Random Variables and Product of Probability Spaces

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. We have been working on the formalization of the probability and the randomness. In [15] and [16], we formalized some theorems concerning the real-valued random variables and the product of two probability spaces. In this article, we present the generalized formalization of [15] and [16]. First, we formalize the random variables of arbitrary set and prove the equivalence between random variable on Σ, Borel sets and a real-valued random variable on Σ. Next, we formalize the product of countably infinite probability spaces.

MML identifier: RANDOM_3 version: 8.1.01 5.7.1169

The notation and terminology used in this paper have been introduced in the following articles: [1], [14], [12], [4], [11], [18], [7], [8], [5], [2], [3], [9], [13], [22], [15], [16], [20], [21], [17], [19], [6], and [10].

1. Random Variables

In this paper Ω, Ω_1, Ω_2 denote non empty sets, Σ denotes a σ-field of subsets of Ω, S_1 denotes a σ-field of subsets of Ω_1, and S_2 denotes a σ-field of subsets of Ω_2.

Now we state the proposition:

(1) Let us consider a non empty set B and a function f. Then \(f^{-1}(\bigcup B) = \bigcup (f^{-1}(Y)) \) where Y is an element of B : not contradiction).

Let us consider a function f from Ω_1 into Ω_2, a sequence B of subsets of Ω_2, and a sequence D of subsets of Ω_1. Now we state the propositions:

\footnote{The 1st author was supported by JSPS KAKENHI 21240001, and the 2nd author was supported by JSPS KAKENHI 22300285.}
If for every element \(n \) of \(\mathbb{N} \), \(D(n) = f^{-1}(B(n)) \), then \(f^{-1}(\bigcup D) = \bigcup D \).

If for every element \(n \) of \(\mathbb{N} \), \(D(n) = f^{-1}(B(n)) \), then \(f^{-1}(\bigcap B) = \bigcap D \).

Now we state the propositions:

(4) Let us consider a function \(F \) from \(\Omega \) into \(\mathbb{R} \) and a real number \(r \). Suppose \(F \) is a real-valued random variable on \(\Sigma \). Then \(f^{-1}([-\infty, r[) \in \Sigma \).

Proof: Consider \(X \) being an element of \(\Sigma \) such that \(X = \Omega \) and \(F \) is measurable on \(X \). For every element \(z \), \(z \in f^{-1}([-\infty, r]) \) iff \(z \in \Omega \cap \text{LE-dom}(F, r) \).

\(\square \)

(5) Let us consider a function \(F \) from \(\Omega \) into \(\mathbb{R} \). Suppose \(F \) is a real-valued random variable on \(\Sigma \). Then \(\{x \) where \(x \) is an element of the Borel sets : \(f^{-1}(x) \) is an element of \(\Sigma \} \) is a \(\sigma \)-field of subsets of \(\mathbb{R} \). The theorem is a consequence of (4) and (3).

Proof: Set \(S = \{x \) where \(x \) is an element of the Borel sets : \(F^{-1}(x) \) is an element of \(\Sigma \} \). For every element \(x \) such that \(x \in S \) holds \(x \in \mathbb{R} \). Reconsider \(y_0 = \text{halfline}(r_0) \) as an element of the Borel sets. For every subset \(A \) of \(\mathbb{R} \) such that \(A \in S \) holds \(A^c \in S \). For every sequence \(A_1 \) of subsets of \(\mathbb{R} \) such that \(\text{rng} A_1 \subseteq S \) holds \(\text{Intersection} A_1 \in S \).

Now we consider a function \(f \) from \(\Omega \) into \(\mathbb{R} \). Now we state the propositions:

(6) Suppose \(f \) is a real-valued random variable on \(\Sigma \). Then \(\{x \) where \(x \) is an element of the Borel sets : \(f^{-1}(x) \) is an element of \(\Sigma \} = \text{the Borel sets} \).

(7) \(f \) is random variable on \(\Sigma \) and the Borel sets if and only if \(f \) is a real-valued random variable on \(\Sigma \).

(8) The set of random variables on \(\Sigma \) and the Borel sets = the real-valued random variables set on \(\Sigma \).

Let us consider \(\Omega_1, \Omega_2, S_1, \) and \(S_2 \). Let \(F \) be a function from \(\Omega_1 \) into \(\Omega_2 \). We say that \(F \) is \((S_1, S_2) \)-random variable-like if and only if

(Def. 1) \(F \) is random variable on \(S_1 \) and \(S_2 \).

Observe that there exists a function from \(\Omega_1 \) into \(\Omega_2 \) which is \((S_1, S_2) \)-random variable-like.

A random variable of \(S_1 \) and \(S_2 \) is an \((S_1, S_2) \)-random variable-like function from \(\Omega_1 \) into \(\Omega_2 \). Now we state the proposition:

(9) Let us consider a function \(f \) from \(\Omega \) into \(\mathbb{R} \). Then \(f \) is a random variable of \(\Sigma \) and the Borel sets if and only if \(f \) is a real-valued random variable on \(\Sigma \).

Let \(F \) be a function. We say that \(F \) is random variable family-like if and only if

(Def. 2) Let us consider a set \(x \). Suppose \(x \in \text{dom} F \). Then there exist non empty sets \(\Omega_1, \Omega_2 \) and there exists a \(\sigma \)-field \(S_1 \) of subsets of \(\Omega_1 \) and there exists
a σ-field S_2 of subsets of Ω_2 and there exists a random variable f of S_1 and S_2 such that $F(x) = f$.

One can verify that there exists a function which is random variable family-like.

A random variable family is a random variable family-like function. In this paper F denotes a random variable of S_1 and S_2.

Let Y be a non empty set, S be a σ-field of subsets of Y, and F be a function. We say that F is S-measure valued if and only if

(Def. 3) Let us consider a set x. If $x \in \text{dom} F$, then there exists a σ-measure M on S such that $F(x) = M$.

Note that there exists a function which is S-measure valued.

Let F be a function. We say that F is S-probability valued if and only if

(Def. 4) Let us consider a set x. If $x \in \text{dom} F$, then there exists a probability P on S such that $F(x) = P$.

Let us note that there exists a function which is S-probability valued.

Let X, Y be non empty sets. One can verify that there exists an S-probability valued function which is X-defined.

One can verify that there exists an X-defined S-probability valued function which is total.

Let Y be a non empty set. Let us note that every function which is S-probability valued is also S-measure valued.

Let F be a function. We say that F is S-random variable family if and only if

(Def. 5) Let us consider a set x. Suppose $x \in \text{dom} F$. Then there exists a real-valued random variable Z on S such that $F(x) = Z$.

Observe that there exists a function which is S-random variable family.

Now we state the propositions:

(10) Let us consider an element y of S_2. Suppose $y \neq \emptyset$. Then $\{ z \text{ where } z \text{ is an element of } \Omega_1 : F(z) \text{ is an element of } y \} = F^{-1}(y)$. \textbf{Proof}: Set $D = \{ z \text{ where } z \text{ is an element of } \Omega_1 : F(z) \text{ is an element of } y \}$. For every element $x, x \in D$ iff $x \in F^{-1}(y)$. \square

(11) Let us consider a random variable F of S_1 and S_2. Then

(i) $\{ x \text{ where } x \text{ is a subset of } \Omega_1 : \text{ there exists an element } y \text{ of } S_2 \text{ such that } x = F^{-1}(y) \} \subseteq S_1$, and

(ii) $\{ x \text{ where } x \text{ is a subset of } \Omega_1 : \text{ there exists an element } y \text{ of } S_2 \text{ such that } x = F^{-1}(y) \}$ is a σ-field of subsets of Ω_1.

The theorem is a consequence of (3). \textbf{Proof}: Set $S = \{ x \text{ where } x \text{ is a subset of } \Omega_1 : \text{ there exists an element } y \text{ of } S_2 \text{ such that } x = F^{-1}(y) \}$. For every element x such that $x \in S$ holds $x \in S_1$. For every subset A of
\[\Omega_1 \text{ such that } A \in S \text{ holds } A^c \in S. \text{ For every sequence } A_1 \text{ of subsets of } \Omega_1 \text{ such that } \text{rng} A_1 \subseteq S \text{ holds } \text{Intersection} A_1 \in S. \square \]

Let us consider \(\Omega_1, \Omega_2, S_1, \text{ and } S_2 \). Let \(M \) be a measure on \(S_1 \) and \(F \) be a random variable of \(S_1 \) and \(S_2 \). The functor the image measure of \(F \) and \(M \) yielding a measure on \(S_2 \) is defined by

(Def. 6) Let us consider an element \(y \) of \(S_2 \). Then \(it(y) = M(F^{-1}(y)) \).

Let \(M \) be a \(\sigma \)-measure on \(S_1 \). Note that the image measure of \(F \) and \(M \) is \(\sigma \)-additive.

Now we state the proposition:

(12) Let us consider a probability \(P \) on \(S_1 \) and a random variable \(F \) of \(S_1 \) and \(S_2 \). Then \((\text{probability}(F, P)) = \text{image measure of } F \text{ and } P \). The theorem is a consequence of (12).

(Def. 7) \(M_2P \) the image measure of \(F \) and \(P \).

Now we state the propositions:

(13) Let us consider a probability \(P \) on \(S_1 \) and a random variable \(F \) of \(S_1 \) and \(S_2 \). Then \(\text{probability}(F, P) = \text{image measure of } F \text{ and } P \).

The theorem is a consequence of (12).

(14) Let us consider a probability \(P \) on \(S_1 \), a random variable \(F \) of \(S_1 \) and \(S_2 \), and a set \(y \). If \(y \in S_2 \), then \((\text{probability}(F, P))(y) = P(F^{-1}(y)). \) The theorem is a consequence of (13).

(15) Every function from \(\Omega_1 \) into \(\Omega_2 \) is a random variable of the trivial \(\sigma \)-field of \(\Omega_1 \) and the trivial \(\sigma \)-field of \(\Omega_2 \).

(16) Let us consider a non empty set \(S \). Then every non empty finite sequence of elements of \(S \) is a random variable of the trivial \(\sigma \)-field of Seg len \(F \) and the trivial \(\sigma \)-field of \(S \). The theorem is a consequence of (15).

(17) Let us consider finite non empty sets \(V, S \), a random variable \(G \) of the trivial \(\sigma \)-field of \(V \) and the trivial \(\sigma \)-field of \(S \), and a set \(y \). Suppose \(y \in \text{the trivial } \sigma \text{-field of } S \). Then \((\text{probability}(G, \text{the trivial probability of } V))(y) = \frac{G^{-1}(y)}{V}. \) The theorem is a consequence of (14).

(18) Let us consider a finite non empty set \(S \), a non empty finite sequence \(s \) of elements of \(S \), and a set \(x \). Suppose \(x \in S \). Then there exists a random variable \(G \) of the trivial \(\sigma \)-field of Seg len \(s \) and the trivial \(\sigma \)-field of \(S \) such that

(i) \(G = s \), and

(ii) \((\text{probability}(G, \text{the trivial probability of Seg len } s)) = \text{Prob}_D(x, s). \)

The theorem is a consequence of (16) and (17).
2. Product of Probability Spaces

Let D be a non-empty many sorted set indexed by \mathbb{N} and n be a natural number. One can check that $D(n)$ is non-empty.

Let S, F be many sorted sets indexed by \mathbb{N}. We say that F is σ-field S-sequence-like if and only if

(Def. 8) Let us consider a natural number n. Then $F(n)$ is a σ-field of subsets of $S(n)$.

Let S be a many sorted set indexed by \mathbb{N}. Let us observe that there exists a many sorted set indexed by \mathbb{N} which is σ-field S-sequence-like.

Let D be a many sorted set indexed by \mathbb{N}. A σ-field sequence of D is a σ-field D-sequence-like many sorted set indexed by \mathbb{N}. Let S be a σ-field sequence of D and n be a natural number. Note that the functor $S(n)$ yields a σ-field of subsets of $D(n)$. Let D be a non-empty many sorted set indexed by \mathbb{N}. Let M be a many sorted set indexed by \mathbb{N}. We say that M is S-probability sequence-like if and only if

(Def. 9) Let us consider a natural number n. Then $M(n)$ is a probability on $S(n)$.

Observe that there exists a many sorted set indexed by \mathbb{N} which is S-probability sequence-like.

A probability sequence of S is an S-probability sequence-like many sorted set indexed by \mathbb{N}. Let P be a probability sequence of S and n be a natural number. One can verify that the functor $P(n)$ yields a probability on $S(n)$. Let D be a many sorted set indexed by \mathbb{N}. The functor the product domain D yielding a many sorted set indexed by \mathbb{N} is defined by

(Def. 10) (i) $i(0) = D(0)$, and

(ii) for every natural number i, $i(i + 1) = i(i) \times D(i + 1)$.

Now we state the proposition:

(19) Let us consider a many sorted set D indexed by \mathbb{N}. Then

(i) (the product domain $D)(0) = D(0)$, and

(ii) (the product domain $D)(1) = D(0) \times D(1)$, and

(iii) (the product domain $D)(2) = D(0) \times D(1) \times D(2)$, and

(iv) (the product domain $D)(3) = D(0) \times D(1) \times D(2) \times D(3)$.

Let D be a non-empty many sorted set indexed by \mathbb{N}. Let us note that the product domain D is non-empty.

Let D be a finite-yielding many sorted set indexed by \mathbb{N}. One can check that the product domain D is finite-yielding.

Let us consider Ω and Σ. Let P be a set. Assume P is a probability on Σ.

The functor modetrans(P, Σ) yielding a probability on Σ is defined by the term

(Def. 11) P.
Let D be a finite-yielding non-empty many sorted set indexed by \mathbb{N}. The functor the trivial σ-field sequence D yielding a σ-field sequence of D is defined by

(Def. 12) Let us consider a natural number n. Then $i\ell(n) = \text{the trivial } \sigma$-field of $D(n)$.

Let P be a probability sequence of the trivial σ-field sequence D and n be a natural number. One can check that the functor $P(n)$ yields a probability on the trivial σ-field of $D(n)$. The functor ProductProbability(P, D) yielding a many sorted set indexed by \mathbb{N} is defined by

(Def. 13) (i) $i\ell(0) = P(0)$, and

(ii) for every natural number i, $i\ell(i + 1) = \text{Product-Probability}((\text{the product domain } D)(i), D(i + 1), \text{modetrans}(i\ell(i), \text{the trivial } \sigma$-field of (the product domain $D)(i)), P(i + 1))$.

Let us consider a finite-yielding non-empty many sorted set D indexed by \mathbb{N}, a probability sequence P of the trivial σ-field sequence D, and a natural number n. Now we state the propositions:

(20) $(\text{ProductProbability}(P, D))(n)$ is a probability on the trivial σ-field of $(\text{the product domain } D)(n)$.

(21) There exists a probability P_4 on the trivial σ-field of $(\text{the product domain } D)(n)$ such that

(i) $P_4 = (\text{ProductProbability}(P, D))(n)$, and

(ii) $(\text{ProductProbability}(P, D))(n + 1) = \text{Product-Probability}((\text{the product domain } D)(n), D(n + 1), P_4, P(n + 1))$.

Now we state the proposition:

(22) Let us consider a finite-yielding non-empty many sorted set D indexed by \mathbb{N} and a probability sequence P of the trivial σ-field sequence D. Then

(i) $(\text{ProductProbability}(P, D))(0) = P(0)$, and

(ii) $(\text{ProductProbability}(P, D))(1) = \text{Product-Probability}(D(0), D(1), P(0), P(1))$, and

(iii) there exists a probability P_1 on the trivial σ-field of $D(0) \times D(1)$ such that $P_1 = (\text{ProductProbability}(P, D))(1)$ and $(\text{ProductProbability}(P, D))(2) = \text{Product-Probability}(D(0) \times D(1), D(2), P_1, P(2))$, and

(iv) there exists a probability P_2 on the trivial σ-field of $D(0) \times D(1) \times D(2)$ such that $P_2 = (\text{ProductProbability}(P, D))(2)$ and $(\text{ProductProbability}(P, D))(3) = \text{Product-Probability}(D(0) \times D(1) \times D(2), D(3), P_2, P(3))$, and

(v) there exists a probability P_3 on the trivial σ-field of $D(0) \times D(1) \times D(2) \times D(3)$ such that $P_3 = (\text{ProductProbability}(P, D))(3)$ and
Random variables and product of probability spaces

(ProductProbability(P, D))(4) = Product-Probability($D(0) \times D(1) \times D(2) \times D(3), D(4), P_3, P(4)$).

The theorem is a consequence of (19) and (21).

References

Received December 1, 2012