Isometric Differentiable Functions on Real Normed Space ${ }^{[1]}$

Yuichi Futa
Japan Advanced Institute
of Science and Technology
Ishikawa, Japan

Noboru Endou
Gifu National College of Technology
Gifu, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article, we formalize isometric differentiable functions on real normed space [17], and their properties.

MSC: 58C20 46G05 03B35
Keywords: isometric differentiable function
MML identifier: NDIFF_7, version: 8.1.02 5.22.1194
The notation and terminology used in this paper have been introduced in the following articles: [3, [2], 8], 4], 5], 18], [10, [11, [19, [14, [16], 1], 6], 9], [15], [23], [24], [21], [22], [13], 25], and [7].

1. Preliminaries

From now on S, T, W, Y denote real normed spaces, f, f_{1}, f_{2} denote partial functions from S to T, Z denotes a subset of S, and i, n denote natural numbers.

Now we state the propositions:
(1) Let us consider a set X and functions I, f. Then $(f \upharpoonright X) \cdot I=(f$. I) $\upharpoonright I^{-1}(X)$.
(2) Let us consider real normed spaces S, T, a linear operator L from S into T, and points x, y of S. Then $L(x)-L(y)=L(x-y)$.

[^0](3) Let us consider real normed spaces X, Y, W, a function I from X into Y, and partial functions f_{1}, f_{2} from Y to W. Then
(i) $\left(f_{1}+f_{2}\right) \cdot I=f_{1} \cdot I+f_{2} \cdot I$, and
(ii) $\left(f_{1}-f_{2}\right) \cdot I=f_{1} \cdot I-f_{2} \cdot I$.

Proof: Set $D_{1}=$ the carrier of X. For every element s of $D_{1}, s \in$ $\operatorname{dom}\left(\left(f_{1}+f_{2}\right) \cdot I\right)$ iff $s \in \operatorname{dom}\left(f_{1} \cdot I+f_{2} \cdot I\right)$ by [4, (11)]. For every element z of D_{1} such that $z \in \operatorname{dom}\left(\left(f_{1}+f_{2}\right) \cdot I\right)$ holds $\left(\left(f_{1}+f_{2}\right) \cdot I\right)(z)=\left(f_{1} \cdot I+f_{2} \cdot I\right)(z)$ by [4, (11), (12)]. For every element s of $D_{1}, s \in \operatorname{dom}\left(\left(f_{1}-f_{2}\right) \cdot I\right)$ iff $s \in \operatorname{dom}\left(f_{1} \cdot I-f_{2} \cdot I\right)$ by [4, (11)]. For every element z of D_{1} such that $z \in \operatorname{dom}\left(\left(f_{1}-f_{2}\right) \cdot I\right)$ holds $\left(\left(f_{1}-f_{2}\right) \cdot I\right)(z)=\left(f_{1} \cdot I-f_{2} \cdot I\right)(z)$ by [4, (11), (12)].
(4) Let us consider real normed spaces X, Y, W, a function I from X into Y, a partial function f from Y to W, and a real number r. Then $r \cdot(f \cdot I)=$ $(r \cdot f) \cdot I$. Proof: Set $D_{1}=$ the carrier of X. For every element s of D_{1}, $s \in \operatorname{dom}((r \cdot f) \cdot I)$ iff $s \in \operatorname{dom}(f \cdot I)$ by [4, (11)]. For every element s of $D_{1}, s \in \operatorname{dom}((r \cdot f) \cdot I)$ iff $I(s) \in \operatorname{dom}(r \cdot f)$ by [4, (11)]. For every element z of D_{1} such that $z \in \operatorname{dom}(r \cdot(f \cdot I))$ holds $(r \cdot(f \cdot I))(z)=((r \cdot f) \cdot I)(z)$ by [4, (12)].
(5) Let us consider a partial function f from T to W, a function g from S into T, and a point x of S. Suppose
(i) $x \in \operatorname{dom} g$, and
(ii) $g_{x} \in \operatorname{dom} f$, and
(iii) g is continuous in x, and
(iv) f is continuous in g_{x}.

Then $f \cdot g$ is continuous in x. Proof: Set $h=f \cdot g$. For every real number r such that $0<r$ there exists a real number s such that $0<s$ and for every point x_{1} of S such that $x_{1} \in \operatorname{dom} h$ and $\left\|x_{1}-x\right\|<s$ holds $\left\|h_{x_{1}}-h_{x}\right\|<r$ by [14, (7)], 12, (3), (4)].
Let X, Y be real normed spaces and x be an element of $X \times Y$. The functor reproj1 (x) yielding a function from X into $X \times Y$ is defined by
(Def. 1) Let us consider an element r of X. Then $i t(r)=\left\langle r, x_{\mathbf{2}}\right\rangle$.
The functor reproj2(x) yielding a function from Y into $X \times Y$ is defined by
(Def. 2) Let us consider an element r of Y. Then $i t(r)=\left\langle x_{\mathbf{1}}, r\right\rangle$.

2. IsOMETRIES

Now we state the propositions:
(6) Let us consider a linear operator I from S into T and a point x of S. If I is isometric, then I is continuous in x.
(7) Let us consider real normed spaces S, T and a linear operator f from S into T. Then f is isometric if and only if for every element x of S, $\|f(x)\|=\|x\|$. The theorem is a consequence of (2).
(8) Let us consider a linear operator I from S into T and a subset Z of S. If I is isometric, then I is continuous on Z. The theorem is a consequence of (6).
(9) Let us consider a linear operator I from S into T. Suppose I is one-toone, onto, and isometric. Then there exists a linear operator J from T into S such that
(i) $J=I^{-1}$, and
(ii) J is one-to-one, onto, and isometric.

The theorem is a consequence of (7). Proof: Reconsider $J=I^{-1}$ as a function from T into S. For every points v, w of $T, J(v+w)=J(v)+J(w)$ by [5, (113)], [4, (34)]. For every point v of T and for every real number r, $J(r \cdot v)=r \cdot J(v)$ by [5, (113)], [4, (34)]. For every point v of $T,\|J(v)\|=\|v\|$ by [5, (113)], 44, (34)].
Let us consider a linear operator I from S into T and a sequence s_{1} of S. Now we state the propositions:
(10) If I is isometric and s_{1} is convergent, then $I \cdot s_{1}$ is convergent and $\lim (I$. $\left.s_{1}\right)=I\left(\lim s_{1}\right)$.
(11) If I is one-to-one, onto, and isometric, then s_{1} is convergent iff $I \cdot s_{1}$ is convergent.
Let us consider a linear operator I from S into T and a subset Z of S. Now we state the propositions:
(12) If I is one-to-one, onto, and isometric, then Z is closed iff $I^{\circ} Z$ is closed.
(13) If I is one-to-one, onto, and isometric, then Z is open iff $I^{\circ} Z$ is open.
(14) If I is one-to-one, onto, and isometric, then Z is compact iff $I^{\circ} Z$ is compact.
Now we state the propositions:
(15) Let us consider a partial function f from T to W and a linear operator I from S into T. Suppose I is one-to-one, onto, and isometric. Let us consider a point x of S. Suppose $I(x) \in \operatorname{dom} f$. Then $f \cdot I$ is continuous in x if and only if f is continuous in $I(x)$. The theorem is a consequence of (9), (6), and (5).
(16) Let us consider a partial function f from T to W, a linear operator I from S into T, and a set X. Suppose
(i) $X \subseteq$ the carrier of T, and
(ii) I is one-to-one, onto, and isometric.

Then f is continuous on X if and only if $f \cdot I$ is continuous on $I^{-1}(X)$. The theorem is a consequence of (15) and (1). Proof: For every point y of T such that $y \in X$ holds $f \upharpoonright X$ is continuous in y by [5, (113)], [23, (57)].

Let X, Y be real normed spaces. The functor $\operatorname{IsoCPNrSP}(X, Y)$ yielding a linear operator from $X \times Y$ into $\Pi\langle X, Y\rangle$ is defined by
(Def. 3) Let us consider a point x of X and a point y of Y. Then $i t(x, y)=\langle x, y\rangle$. Now we state the proposition:
(17) Let us consider real normed spaces X, Y. Then ${ }^{0} \Pi\langle X, Y\rangle=$ $(\operatorname{IsoCPNrSP}(X, Y))\left(0_{X \times Y}\right)$.
Let X, Y be real normed spaces. Observe that $\operatorname{IsoCPNrSP}(X, Y)$ is one-toone onto and isometric.

Let us note that there exists a linear operator from $X \times Y$ into $\Pi\langle X, Y\rangle$ which is one-to-one, onto, and isometric.

Let f be a one-to-one onto isometric linear operator from $X \times Y$ into $\Pi\langle X$, $Y\rangle$. Let us note that the functor f^{-1} yields a linear operator from $\Pi\langle X, Y\rangle$ into $X \times Y$. One can verify that f^{-1} is one-to-one onto and isometric as a linear operator from $\Pi\langle X, Y\rangle$ into $X \times Y$.

Observe that there exists a linear operator from $\Pi\langle X, Y\rangle$ into $X \times Y$ which is one-to-one, onto, and isometric.

Now we state the propositions:
(18) Let us consider real normed spaces X, Y, a point x of X, and a point y of Y. Then $(\operatorname{IsoCPNrSP}(X, Y))^{-1}(\langle x, y\rangle)=\langle x, y\rangle$. Proof: Set $I=$ IsoCPNrSP (X, Y). Set $J=I^{-1}$. For every point x of X and for every point y of $Y, J(\langle x, y\rangle)=\langle x, y\rangle$ by [4, (34)].
(19) Let us consider real normed spaces X, Y. Then $(\operatorname{IsoCPNrSP}(X, Y))^{-1}\left(\prod^{\prime}\langle X, Y\rangle\right)=0_{X \times Y}$. The theorem is a consequence of (17).
(20) Let us consider real normed spaces X, Y and a subset Z of $X \times Y$. Then IsoCPNrSP (X, Y) is continuous on Z.
(21) Let us consider real normed spaces X, Y and a subset Z of $\Pi\langle X, Y\rangle$. Then $(\operatorname{IsoCPNrSP}(X, Y))^{-1}$ is continuous on Z.
(22) Let us consider real normed spaces S, T, W, a point f of the real norm space of bounded linear operators from S into W, a point g of the real norm space of bounded linear operators from T into W, and a linear operator I from S into T. Suppose
(i) I is one-to-one, onto, and isometric, and
(ii) $f=g \cdot I$.

Then $\|f\|=\|g\|$. The theorem is a consequence of (9) and (7). Proof: Consider J being a linear operator from T into S such that $J=I^{-1}$ and
J is one-to-one, onto, and isometric. Reconsider $g_{0}=g$ as a Lipschitzian linear operator from T into W. Reconsider $g_{3}=g \cdot I$ as a Lipschitzian linear operator from S into W. For every element $x, x \in\left\{\left\|g_{0}(t)\right\|\right.$, where t is a vector of $T:\|t\| \leqslant 1\}$ iff $x \in\left\{\left\|g_{3}(w)\right\|\right.$, where w is a vector of $S:\|w\| \leqslant 1\}$ by [4, (13), (35)].
Let us consider S and T. One can verify that every linear operator from S into T which is isometric is also Lipschitzian.

3. Isometric Differentiable Functions on Real Normed Space

Let us consider a real norm space sequence G, a real normed space F, a set i, partial functions f, g from ΠG to F, and a subset X of ΠG. Now we state the propositions:
(23) Suppose X is open and $i \in \operatorname{dom} G$ and f is partially differentiable on X w.r.t. i and g is partially differentiable on X w.r.t. i. Then
(i) $f+g$ is partially differentiable on X w.r.t. i, and
(ii) $(f+g) \upharpoonright^{i} X=\left(f \upharpoonright^{i} X\right)+\left(g \upharpoonright^{i} X\right)$.
(24) Suppose X is open and $i \in \operatorname{dom} G$ and f is partially differentiable on X w.r.t. i and g is partially differentiable on X w.r.t. i. Then
(i) $f-g$ is partially differentiable on X w.r.t. i, and
(ii) $(f-g) \upharpoonright^{i} X=\left(f \upharpoonright^{i} X\right)-\left(g \upharpoonright^{i} X\right)$.

Now we state the propositions:
(25) Let us consider a real norm space sequence G, a real normed space F, a set i, a partial function f from ΠG to F, a real number r, and a subset X of ΠG. Suppose
(i) X is open, and
(ii) $i \in \operatorname{dom} G$, and
(iii) f is partially differentiable on X w.r.t. i.

Then
(iv) $r \cdot f$ is partially differentiable on X w.r.t. i, and
(v) $r \cdot f \upharpoonright^{i} X=r \cdot\left(f \upharpoonright^{i} X\right)$.

Proof: Set $h=r \cdot f$. For every point x of ΠG such that $x \in X$ holds h is partially differentiable in x w.r.t. i and partdiff $(h, x, i)=r \cdot \operatorname{partdiff}(f, x, i)$ by [19, (24), (30)]. Set $f_{3}=f \upharpoonright^{i} X$. For every point x of ΠG such that $x \in X$ holds $\left(r \cdot f_{3}\right)_{x}=\operatorname{partdiff}(h, x, i)$.
(26) Let us consider real normed spaces S, T, a Lipschitzian linear operator L from S into T, and a point x_{0} of S. Then
(i) L is differentiable in x_{0}, and
(ii) $L^{\prime}\left(x_{0}\right)=L$.

The theorem is a consequence of (2). Proof: Reconsider $L_{0}=L$ as a point of the real norm space of bounded linear operators from S into T. Reconsider $R=($ the carrier of $S) \longmapsto 0_{T}$ as a partial function from S to T. Set $N=$ the neighbourhood of x_{0}. For every point x of S such that $x \in N$ holds $L_{0 x}-L_{0 x_{0}}=L\left(x-x_{0}\right)+R_{x-x_{0}}$ by [20, (7)], [21, (4)].
(27) Let us consider a partial function f from T to W, a Lipschitzian linear operator I from S into T, and a point I_{0} of the real norm space of bounded linear operators from S into T. Suppose $I_{0}=I$. Let us consider a point x of S. Suppose f is differentiable in $I(x)$. Then
(i) $f \cdot I$ is differentiable in x, and
(ii) $(f \cdot I)^{\prime}(x)=f^{\prime}(I(x)) \cdot I_{0}$.

The theorem is a consequence of (26).
(28) Let us consider a partial function f from T to W and a linear operator I from S into T. Suppose
(i) I is one-to-one and onto, and
(ii) I is isometric.

Let us consider a point x of S. Then $f \cdot I$ is differentiable in x if and only if f is differentiable in $I(x)$. The theorem is a consequence of $(9),(26)$, and (27).
(29) Let us consider a partial function f from T to W, a linear operator I from S into T, and a set X. Suppose
(i) $X \subseteq$ the carrier of T, and
(ii) I is one-to-one and onto, and
(iii) I is isometric.

Then f is differentiable on X if and only if $f \cdot I$ is differentiable on $I^{-1}(X)$. The theorem is a consequence of (28) and (1). Proof: For every point y of T such that $y \in X$ holds $f \upharpoonright X$ is differentiable in y by [5, (113)].
(30) Let us consider real normed spaces X, Y, a partial function f from $\Pi\langle X$, $Y\rangle$ to W, and a subset D of $\Pi\langle X, Y\rangle$. Suppose f is differentiable on D. Let us consider a point z of $\Pi\langle X, Y\rangle$. Suppose $z \in \operatorname{dom} f_{\mid D}^{\prime}$. Then $f_{\mid D}^{\prime}(z)=$ $\left((f \cdot \operatorname{IsoCPNrSP}(X, Y))_{\mid(\operatorname{IsoCPNrSP}(X, Y))^{-1}(D)}^{\prime}\right)_{(\operatorname{IsoCPNrSP}(X, Y))^{-1}(z)^{\circ}}$ ($\operatorname{IsoCPNrSP}(X, Y))^{-1}$. The theorem is a consequence of (17), (29), and (27). Proof: Set $I=\operatorname{IsoCPNrSP}(X, Y)$. Set $J=(\operatorname{IsoCPNrSP}(X, Y))^{-1}$. Set $g=f \cdot I$. Set $E=I^{-1}(D)$. For every point z of $\Pi\langle X, Y\rangle$ such that $z \in \operatorname{dom} f_{\lceil D}^{\prime}$ holds $f_{\lceil D}^{\prime}(z)=\left(g_{\lceil E}^{\prime}\right)_{J(z)} \cdot I^{-1}$ by [10, (31)], [5, (113)], [23, (36)].
(31) Let us consider real normed spaces X, Y, a partial function f from $X \times$ Y to W, and a subset D of $X \times Y$. Suppose f is differentiable on D. Let us consider a point z of $X \times Y$. Suppose $z \in \operatorname{dom} f_{\mid D}^{\prime}$. Then $f_{\mid D}^{\prime}(z)=$ $\left(\left(f \cdot(\operatorname{IsoCPNrSP}(X, Y))^{-1}\right)_{\uparrow\left((\operatorname{IsoCPNrSP}(X, Y))^{-1}\right)^{-1}(D)}^{\prime}\right)_{(\operatorname{IsoCPNrSP}(X, Y))(z)}$. $\left((\operatorname{IsoCPNrSP}(X, Y))^{-1}\right)^{-1}$. The theorem is a consequence of (18), (19), (17), (29), and (27). Proof: Set $I=(\operatorname{IsoCPNrSP}(X, Y))^{-1}$. Set $J=$ IsoCPNrSP (X, Y). Set $g=f \cdot I$. Set $E=I^{-1}(D)$. For every point z of $X \times Y$ such that $z \in \operatorname{dom} f_{\upharpoonright D}^{\prime}$ holds $f_{\upharpoonright D}^{\prime}(z)=\left(g_{\lceil E}^{\prime}\right)_{J(z)} \cdot I^{-1}$ by [10, (31)], [5, (113)], [23, (36)].
(32) Let us consider real normed spaces X, Y and a point z of $X \times Y$. Then
(i) $\operatorname{reproj} 1(z)=(\operatorname{IsoCPNrSP}(X, Y))^{-1} \cdot \operatorname{reproj}(1(\in \operatorname{dom}\langle X, Y\rangle)$, $(\operatorname{IsoCPNrSP}(X, Y))(z))$, and
(ii) $\operatorname{reproj} 2(z)=(\operatorname{IsoCPNrSP}(X, Y))^{-1} \cdot \operatorname{reproj}(2(\in \operatorname{dom}\langle X, Y\rangle)$, $(\operatorname{IsoCPNrSP}(X, Y))(z))$.
The theorem is a consequence of (18).
Let X, Y be real normed spaces and z be a point of $X \times Y$. Let us note that the functor z_{1} yields a point of X. One can verify that the functor z_{2} yields a point of Y. Let X, Y, W be real normed spaces. Let f be a partial function from $X \times Y$ to W. We say that f is partially differentiable in z w.r.t. 1 if and only if (Def. 4) $f \cdot \operatorname{reproj} 1(z)$ is differentiable in z_{1}.

We say that f is partially differentiable in z w.r.t. 2 if and only if
(Def. 5) $f \cdot \operatorname{reproj} 2(z)$ is differentiable in z_{2}.
Now we state the propositions:
(33) Let us consider real normed spaces X, Y and a point z of $X \times Y$. Then
(i) $z_{\mathbf{1}}=$ the projection onto $1(\in \operatorname{dom}\langle X, Y\rangle)((\operatorname{IsoCPNrSP}(X, Y))(z))$, and
(ii) $z_{2}=$ the projection onto $2(\in \operatorname{dom}\langle X, Y\rangle)((\operatorname{IsoCPNrSP}(X, Y))(z))$.
(34) Let us consider real normed spaces X, Y, W, a point z of $X \times Y$, and a partial function f from $X \times Y$ to W. Then
(i) f is partially differentiable in z w.r.t. 1 iff $f \cdot(\operatorname{IsoCPNrSP}(X, Y))^{-1}$ is partially differentiable in $(\operatorname{IsoCPNrSP}(X, Y))(z)$ w.r.t. 1, and
(ii) f is partially differentiable in z w.r.t. 2 iff $f \cdot(\operatorname{IsoCPNrSP}(X, Y))^{-1}$ is partially differentiable in $(\operatorname{IsoCPNrSP}(X, Y))(z)$ w.r.t. 2 .
The theorem is a consequence of (32) and (33).
Let X, Y, W be real normed spaces, z be a point of $X \times Y$, and f be a partial function from $X \times Y$ to W. The functor partdiff (f, z) w.r.t. 1 yielding a point of the real norm space of bounded linear operators from X into W is defined by the term
(Def. 6) $(f \cdot \operatorname{reproj} 1(z))^{\prime}\left(z_{1}\right)$.
The functor partdiff (f, z) w.r.t. 2 yielding a point of the real norm space of bounded linear operators from Y into W is defined by the term
(Def. 7) $(f \cdot \operatorname{reproj} 2(z))^{\prime}\left(z_{2}\right)$.
Now we state the proposition:
(35) Let us consider real normed spaces X, Y, W, a point z of $X \times Y$, and a partial function f from $X \times Y$ to W. Then
(i) partdiff (f, z) w.r.t. $1=\operatorname{partdiff}\left(f \cdot(\operatorname{IsoCPNrSP}(X, Y))^{-1}\right.$, $(\operatorname{IsoCPNrSP}(X, Y))(z), 1)$, and
(ii) $\operatorname{partdiff}(f, z)$ w.r.t. $2=\operatorname{partdiff}\left(f \cdot(\operatorname{IsoCPNrSP}(X, Y))^{-1}\right.$, $(\operatorname{IsoCPNrSP}(X, Y))(z), 2)$.
The theorem is a consequence of (32) and (33).
Let us consider real normed spaces X, Y, W, a point z of $X \times Y$, and partial functions f_{1}, f_{2} from $X \times Y$ to W. Now we state the propositions:
(36) Suppose f_{1} is partially differentiable in z w.r.t. 1 and f_{2} is partially differentiable in z w.r.t. 1. Then
(i) $f_{1}+f_{2}$ is partially differentiable in z w.r.t. 1 , and
(ii) $\operatorname{partdiff}\left(f_{1}+f_{2}, z\right)$ w.r.t. $1=$ $\operatorname{partdiff}\left(f_{1}, z\right)$ w.r.t. $1+\operatorname{partdiff}\left(f_{2}, z\right)$ w.r.t. 1 , and
(iii) $f_{1}-f_{2}$ is partially differentiable in z w.r.t. 1 , and
(iv) partdiff $\left(f_{1}-f_{2}, z\right)$ w.r.t. $1=$ $\operatorname{partdiff}\left(f_{1}, z\right)$ w.r.t. $1-\operatorname{partdiff}\left(f_{2}, z\right)$ w.r.t. 1.
(37) Suppose f_{1} is partially differentiable in z w.r.t. 2 and f_{2} is partially differentiable in z w.r.t. 2. Then
(i) $f_{1}+f_{2}$ is partially differentiable in z w.r.t. 2 , and
(ii) partdiff $\left(f_{1}+f_{2}, z\right)$ w.r.t. $2=$ $\operatorname{partdiff}\left(f_{1}, z\right)$ w.r.t. $2+\operatorname{partdiff}\left(f_{2}, z\right)$ w.r.t. 2 , and
(iii) $f_{1}-f_{2}$ is partially differentiable in z w.r.t. 2 , and
(iv) $\operatorname{partdiff}\left(f_{1}-f_{2}, z\right)$ w.r.t. $2=$ $\operatorname{partdiff}\left(f_{1}, z\right)$ w.r.t. $2-\operatorname{partdiff}\left(f_{2}, z\right)$ w.r.t. 2 .
Let us consider real normed spaces X, Y, W, a point z of $X \times Y$, a real number r, and a partial function f from $X \times Y$ to W. Now we state the propositions:
(38) Suppose f is partially differentiable in z w.r.t. 1. Then
(i) $r \cdot f$ is partially differentiable in z w.r.t. 1 , and
(ii) $\operatorname{partdiff}(r \cdot f, z)$ w.r.t. $1=r \cdot \operatorname{partdiff}(f, z)$ w.r.t. 1 .
(39) Suppose f is partially differentiable in z w.r.t. 2. Then
(i) $r \cdot f$ is partially differentiable in z w.r.t. 2 , and
(ii) $\operatorname{partdiff}(r \cdot f, z)$ w.r.t. $2=r \cdot \operatorname{partdiff}(f, z)$ w.r.t. 2 .

Let X, Y, W be real normed spaces, Z be a set, and f be a partial function from $X \times Y$ to W. We say that f is partially differentiable on Z w.r.t. 1 if and only if
(Def. 8)
(i) $Z \subseteq \operatorname{dom} f$, and
(ii) for every point z of $X \times Y$ such that $z \in Z$ holds $f\lceil Z$ is partially differentiable in z w.r.t. 1 .
We say that f is partially differentiable on Z w.r.t. 2 if and only if
(Def. 9) (i) $Z \subseteq \operatorname{dom} f$, and
(ii) for every point z of $X \times Y$ such that $z \in Z$ holds $f \upharpoonright Z$ is partially differentiable in z w.r.t. 2.
Now we state the proposition:
(40) Let us consider real normed spaces X, Y, W, a subset Z of $X \times Y$, and a partial function f from $X \times Y$ to W. Then
(i) f is partially differentiable on Z w.r.t. 1 iff $f \cdot(\operatorname{IsoCPNrSP}(X, Y))^{-1}$ is partially differentiable on $\left((\operatorname{IsoCPNrSP}(X, Y))^{-1}\right)^{-1}(Z)$ w.r.t. 1, and
(ii) f is partially differentiable on Z w.r.t. 2 iff $f \cdot(\operatorname{IsoCPNrSP}(X, Y))^{-1}$ is partially differentiable on $\left((\operatorname{IsoCPNrSP}(X, Y))^{-1}\right)^{-1}(Z)$ w.r.t. 2.
The theorem is a consequence of (18), (19), (17), (34), and (1). Proof: Set $I=(\operatorname{IsoCPNrSP}(X, Y))^{-1}$. Set $g=f \cdot I$. Set $E=I^{-1}(Z) . f$ is partially differentiable on Z w.r.t. 1 iff g is partially differentiable on E w.r.t. 1 by [5, (113)], [4, (34)], [5, (38)]. f is partially differentiable on Z w.r.t. 2 iff g is partially differentiable on E w.r.t. 2 by [5, (113)], [4, (34)], [5, (38)]. \square
Let X, Y, W be real normed spaces, Z be a set, and f be a partial function from $X \times Y$ to W. Assume f is partially differentiable on Z w.r.t. 1. The functor $f \upharpoonright^{1} Z$ yielding a partial function from $X \times Y$ to the real norm space of bounded linear operators from X into W is defined by
(Def. 10) (i) dom $i t=Z$, and
(ii) for every point z of $X \times Y$ such that $z \in Z$ holds $i t_{z}=$ $\operatorname{partdiff}(f, z)$ w.r.t. 1.
Assume f is partially differentiable on Z w.r.t. 2. The functor $f \vdash^{2} Z$ yielding a partial function from $X \times Y$ to the real norm space of bounded linear operators from Y into W is defined by
(Def. 11) (i) dom $i t=Z$, and
(ii) for every point z of $X \times Y$ such that $z \in Z$ holds $i t_{z}=$ partdiff (f, z) w.r.t. 2.

Let us consider real normed spaces X, Y, W, a subset Z of $X \times Y$, and a partial function f from $X \times Y$ to W. Now we state the propositions:
(41) Suppose f is partially differentiable on Z w.r.t. 1. Then $f \upharpoonright^{1} Z=(f$. $\left.(\operatorname{IsoCPNrSP}(X, Y))^{-1} \upharpoonright^{1}\left((\operatorname{IsoCPNrSP}(X, Y))^{-1}\right)^{-1}(Z)\right) \cdot \operatorname{IsoCPNrSP}(X, Y)$.
(42) Suppose f is partially differentiable on Z w.r.t. 2. Then $f \upharpoonright^{2} Z=(f$. $\left.(\operatorname{IsoCPNrSP}(X, Y))^{-1} \upharpoonright^{2}\left((\operatorname{IsoCPNrSP}(X, Y))^{-1}\right)^{-1}(Z)\right) \cdot \operatorname{IsoCPNrSP}(X, Y)$.
(43) Suppose Z is open. Then f is partially differentiable on Z w.r.t. 1 if and only if $Z \subseteq \operatorname{dom} f$ and for every point x of $X \times Y$ such that $x \in Z$ holds f is partially differentiable in x w.r.t. 1 .
(44) Suppose Z is open. Then f is partially differentiable on Z w.r.t. 2 if and only if $Z \subseteq \operatorname{dom} f$ and for every point x of $X \times Y$ such that $x \in Z$ holds f is partially differentiable in x w.r.t. 2 .
Let us consider real normed spaces X, Y, W, a subset Z of $X \times Y$, and partial functions f, g from $X \times Y$ to W. Now we state the propositions:
(45) Suppose Z is open and f is partially differentiable on Z w.r.t. 1 and g is partially differentiable on Z w.r.t. 1. Then
(i) $f+g$ is partially differentiable on Z w.r.t. 1 , and
(ii) $(f+g) \upharpoonright^{1} Z=\left(f \upharpoonright^{1} Z\right)+\left(g \upharpoonright^{1} Z\right)$.
(46) Suppose Z is open and f is partially differentiable on Z w.r.t. 1 and g is partially differentiable on Z w.r.t. 1. Then
(i) $f-g$ is partially differentiable on Z w.r.t. 1 , and
(ii) $(f-g) \upharpoonright^{1} Z=\left(f \upharpoonright^{1} Z\right)-\left(g \upharpoonright^{1} Z\right)$.
(47) Suppose Z is open and f is partially differentiable on Z w.r.t. 2 and g is partially differentiable on Z w.r.t. 2. Then
(i) $f+g$ is partially differentiable on Z w.r.t. 2, and
(ii) $(f+g) \upharpoonright^{2} Z=\left(f \upharpoonright^{2} Z\right)+\left(g \upharpoonright^{2} Z\right)$.
(48) Suppose Z is open and f is partially differentiable on Z w.r.t. 2 and g is partially differentiable on Z w.r.t. 2. Then
(i) $f-g$ is partially differentiable on Z w.r.t. 2, and
(ii) $(f-g) \upharpoonright^{2} Z=\left(f \upharpoonright^{2} Z\right)-\left(g \upharpoonright^{2} Z\right)$.

Let us consider real normed spaces X, Y, W, a subset Z of $X \times Y$, a real number r, and a partial function f from $X \times Y$ to W. Now we state the propositions:
(49) Suppose Z is open and f is partially differentiable on Z w.r.t. 1. Then
(i) $r \cdot f$ is partially differentiable on Z w.r.t. 1 , and
(ii) $r \cdot f \upharpoonright^{1} Z=r \cdot\left(f \upharpoonright^{1} Z\right)$.
(50) Suppose Z is open and f is partially differentiable on Z w.r.t. 2. Then
(i) $r \cdot f$ is partially differentiable on Z w.r.t. 2 , and
(ii) $r \cdot f \upharpoonright^{2} Z=r \cdot\left(f \upharpoonright^{2} Z\right)$.

Let us consider real normed spaces X, Y, W, a subset Z of $X \times Y$, and a partial function f from $X \times Y$ to W. Now we state the propositions:
(51) Suppose f is differentiable on Z. Then $f_{\mid Z}^{\prime}$ is continuous on Z if and only if $\left(f \cdot(\operatorname{IsoCPNrSP}(X, Y))^{-1}\right)_{\uparrow\left((\operatorname{IsoCPNrSP}(X, Y))^{-1}\right)^{-1}(Z)}^{\prime}$ is continuous on $\left((\operatorname{IsoCPNrSP}(X, Y))^{-1}\right)^{-1}(Z)$.
(52) Suppose Z is open. Then f is partially differentiable on Z w.r.t. 1 and f is partially differentiable on Z w.r.t. 2 and $f \upharpoonright^{1} Z$ is continuous on Z and $f \upharpoonright^{2} Z$ is continuous on Z if and only if f is differentiable on Z and $f_{Y Z}^{\prime}$ is continuous on Z.

References

[1] Grzegorz Bancerek. The ordinal numbers Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Binary operations, Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Bylinski. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Byliński. Partial functions Formalized Mathematics, 1(2):357-367, 1990.
[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] Agata Darmochwał. Finite sets Formalized Mathematics, 1(1):165-167, 1990.
[9] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. The product space of real normed spaces and its properties. Formalized Mathematics, 15(3):81-85, 2007. doi $10.2478 / \mathrm{v} 10037-007-0010-\mathrm{y}$.
[10] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces, Formalized Mathematics, 12(3):321-327, 2004.
[11] Hiroshi Imura, Yuji Sakai, and Yasunari Shidama. Differentiable functions on normed linear spaces. Part II, Formalized Mathematics, 12(3):371-374, 2004.
[12] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces Formalized Mathematics, 1(2):335-342, 1990.
[14] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.
[15] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family of real linear spaces. Formalized Mathematics, 19(1):51-59, 2011. doi 10.2478/v10037-011-0009-2.
[16] Jan Popiołek. Real normed space, Formalized Mathematics, 2(1):111-115, 1991.
[17] Laurent Schwartz. Cours d'analyse. Hermann, 1981.
[18] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.
[19] Yasunari Shidama. Differentiable functions on normed linear spaces. Formalized Mathematics, 20(1):31-40, 2012. doi 10.2478/v10037-012-0005-1.
[20] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.
[21] Wojciech A. Trybulec. Vectors in real linear space Formalized Mathematics, 1(2):291-296, 1990.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
[24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[25] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992.

Received December 31, 2013

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI 23500029 and 22300285.

