Isometric Differentiable Functions on Real Normed Space

Yuichi Futa
Japan Advanced Institute of Science and Technology
Ishikawa, Japan

Noboru Endou
Gifu National College of Technology
Gifu, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article, we formalize isometric differentiable functions on real normed space \([17]\), and their properties.

MSC: 58C20 46G05 03B35
Keywords: isometric differentiable function
MML identifier: NDIFF_7, version: 8.1.02 5.22.1194

The notation and terminology used in this paper have been introduced in the following articles: [3], [2], [8], [4], [5], [18], [10], [11], [19], [14], [16], [1], [6], [9], [15], [23], [24], [21], [22], [13], [25], and [7].

1. Preliminaries

From now on \(S, T, W, Y\) denote real normed spaces, \(f, f_1, f_2\) denote partial functions from \(S\) to \(T\), \(Z\) denotes a subset of \(S\), and \(i, n\) denote natural numbers.

Now we state the propositions:

(1) Let us consider a set \(X\) and functions \(I, f\). Then \((f | X) \cdot I = (f \cdot I) | I^{-1}(X)\).

(2) Let us consider real normed spaces \(S, T\), a linear operator \(L\) from \(S\) into \(T\), and points \(x, y\) of \(S\). Then \(L(x) - L(y) = L(x - y)\).

\(^1\)This work was supported by JSPS KAKENHI 23500029 and 22300285.
(3) Let us consider real normed spaces X, Y, W, a function I from X into Y, and partial functions f_1, f_2 from Y to W. Then

(i) $(f_1 + f_2) \cdot I = f_1 \cdot I + f_2 \cdot I$, and

(ii) $(f_1 - f_2) \cdot I = f_1 \cdot I - f_2 \cdot I$.

Proof: Set D_1 = the carrier of X. For every element s of D_1, $s \in \text{dom}((f_1 + f_2) \cdot I)$ if $s \in \text{dom}(f_1 \cdot I + f_2 \cdot I)$ by [4] (11). For every element z of D_1 such that $z \in \text{dom}((f_1 + f_2) \cdot I)$ holds $((f_1 + f_2) \cdot I)(z) = (f_1 \cdot I + f_2 \cdot I)(z)$ by [4] (11), (12)]. For every element s of D_1, $s \in \text{dom}((f_1 - f_2) \cdot I)$ if $s \in \text{dom}(f_1 \cdot I - f_2 \cdot I)$ by [4] (11)]. For every element z of D_1 such that $z \in \text{dom}((f_1 - f_2) \cdot I)$ holds $((f_1 - f_2) \cdot I)(z) = (f_1 \cdot I - f_2 \cdot I)(z)$ by [4] (11), (12)]. □

(4) Let us consider real normed spaces X, Y, W, a function I from X into Y, a partial function f from Y to W, and a real number r. Then $r \cdot (f \cdot I) = (r \cdot f) \cdot I$. **Proof:** Set D_1 = the carrier of X. For every element s of D_1, $s \in \text{dom}((r \cdot f) \cdot I)$ if $s \in \text{dom}(f \cdot I)$ by [4] (11)]. For every element s of D_1, $s \in \text{dom}((r \cdot f) \cdot I)$ if $I(s) \in \text{dom}(r \cdot f)$ by [4] (11)]. For every element z of D_1 such that $z \in \text{dom}(r \cdot (f \cdot I))$ holds $(r \cdot (f \cdot I))(z) = ((r \cdot f) \cdot I)(z)$ by [4] (12)]. □

(5) Let us consider a partial function f from T to W, a function g from S into T, and a point x of S. Suppose

(i) $x \in \text{dom} g$, and

(ii) $g_x \in \text{dom} f$, and

(iii) g is continuous in x, and

(iv) f is continuous in g_x.

Then $f \cdot g$ is continuous in x. **Proof:** Set $h = f \cdot g$. For every real number r such that $0 < r$ there exists a real number s such that $0 < s$ and for every point x_1 of S such that $x_1 \in \text{dom} h$ and $∥x_1 - x∥ < s$ holds $∥h_{x_1} - h_x∥ < r$ by [14] (7), [12] (3), (4)]. □

Let X, Y be real normed spaces and x be an element of $X \times Y$. The functor $\text{reproj}_1(x)$ yielding a function from X into $X \times Y$ is defined by (Def. 1) Let us consider an element r of X. Then $it(r) = ⟨r, x_2⟩$.

The functor $\text{reproj}_2(x)$ yielding a function from Y into $X \times Y$ is defined by (Def. 2) Let us consider an element r of Y. Then $it(r) = ⟨x_1, r⟩$.

2. **Isometries**

Now we state the propositions:

(6) Let us consider a linear operator I from S into T and a point x of S. If I is isometric, then I is continuous in x.

Let us consider real normed spaces S, T and a linear operator f from S into T. Then f is isometric if and only if for every element x of S, $\|f(x)\| = \|x\|$. The theorem is a consequence of (2).

Let us consider a linear operator I from S into T and a subset Z of S. If I is isometric, then I is continuous on Z. The theorem is a consequence of (6).

Let us consider a linear operator I from S into T. Suppose I is one-to-one, onto, and isometric. Then there exists a linear operator J from T into S such that

(i) $J = I^{-1}$, and

(ii) J is one-to-one, onto, and isometric.

The theorem is a consequence of (7). Proof: Reconsider $J = I^{-1}$ as a function from T into S. For every points v, w of T, $J(v+w) = J(v) + J(w)$ by [3, (113)], [4, (34)]. For every point v of T and for every real number r, $J(r \cdot v) = r \cdot J(v)$ by [3, (113)], [4, (34)]. For every point v of T, $\|J(v)\| = \|v\|$ by [3, (113)], [4, (34)]. □

Let us consider a linear operator I from S into T and a sequence s_1 of S.

Now we state the propositions:

(10) If I is isometric and s_1 is convergent, then $I \cdot s_1$ is convergent and $\lim (I \cdot s_1) = I(\lim s_1)$.

(11) If I is one-to-one, onto, and isometric, then s_1 is convergent iff $I \cdot s_1$ is convergent.

Let us consider a linear operator I from S into T and a subset Z of S. Now we state the propositions:

(12) If I is one-to-one, onto, and isometric, then Z is closed iff $I^o Z$ is closed.

(13) If I is one-to-one, onto, and isometric, then Z is open iff $I^o Z$ is open.

(14) If I is one-to-one, onto, and isometric, then Z is compact iff $I^o Z$ is compact.

Now we state the propositions:

(15) Let us consider a partial function f from T to W and a linear operator I from S into T. Suppose I is one-to-one, onto, and isometric. Let us consider a point x of S. Suppose $I(x) \in \text{dom } f$. Then $f \cdot I$ is continuous in x if and only if f is continuous in $I(x)$. The theorem is a consequence of (9), (6), and (5).

(16) Let us consider a partial function f from T to W, a linear operator I from S into T, and a set X. Suppose

(i) $X \subseteq$ the carrier of T, and

(ii) I is one-to-one, onto, and isometric.
Then f is continuous on X if and only if $f \cdot I$ is continuous on $I^{-1}(X)$. The theorem is a consequence of (15) and (1). \textbf{Proof:} For every point y of T such that $y \in X$ holds $f|X$ is continuous in y by \cite{5} (113), \cite{23} (57).

Let X, Y be real normed spaces. The functor $\text{IsoCPNsr}(X, Y)$ yielding a linear operator from $X \times Y$ into $\prod \langle X, Y \rangle$ is defined by

\begin{itemize}
\item[(Def. 3)] Let us consider a point x of X and a point y of Y. Then $it(x, y) = \langle x, y \rangle$.
\end{itemize}

Now we state the proposition:

\begin{itemize}
\item[(17)] Let us consider real normed spaces X, Y. Then $0_{\prod \langle X, Y \rangle} = (\text{IsoCPNsr}(X, Y))(0_{X \times Y})$.
\end{itemize}

Let X, Y be real normed spaces. Observe that $\text{IsoCPNsr}(X, Y)$ is one-to-one onto and isometric.

Let us note that there exists a linear operator from $X \times Y$ into $\prod \langle X, Y \rangle$ which is one-to-one, onto, and isometric.

Let f be a one-to-one onto isometric linear operator from $X \times Y$ into $\prod \langle X, Y \rangle$. Let us note that the functor f^{-1} yields a linear operator from $\prod \langle X, Y \rangle$ into $X \times Y$. One can verify that f^{-1} is one-to-one onto and isometric as a linear operator from $\prod \langle X, Y \rangle$ into $X \times Y$.

Observe that there exists a linear operator from $\prod \langle X, Y \rangle$ into $X \times Y$ which is one-to-one, onto, and isometric.

Now we state the propositions:

\begin{itemize}
\item[(18)] Let us consider real normed spaces X, Y, a point x of X, and a point y of Y. Then $(\text{IsoCPNsr}(X, Y))^{-1}(\langle x, y \rangle) = \langle x, y \rangle$. \textbf{Proof:} Set $I = \text{IsoCPNsr}(X, Y)$. Set $J = I^{-1}$. For every point x of X and for every point y of Y, $J(\langle x, y \rangle) = \langle x, y \rangle$ by \cite{4} (34).
\end{itemize}

\begin{itemize}
\item[(19)] Let us consider real normed spaces X, Y.
\end{itemize}

Then $(\text{IsoCPNsr}(X, Y))^{-1}(0_{\prod \langle X, Y \rangle}) = 0_{X \times Y}$. The theorem is a consequence of (17).

\begin{itemize}
\item[(20)] Let us consider real normed spaces X, Y and a subset Z of $X \times Y$. Then $\text{IsoCPNsr}(X, Y)$ is continuous on Z.
\end{itemize}

\begin{itemize}
\item[(21)] Let us consider real normed spaces X, Y and a subset Z of $\prod \langle X, Y \rangle$. Then $(\text{IsoCPNsr}(X, Y))^{-1}$ is continuous on Z.
\end{itemize}

\begin{itemize}
\item[(22)] Let us consider real normed spaces S, T, W, a point f of the real norm space of bounded linear operators from S into W, a point g of the real norm space of bounded linear operators from T into W, and a linear operator I from S into T. Suppose
\end{itemize}

\begin{itemize}
\item[(i)] I is one-to-one, onto, and isometric, and
\item[(ii)] $f = g \cdot I$.
\end{itemize}

Then $\|f\| = \|g\|$. The theorem is a consequence of (9) and (7). \textbf{Proof:} Consider J being a linear operator from T into S such that $J = I^{-1}$ and
Let us consider $g_0 = g$ as a Lipschitzian linear operator from T into W. Reconsider $g_3 = g \cdot I$ as a Lipschitzian linear operator from S into W. For every element $x, x \in \{||g_0(t)||,\text{ where } t \text{ is a vector of } T : ||t|| \leq 1\}$ iff $x \in \{||g_3(w)||,\text{ where } w \text{ is a vector of } S : ||w|| \leq 1\}$ by [4, (13), (35)]. □

Let us consider S and T. One can verify that every linear operator from S into T which is isometric is also Lipschitzian.

3. ISOMETRIC DIFFERENTIABLE FUNCTIONS ON REAL NORMED SPACE

Let us consider a real norm space sequence G, a real normed space F, a set i, partial functions f, g from $\prod G$ to F, and a subset X of $\prod G$. Now we state the propositions:

(23) Suppose X is open and $i \in \text{dom } G$ and f is partially differentiable on X w.r.t. i and g is partially differentiable on X w.r.t. i. Then

(i) $f + g$ is partially differentiable on X w.r.t. i, and

(ii) $(f + g)^i X = (f^i X) + (g^i X)$.

(24) Suppose X is open and $i \in \text{dom } G$ and f is partially differentiable on X w.r.t. i and g is partially differentiable on X w.r.t. i. Then

(i) $f - g$ is partially differentiable on X w.r.t. i, and

(ii) $(f - g)^i X = (f^i X) - (g^i X)$.

Now we state the propositions:

(25) Let us consider a real norm space sequence G, a real normed space F, a set i, a partial function f from $\prod G$ to F, a real number r, and a subset X of $\prod G$. Suppose

(i) X is open, and

(ii) $i \in \text{dom } G$, and

(iii) f is partially differentiable on X w.r.t. i.

Then

(iv) $r \cdot f$ is partially differentiable on X w.r.t. i, and

(v) $r \cdot f^i X = r \cdot (f^i X)$.

PROOF: Set $h = r \cdot f$. For every point x of $\prod G$ such that $x \in X$ holds h is partially differentiable in x w.r.t. i and partdiff$(h, x, i) = r \cdot \text{partdiff}(f, x, i)$ by [19] (24), (30). Set $f_3 = f^i X$. For every point x of $\prod G$ such that $x \in X$ holds $(r \cdot f_3)_x = \text{partdiff}(h, x, i)$. □

(26) Let us consider real normed spaces S, T, a Lipschitzian linear operator L from S into T, and a point x_0 of S. Then
(i) f is differentiable in 0, and
(ii) $f'(0) = \lambda$.

The theorem is a consequence of (2). Proof: Reconsider $L_0 = L$ as a point of the real norm space of bounded linear operators from S into T. Suppose $I_0 = I$. Let us consider a point x of S. Suppose f is differentiable in $I(x)$. Then

(i) $f \cdot I$ is differentiable in x, and
(ii) $(f \cdot I)'(x) = f'(I(x)) \cdot I_0$.

The theorem is a consequence of (26).

(27) Let us consider a partial function f from T to W, a Lipschitzian linear operator I from S into T, and a point I_0 of the real norm space of bounded linear operators from S into T. Suppose $I_0 = I$. Let us consider a point x of S. Suppose f is differentiable in $I(x)$. Then

(i) $f \cdot I$ is differentiable in x, and
(ii) $(f \cdot I)'(x) = f'(I(x)) \cdot I_0$.

The theorem is a consequence of (26).

(28) Let us consider a partial function f from T to W and a linear operator I from S into T. Suppose

(i) I is one-to-one and onto, and
(ii) I is isometric.

Let us consider a point x of S. Then $f \cdot I$ is differentiable in x if and only if f is differentiable in $I(x)$. The theorem is a consequence of (9), (26), and (27).

(29) Let us consider a partial function f from T to W, a linear operator I from S into T, and a set X. Suppose

(i) $X \subseteq$ the carrier of T, and
(ii) I is one-to-one and onto, and
(iii) I is isometric.

Then f is differentiable on X if and only if $f \cdot I$ is differentiable on $I^{-1}(X)$. The theorem is a consequence of (28) and (1). Proof: For every point y of T such that $y \in X$ holds $f\cdot X$ is differentiable in y by [51, (113)].

(30) Let us consider real normed spaces X, Y, a partial function f from X to Y, and a subset D of $f(X,Y)$. Suppose f is differentiable on D. Let us consider a point z of $f(X,Y)$. Suppose $z \in \text{dom } f|_D$. Then $f|_D(z) = (\text{IsoCPnSP}(X,Y) \cdot (\text{IsoCPnSP}(X,Y))^{-1}(D))^{-1}(\text{IsoCPnSP}(X,Y))^{-1}(z)$. The theorem is a consequence of (17), (29), and (27). Proof: Set $I = \text{IsoCPnSP}(X,Y)$. Set $J = (\text{IsoCPnSP}(X,Y))^{-1}$. Set $g = f \cdot I$. Set $E = I^{-1}(D)$. For every point z of $f(X,Y)$ such that $z \in \text{dom } f|_D$ holds $f|_D(z) = (g|_E(J(z)) \cdot I^{-1}$ by [10, (31)], [51, (113)], [23, (36)].
(31) Let us consider real normed spaces X, Y, a partial function f from $X \times Y$ to W, and a subset D of $X \times Y$. Suppose f is differentiable on D. Let us consider a point z of $X \times Y$. Suppose $z \in \text{dom} f'_{|D}$. Then $f'_{|D}(z) = (\langle f \circ \text{IsoCPNrSP}(X,Y) \rangle^{-1}, (\langle \text{IsoCPNrSP}(X,Y) \rangle^{-1})^{-1}(D))((\text{IsoCPNrSP}(X,Y))^{-1})^{-1}(z)$. The theorem is a consequence of (18), (19), (17), (29), and (27). Proof: Set $I = (\text{IsoCPNrSP}(X,Y))^{-1}$. Set $J = \text{IsoCPNrSP}(X,Y)$. Set $g = f \cdot I$. Set $E = I^{-1}(D)$. For every point z of $X \times Y$ such that $z \in \text{dom} f'_{|D}$ holds $f'_{|D}(z) = (g'_{|E})_{J(z)} \cdot I^{-1}$ by [113] (31), [5] (113), [23] (36). □

(32) Let us consider real normed spaces X, Y and a point z of $X \times Y$. Then

(i) $\text{reproj}_{1}(z) = (\text{IsoCPNrSP}(X,Y))^{-1} \cdot \text{reproj}(1(\in \text{dom}(X,Y)), (\text{IsoCPNrSP}(X,Y))(z))$, and

(ii) $\text{reproj}_{2}(z) = (\text{IsoCPNrSP}(X,Y))^{-1} \cdot \text{reproj}(2(\in \text{dom}(X,Y)), (\text{IsoCPNrSP}(X,Y))(z))$.

The theorem is a consequence of (18).

Let X, Y be real normed spaces and z be a point of $X \times Y$. Let us note that the functor z_{1} yields a point of X. One can verify that the functor z_{2} yields a point of Y. Let X, Y, W be real normed spaces. Let f be a partial function from $X \times Y$ to W. We say that f is partially differentiable in z w.r.t. 1 if and only if

(Def. 4) $f \cdot \text{reproj}_{1}(z)$ is differentiable in z_{1}.

We say that f is partially differentiable in z w.r.t. 2 if and only if

(Def. 5) $f \cdot \text{reproj}_{2}(z)$ is differentiable in z_{2}.

Now we state the propositions:

(33) Let us consider real normed spaces X, Y and a point z of $X \times Y$. Then

(i) $z_{1} = \text{the projection onto } 1(\in \text{dom}(X,Y))(\text{IsoCPNrSP}(X,Y))(z)$, and

(ii) $z_{2} = \text{the projection onto } 2(\in \text{dom}(X,Y))(\text{IsoCPNrSP}(X,Y))(z)$.

(34) Let us consider real normed spaces X, Y, W, a point z of $X \times Y$, and a partial function f from $X \times Y$ to W. Then

(i) f is partially differentiable in z w.r.t. 1 iff $f \cdot (\text{IsoCPNrSP}(X,Y))^{-1}$ is partially differentiable in $(\text{IsoCPNrSP}(X,Y))(z)$ w.r.t. 1, and

(ii) f is partially differentiable in z w.r.t. 2 iff $f \cdot (\text{IsoCPNrSP}(X,Y))^{-1}$ is partially differentiable in $(\text{IsoCPNrSP}(X,Y))(z)$ w.r.t. 2.

The theorem is a consequence of (32) and (33).

Let X, Y, W be real normed spaces, z be a point of $X \times Y$, and f be a partial function from $X \times Y$ to W. The functor $\text{partdiff}(f, z)$ w.r.t. 1 yielding a point of the real norm space of bounded linear operators from X into W is defined by the term
\[(f \cdot \text{reproj}_1(z))'(z_1).\]

The functor \(\text{partdiff}(f, z)\) w.r.t. 2 yielding a point of the real norm space of bounded linear operators from \(Y\) into \(W\) is defined by the term

\[(f \cdot \text{reproj}_2(z))'(z_2).\]

Now we state the proposition:

(35) Let us consider real normed spaces \(X, Y, W\), a point \(z\) of \(X \times Y\), and a partial function \(f\) from \(X \times Y\) to \(W\). Then

(i) \(\text{partdiff}(f, z)\) w.r.t. 1 = \(\text{partdiff}(f \cdot (\text{IsoCPNrSP}(X, Y))^{-1}, (\text{IsoCPNrSP}(X, Y))(z), 1)\), and

(ii) \(\text{partdiff}(f, z)\) w.r.t. 2 = \(\text{partdiff}(f \cdot (\text{IsoCPNrSP}(X, Y))^{-1}, (\text{IsoCPNrSP}(X, Y))(z), 2)\).

The theorem is a consequence of (32) and (33).

Let us consider real normed spaces \(X, Y, W\), a point \(z\) of \(X \times Y\), a partial function \(f\) from \(X \times Y\) to \(W\). Now we state the propositions:

(36) Suppose \(f_1\) is partially differentiable in \(z\) w.r.t. 1 and \(f_2\) is partially differentiable in \(z\) w.r.t. 1. Then

(i) \(f_1 + f_2\) is partially differentiable in \(z\) w.r.t. 1, and

(ii) \(\text{partdiff}(f_1 + f_2, z)\) w.r.t. 1 = \(\text{partdiff}(f_1, z)\) w.r.t. 1 + \(\text{partdiff}(f_2, z)\) w.r.t. 1, and

(iii) \(f_1 - f_2\) is partially differentiable in \(z\) w.r.t. 1, and

(iv) \(\text{partdiff}(f_1 - f_2, z)\) w.r.t. 1 = \(\text{partdiff}(f_1, z)\) w.r.t. 1 - \(\text{partdiff}(f_2, z)\) w.r.t. 1.

(37) Suppose \(f_1\) is partially differentiable in \(z\) w.r.t. 2 and \(f_2\) is partially differentiable in \(z\) w.r.t. 2. Then

(i) \(f_1 + f_2\) is partially differentiable in \(z\) w.r.t. 2, and

(ii) \(\text{partdiff}(f_1 + f_2, z)\) w.r.t. 2 = \(\text{partdiff}(f_1, z)\) w.r.t. 2 + \(\text{partdiff}(f_2, z)\) w.r.t. 2, and

(iii) \(f_1 - f_2\) is partially differentiable in \(z\) w.r.t. 2, and

(iv) \(\text{partdiff}(f_1 - f_2, z)\) w.r.t. 2 = \(\text{partdiff}(f_1, z)\) w.r.t. 2 - \(\text{partdiff}(f_2, z)\) w.r.t. 2.

Let us consider real normed spaces \(X, Y, W\), a point \(z\) of \(X \times Y\), a real number \(r\), and a partial function \(f\) from \(X \times Y\) to \(W\). Now we state the propositions:

(38) Suppose \(f\) is partially differentiable in \(z\) w.r.t. 1. Then

(i) \(r \cdot f\) is partially differentiable in \(z\) w.r.t. 1, and

(ii) \(\text{partdiff}(r \cdot f, z)\) w.r.t. 1 = \(r \cdot \text{partdiff}(f, z)\) w.r.t. 1.

(39) Suppose \(f\) is partially differentiable in \(z\) w.r.t. 2. Then
(i) $r \cdot f$ is partially differentiable in z w.r.t. 2, and

(ii) $\text{partdiff}(r \cdot f, z)$ w.r.t. 2 = $r \cdot \text{partdiff}(f, z)$ w.r.t. 2.

Let X, Y, W be real normed spaces, Z be a set, and f be a partial function from $X \times Y$ to W. We say that f is partially differentiable on Z w.r.t. 1 if and only if

(Def. 8) (i) $Z \subseteq \text{dom } f$, and

(ii) for every point z of $X \times Y$ such that $z \in Z$ holds $f\mid Z$ is partially differentiable in z w.r.t. 1.

We say that f is partially differentiable on Z w.r.t. 2 if and only if

(Def. 9) (i) $Z \subseteq \text{dom } f$, and

(ii) for every point z of $X \times Y$ such that $z \in Z$ holds $f\mid Z$ is partially differentiable in z w.r.t. 2.

Now we state the proposition:

(40) Let us consider real normed spaces X, Y, W, a subset Z of $X \times Y$, and a partial function f from $X \times Y$ to W. Then

(i) f is partially differentiable on Z w.r.t. 1 iff $f \cdot (\text{IsoCPNrSP}(X, Y))^{-1}$ is partially differentiable on $((\text{IsoCPNrSP}(X, Y))^{-1}(Z))$ w.r.t. 1, and

(ii) f is partially differentiable on Z w.r.t. 2 iff $f \cdot (\text{IsoCPNrSP}(X, Y))^{-1}$ is partially differentiable on $((\text{IsoCPNrSP}(X, Y))^{-1}(Z))$ w.r.t. 2.

The theorem is a consequence of (18), (19), (17), (34), and (1). Proof: Set $I = (\text{IsoCPNrSP}(X, Y))^{-1}$. Set $g = f \cdot I$. Set $E = I^{-1}(Z)$. f is partially differentiable on Z w.r.t. 1 iff g is partially differentiable on E w.r.t. 1 by [5, (113)], [4, (34)], [5, (38)]. f is partially differentiable on Z w.r.t. 2 iff g is partially differentiable on E w.r.t. 2 by [5, (113)], [4, (34)], [5, (38)]. □

Let X, Y, W be real normed spaces, Z be a set, and f be a partial function from $X \times Y$ to W. Assume f is partially differentiable on Z w.r.t. 1. The functor $f \upharpoonright^1 Z$ yielding a partial function from $X \times Y$ to the real norm space of bounded linear operators from X into W is defined by

(Def. 10) (i) $\text{dom } it = Z$, and

(ii) for every point z of $X \times Y$ such that $z \in Z$ holds $it_z = \text{partdiff}(f, z)$ w.r.t. 1.

Assume f is partially differentiable on Z w.r.t. 2. The functor $f \upharpoonright^2 Z$ yielding a partial function from $X \times Y$ to the real norm space of bounded linear operators from Y into W is defined by

(Def. 11) (i) $\text{dom } it = Z$, and

(ii) for every point z of $X \times Y$ such that $z \in Z$ holds $it_z = \text{partdiff}(f, z)$ w.r.t. 2.
Let us consider real normed spaces X, Y, W, a subset Z of $X \times Y$, and a partial function f from $X \times Y$ to W. Now we state the propositions:

(41) Suppose f is partially differentiable on Z w.r.t. 1. Then $f \restriction_1 Z = (f \cdot (\text{IsoCPNrSP}(X, Y))^{-1} \restriction_1 (\text{IsoCPNrSP}(X, Y))^{-1} (Z)) \cdot \text{IsoCPNrSP}(X, Y)$.

(42) Suppose f is partially differentiable on Z w.r.t. 2. Then $f \restriction_2 Z = (f \cdot (\text{IsoCPNrSP}(X, Y))^{-1} \restriction_2 (\text{IsoCPNrSP}(X, Y))^{-1} (Z)) \cdot \text{IsoCPNrSP}(X, Y)$.

(43) Suppose Z is open. Then f is partially differentiable on Z w.r.t. 1 if and only if $Z \subseteq \text{dom } f$ and for every point x of $X \times Y$ such that $x \in Z$ holds f is partially differentiable in x w.r.t. 1.

(44) Suppose Z is open. Then f is partially differentiable on Z w.r.t. 2 if and only if $Z \subseteq \text{dom } f$ and for every point x of $X \times Y$ such that $x \in Z$ holds f is partially differentiable in x w.r.t. 2.

Let us consider real normed spaces X, Y, W, a subset Z of $X \times Y$, and partial functions f, g from $X \times Y$ to W. Now we state the propositions:

(45) Suppose Z is open and f is partially differentiable on Z w.r.t. 1 and g is partially differentiable on Z w.r.t. 1. Then

(i) $f + g$ is partially differentiable on Z w.r.t. 1, and

(ii) $(f + g) \restriction_1 Z = (f \restriction_1 Z) + (g \restriction_1 Z)$.

(46) Suppose Z is open and f is partially differentiable on Z w.r.t. 1 and g is partially differentiable on Z w.r.t. 1. Then

(i) $f - g$ is partially differentiable on Z w.r.t. 1, and

(ii) $(f - g) \restriction_1 Z = (f \restriction_1 Z) - (g \restriction_1 Z)$.

(47) Suppose Z is open and f is partially differentiable on Z w.r.t. 2 and g is partially differentiable on Z w.r.t. 2. Then

(i) $f + g$ is partially differentiable on Z w.r.t. 2, and

(ii) $(f + g) \restriction_2 Z = (f \restriction_2 Z) + (g \restriction_2 Z)$.

(48) Suppose Z is open and f is partially differentiable on Z w.r.t. 2 and g is partially differentiable on Z w.r.t. 2. Then

(i) $f - g$ is partially differentiable on Z w.r.t. 2, and

(ii) $(f - g) \restriction_2 Z = (f \restriction_2 Z) - (g \restriction_2 Z)$.

Let us consider real normed spaces X, Y, W, a subset Z of $X \times Y$, a real number r, and a partial function f from $X \times Y$ to W. Now we state the propositions:

(49) Suppose Z is open and f is partially differentiable on Z w.r.t. 1. Then

(i) $r \cdot f$ is partially differentiable on Z w.r.t. 1, and

(ii) $r \cdot f \restriction_1 Z = r \cdot (f \restriction_1 Z)$.

(50) Suppose Z is open and f is partially differentiable on Z w.r.t. 2. Then
(i) $r \cdot f$ is partially differentiable on Z w.r.t. 2, and
(ii) $r \cdot f |^2 Z = r \cdot (f |^2 Z)$.

Let us consider real normed spaces X, Y, W, a subset Z of $X \times Y$, and a partial function f from $X \times Y$ to W. Now we state the propositions:

(51) Suppose f is differentiable on Z. Then $f'_{\mid Z}$ is continuous on Z if and only if $\left((f \cdot (\text{IsoCPNrSP}(X,Y))^{-1})'\right)_{\mid ((\text{IsoCPNrSP}(X,Y))^{-1})^{-1}(Z)}$ is continuous on $((\text{IsoCPNrSP}(X,Y))^{-1})^{-1}(Z)$.

(52) Suppose Z is open. Then f is partially differentiable on Z w.r.t. 1 and f is partially differentiable on Z w.r.t. 2 and $f |^1 Z$ is continuous on Z and $f |^2 Z$ is continuous on Z if and only if f is differentiable on Z and $f'_{\mid Z}$ is continuous on Z.

References

Received December 31, 2013