
FORMALIZED MATHEMATICS

Vol. 20, No. 4, Pages 271–274, 2012
DOI: 10.2478/v10037-012-0032-y versita.com/fm/

Banach’s Continuous Inverse Theorem and
Closed Graph Theorem1

Hideki Sakurai
406-3, Haneo, Naganohara
Agatuma, Gunma, Japan

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article we formalize one of the most important theorems
of linear operator theory – the Closed Graph Theorem commonly used in a
standard text book such as [10] in Chapter 24.3. It states that a surjective closed
linear operator between Banach spaces is bounded.
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The terminology and notation used here have been introduced in the following
articles: [3], [4], [2], [15], [11], [14], [1], [5], [13], [12], [19], [20], [16], [7], [17], [8],
[18], [9], and [6].

Let X, Y be non empty normed structures, let x be a point of X, and let y
be a point of Y . Then 〈〈x, y〉〉 is a point of X × Y.

Let X, Y be non empty normed structures, let s1 be a sequence of X, and
let s2 be a sequence of Y . Then 〈s1, s2〉 is a sequence of X × Y.

We now state several propositions:

(1) Let X, Y be real linear spaces and T be a linear operator from X into
Y . Suppose T is bijective. Then T−1 is a linear operator from Y into X
and rng(T−1) = the carrier of X.

(2) Let X, Y be non empty linear topological spaces, T be a linear operator
from X into Y , and S be a function from Y into X. Suppose T is bijective

1This work was supported by JSPS KAKENHI 22300285.
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and open and S = T−1. Then S is a linear operator from Y into X, onto,
and continuous.

(3) For all real normed spaces X, Y and for every linear operator f from X

into Y holds 0Y = f(0X).

(4) Let X, Y be real normed spaces, f be a linear operator from X into
Y , and x be a point of X. Then f is continuous in x if and only if f is
continuous in 0X .

(5) Let X, Y be real normed spaces and f be a linear operator from X into
Y . Then f is continuous on the carrier of X if and only if f is continuous
in 0X .

(6) Let X, Y be real normed spaces and f be a linear operator from X into
Y . Then f is Lipschitzian if and only if f is continuous on the carrier of
X.

(7) Let X, Y be real Banach spaces and T be a Lipschitzian linear operator
from X into Y . Suppose T is bijective. Then T−1 is a Lipschitzian linear
operator from Y into X.

(8) Let X, Y be real normed spaces, s1 be a sequence of X, s2 be a sequence
of Y , x be a point of X, and y be a point of Y . Then s1 is convergent
and lim s1 = x and s2 is convergent and lim s2 = y if and only if 〈s1, s2〉
is convergent and lim〈s1, s2〉 = 〈〈x, y〉〉.

Let X, Y be real normed spaces and let T be a partial function from X to
Y . The functor graph(T ) yields a subset of X × Y and is defined as follows:

(Def. 1) graph(T ) = T.

Let X, Y be real normed spaces and let T be a non empty partial function
from X to Y . Observe that graph(T ) is non empty.

Let X, Y be real normed spaces and let T be a linear operator from X into
Y . Note that graph(T ) is linearly closed.

Let X, Y be real normed spaces and let T be a linear operator from X

into Y . The functor graphNrm(T ) yielding a function from graph(T ) into R is
defined as follows:

(Def. 2) graphNrm(T ) = (the norm of X × Y )� graph(T ).

Let X, Y be real normed spaces and let T be a partial function from X to
Y . We say that T is closed if and only if:

(Def. 3) graph(T ) is closed.

Let X, Y be real normed spaces and let T be a linear operator from X

into Y . The functor graphNSP(T ) yields a non empty normed structure and is
defined by:

(Def. 4) graphNSP(T ) = 〈graph(T ),Zero(graph(T ), X × Y ),Add(graph(T ), X ×
Y ),Mult(graph(T ), X × Y ), graphNrm(T )〉.
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Let X, Y be real normed spaces and let T be a linear operator from X into
Y . One can check that graphNSP(T ) is Abelian, add-associative, right zeroed,
right complementable, scalar distributive, vector distributive, scalar associative,
and scalar unital.

One can prove the following proposition

(9) For all real normed spaces X, Y and for every linear operator T from X

into Y holds graphNSP(T ) is a subspace of X × Y.
Let X, Y be real normed spaces and let T be a linear operator from X into

Y . Note that graphNSP(T ) is reflexive, discernible, and real normed space-like.
We now state several propositions:

(10) Let X be a real normed space, Y be a real Banach space, and X0 be a
subset of Y . Suppose that

(i) X is a subspace of Y ,
(ii) the carrier of X = X0,

(iii) the norm of X = (the norm of Y )�(the carrier of X), and
(iv) X0 is closed.

Then X is complete.

(11) Let X, Y be real Banach spaces and T be a linear operator from X into
Y . If T is closed, then graphNSP(T ) is complete.

(12) Let X, Y be real normed spaces and T be a non empty partial function
from X to Y . Then T is closed if and only if for every sequence s3 of X
such that rng s3 ⊆ domT and s3 is convergent and T ∗s3 is convergent
holds lim s3 ∈ domT and lim(T ∗s3) = T (lim s3).

(13) Let X, Y be real normed spaces, T be a non empty partial function from
X to Y , and T0 be a linear operator from X into Y . If T0 is Lipschitzian
and domT is closed and T = T0, then T is closed.

(14) Let X, Y be real normed spaces, T be a non empty partial function from
X to Y , and S be a non empty partial function from Y to X. If T is closed
and one-to-one and S = T−1, then S is closed.

(15) For all real normed spaces X, Y and for every point x of X and for every
point y of Y holds ‖x‖ ≤ ‖〈〈x, y〉〉‖ and ‖y‖ ≤ ‖〈〈x, y〉〉‖.

Let X, Y be real Banach spaces. Note that every linear operator from X

into Y which is closed is also Lipschitzian.
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