every real number \(t\) such that \(t \in [a, b]\) holds \(\|g_t - h_t\| \leq \frac{(r \cdot |t-a|)^{m+1}}{(m+1)!} \cdot \|u_1 - v_1\|\). \(P[0]\) by \([4, (70)]\), \([18, (5), (13)]\). For every natural number \(k\) such that \(P[k]\) holds \(P[k+1]\) by \([4, (71)]\), \([6, (13)]\), \([37, (27)]\). For every natural number \(k\), \(P[k]\) from \([1, \text{Sch. 2}]\). \(\square\)

(24) Let us consider a natural number \(m\). Suppose

(i) \(a \leq b\), and

(ii) \(0 < r\), and

(iii) for every vectors \(y_1, y_2\) of \(X\), \(\|Gy_1 - Gy_2\| \leq r \cdot \|y_1 - y_2\|\).

Let us consider vectors \(u, v\) of the \(\mathbb{R}\)-norm space of continuous functions of \([a, b]\) and \(X\).

Then \(\|(\text{Fredholm}(G, a, b, y_0))^{m+1}(u) - (\text{Fredholm}(G, a, b, y_0))^{m+1}(v)\| \leq \frac{(r \cdot |b-a|)^{m+1}}{(m+1)!} \cdot \|u - v\|\). The theorem is a consequence of (23).

(25) If \(a < b\) and \(G\) is Lipschitzian on the carrier of \(X\), then there exists a natural number \(m\) such that \((\text{Fredholm}(G, a, b, y_0))^{m+1}\) is contraction. The theorem is a consequence of (24).

(26) If \(a < b\) and \(G\) is Lipschitzian on the carrier of \(X\), then Fredholm\((G, a, b, y_0)\) has unique fixpoint. The theorem is a consequence of (25).

(27) Let us consider continuous partial functions \(f, g\) from \(\mathbb{R}\) to the carrier of \(X\). Suppose

(i) \(\text{dom } f = [a, b]\), and

(ii) \(\text{dom } g = [a, b]\), and

(iii) \(Z =]a, b[\), and

(iv) \(a < b\), and

(v) \(G\) is Lipschitzian on the carrier of \(X\), and

(vi) \(g = (\text{Fredholm}(G, a, b, y_0))(f)\).

Then

(vii) \(g_a = y_0\), and

(viii) \(g\) is differentiable on \(Z\), and

\[\ldots\]
(ix) for every real number t such that $t \in Z$ holds $g'(t) = (G \cdot f)_t$.

The theorem is a consequence of (17) and (16).

(28) Let us consider a continuous partial function y from \mathbb{R} to the carrier of X. Suppose

(i) $a < b$, and
(ii) $Z =]a, b[$, and
(iii) G is Lipschitzian on the carrier of X, and
(iv) $\text{dom } y = [a, b]$, and
(v) y is differentiable on Z, and
(vi) $y_a = y_0$, and
(vii) for every real number t such that $t \in Z$ holds $y'(t) = G(y_t)$.

Then y is a fixpoint of $\text{Fredholm}(G, a, b, y, y_0)$. The theorem is a consequence of (21).

Proof: Consider f, g, G_1 being continuous partial functions from \mathbb{R} to the carrier of X such that $y = f$ and $(\text{Fredholm}(G, a, b, y_0))(y) = g$ and $\text{dom } f = [a, b]$ and $\text{dom } g = [a, b]$ and $G_1 = G \cdot f$ and for every real number t such that $t \in [a, b]$ holds $g_t = y_0 + \int_a^t G_1(x)dx$. For every real number t such that $t \in Z$ holds $y'(t) = G_1(t)$ by [6, (13)]. □

(29) Let us consider continuous partial functions y_1, y_2 from \mathbb{R} to the carrier of X. Suppose

(i) $a < b$, and
(ii) $Z =]a, b[$, and
(iii) G is Lipschitzian on the carrier of X, and
(iv) $\text{dom } y_1 = [a, b]$, and
(v) y_1 is differentiable on Z, and
(vi) $y_{1a} = y_0$, and
(vii) for every real number t such that $t \in Z$ holds $y'_1(t) = G(y_{1t})$, and
(viii) $\text{dom } y_2 = [a, b]$, and
(ix) y_2 is differentiable on Z, and
(x) $y_{2a} = y_0$, and
(xi) for every real number t such that $t \in Z$ holds $y'_2(t) = G(y_{2t})$.

Then $y_1 = y_2$. The theorem is a consequence of (26) and (28).

(30) Suppose $a < b$ and $Z =]a, b[$ and G is Lipschitzian on the carrier of X. Then there exists a continuous partial function y from \mathbb{R} to the carrier of X such that
(i) \(\text{dom } y = [a, b] \), and
(ii) \(y \) is differentiable on \(Z \), and
(iii) \(y_a = y_0 \), and
(iv) for every real number \(t \) such that \(t \in Z \) holds \(y'(t) = G(y_t) \).

The theorem is a consequence of (26) and (27).

References

Received December 31, 2013