The Friendship Theorem

Karol Pąk
Institute of Informatics
University of Białystok
Poland

Summary. In this article we prove the friendship theorem according to the article [1], which states that if a group of people has the property that any pair of persons have exactly one common friend, then there is a universal friend, i.e. a person who is a friend of every other person in the group.

MML identifier: FRIENDS1, version: 7.15.01 4.184.1155

The papers [3], [2], [6], [7], [11], [8], [9], [15], [14], [4], [13], [5], [17], [18], [12], [16], and [10] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: \(x, y, z \) are sets, \(i, k, n \) are natural numbers, \(R \) is a binary relation, \(P \) is a finite binary relation, and \(p, q \) are finite sequences.

Let us consider \(P, x \). Observe that \(P^2x \) is finite.

We now state several propositions:

1. \(\overline{\overline{R}} = \overline{R^\perp} \).
2. If \(R \) is symmetric, then \(R^2x = R^{-1}(x) \).
3. If \((p||k) \cap (p||k) = (q||n) \cap (q||n) \) and \(k \leq n \leq \text{len } p \), then \(p = (q||n-k) \cap (q||n-k) \).
4. If \(n \in \text{dom } q \) and \(p = (q||n) \cap (q||n) \), then \(q = (p||\text{len } p-n) \cap (p||\text{len } p-n) \).

\footnote{This work has been supported by the Polish Ministry of Science and Higher Education project “Managing a Large Repository of Computer-verified Mathematical Knowledge” (N N519 385136).}
\((5) \) If \((p|k) \cong (p|k) = (q|n) \cong (q|n)\), then there exists \(i\) such that \(p = (q|i) \cong (q|i)\).

The scheme \(Sch \) deals with a non empty set \(A \), a non zero natural number \(B \), and a unary predicate \(P \), and states that:

There exists a cardinal number \(C \) such that \(B \cdot C = \{ F \in \mathcal{A}^B : P[F] \} \)

provided the following requirements are met:

- For all finite sequences \(p, q \) of elements of \(A \) such that \(p \cong q \) is \(B \)-element and \(P[p \cong q] \) holds \(P[q \cong p] \), and
- For every element \(p \) of \(A^B \) such that \(P[p] \) and for every natural number \(i \) such that \(i < B \) and \(p = (p|i) \cong (p|i) \) holds \(i = 0 \).

One can prove the following propositions:

\((6) \) Let \(X \) be a non empty set, \(A \) be a non empty finite subset of \(X \), and \(P \) be a function from \(X \) into \(2^X \). Suppose that for every \(x \) such that \(x \in X \) holds \(P(x) = n \). Then

\[
\{ F \in X^{k+1} : F(1) \in A \land \bigwedge_i (i \in \text{Seg} k \Rightarrow F(i+1) \in P(F(i))) \} = A \cdot n^k.
\]

\((7) \) If \(\text{len} p \) is prime and there exists \(i \) such that \(0 < i < \text{len} p \) and \(p = (p|i) \cong (p|i) \), then \(\text{rng} p \subseteq \{p(1)\} \).

\[2. \text{The Friendship Graph} \]

Let us consider \(R \) and let \(x \) be an element of field \(R \). We say that \(x \) is universal friend if and only if:

(Def. 1) For every \(y \) such that \(y \in \text{field} R \setminus \{x\} \) holds \(\langle x, y \rangle \in R \).

Let \(R \) be a binary relation. We say that \(R \) has universal friend if and only if:

(Def. 2) There exists an element of field \(R \) which is universal friend.

Let \(R \) be a binary relation. We introduce \(R \) is without universal friend as an antonym of \(R \) has universal friend.

Let \(R \) be a binary relation. We say that \(R \) is friendship graph like if and only if:

(Def. 3) For all \(x, y \) such that \(x, y \in \text{field} R \) and \(x \neq y \) there exists \(z \) such that \(R^x \cap \text{Coim}(R, y) = \{z\} \).

Let us observe that there exists a binary relation which is finite, symmetric, irreflexive, and friendship graph like.

A friendship graph is a finite symmetric irreflexive friendship graph like binary relation.

In the sequel \(F_1 \) is a friendship graph.

The following propositions are true:
The friendship theorem

(8) \(2 \mid \overline{F_1 \circ x} \).

(9) If \(x, y \in \text{field } F_1 \) and \(\langle x, y \rangle \notin F_1 \), then \(\overline{F_1 \circ x} = \overline{F_1 \circ y} \).

(10) If \(F_1 \) is without universal friend and \(x \in \text{field } F_1 \), then \(\overline{F_1 \circ x} > 2 \).

(11) If \(F_1 \) is without universal friend and \(x, y \in \text{field } F_1 \), then \(\overline{F_1 \circ x} = \overline{F_1 \circ y} \).

(12) If \(F_1 \) is without universal friend and \(x \in \text{field } F_1 \), then \(\text{field } F_1 = 1 + \overline{F_1 \circ x} \cdot (\overline{F_1 \circ x} - 1) \).

(13) For all elements \(x, y \) of field \(F_1 \) such that \(x \) is universal friend and \(x \neq y \) there exists \(z \) such that \(F_1 \circ y = \{x, z\} \) and \(F_1 \circ z = \{x, y\} \).

3. The Friendship Theorem

Next we state the proposition

(14) If \(F_1 \) is non empty, then \(F_1 \) has universal friend.

REFERENCES

Received May 15, 2012