

The Gödel Completeness Theorem for Uncountable Languages¹

Julian J. Schlöder Mathematisches Institut Rheinische Friedrich-Wilhelms-Universität Bonn Endenicher Allee 60 D-53113 Bonn, Germany

Peter Koepke
Mathematisches Institut
Rheinische Friedrich-Wilhelms-Universität Bonn
Endenicher Allee 60
D-53113 Bonn, Germany

Summary. This article is the second in a series of two Mizar articles constituting a formal proof of the Gödel Completeness theorem [15] for uncountably large languages. We follow the proof given in [16]. The present article contains the techniques required to expand a theory such that the expanded theory contains witnesses and is negation faithful. Then the completeness theorem follows immediately.

MML identifier: GOEDCPUC, version: 7.14.01 4.183.1153

The notation and terminology used here have been introduced in the following papers: [8], [1], [3], [10], [19], [5], [14], [11], [12], [7], [6], [22], [2], [4], [17], [18], [23], [20], [9], [21], and [13].

 $^{^{1}}$ This article is part of the first author's Bachelor thesis under the supervision of the second author.

1. FORMULA-CONSTANT EXTENSION

For simplicity, we use the following convention: A_1 denotes an alphabet, P_1 denotes a consistent subset of CQC-WFF A_1 , P_2 denotes a subset of CQC-WFF A_1 , p, q, r, s denote elements of CQC-WFF A_1 , A denotes a non empty set, J denotes an interpretation of A_1 and A, v denotes an element of the valuations in A_1 and A, n, k denote elements of \mathbb{N} , x denotes a bound variable of A_1 , and A_2 denotes an A_1 -expanding alphabet.

Let us consider A_1 and let P_1 be a subset of CQC-WFF A_1 . We say that P_1 is satisfiable if and only if:

(Def. 1) There exist A, J, v such that $J \models_v P_1$.

In the sequel J_2 is an interpretation of A_2 and A and J_1 is an interpretation of A_1 and A.

One can prove the following proposition

- (1) There exists a set s such that for all p, x holds $\langle s, \langle x, p \rangle \rangle \notin \operatorname{Symb} A_1$. Let us consider A_1 . A set is called a free symbol of A_1 if:
- (Def. 2) For all p, x holds $\langle it, \langle x, p \rangle \rangle \notin \operatorname{Symb} A_1$. Let us consider A_1 . The functor FCEx A_1 yielding an A_1 -expanding alphabet is defined as follows:
- (Def. 3) FCEx $A_1 = \mathbb{N} \times (\operatorname{Symb} A_1 \cup \{\langle \text{ the free symbol of } A_1, \langle x, p \rangle \rangle \})$. Let us consider A_1, p, x . The example of p and x yielding a bound variable of FCEx A_1 is defined as follows:
- (Def. 4) The example of p and $x = \langle 4, \langle$ the free symbol of $A_1, \langle x, p \rangle \rangle \rangle$. Let us consider A_1, p, x . The example formula of p and x yielding an element of CQC-WFF FCEx A_1 is defined by:
- (Def. 5) The example formula of p and $x = \neg \exists_{FCEx A_1 Cast x} (FCEx A_1 Cast p) \lor (FCEx A_1 Cast p) (FCEx A_1 Cast x, the example of <math>p$ and x).

Let us consider A_1 . The example formulae of A_1 yields a subset of CQC-WFF FCEx A_1 and is defined as follows:

- (Def. 6) The example formulae of $A_1 = \{\text{the example formula of } p \text{ and } x\}$. One can prove the following proposition
 - (2) Let k be an element of \mathbb{N} . Suppose k > 0. Then there exists a k-element finite sequence F such that
 - (i) for every natural number n such that $n \leq k$ and $1 \leq n$ holds F(n) is an alphabet,
 - (ii) $F(1) = A_1$, and
 - (iii) for every natural number n such that n < k and $1 \le n$ there exists an alphabet A_2 such that $F(n) = A_2$ and $F(n+1) = FCEx A_2$.

Let us consider A_1 and let k be a natural number. A k+1-element finite sequence is said to be a FCEx-sequence of A_1 and k if it satisfies the conditions (Def. 7).

- (Def. 7)(i) For every natural number n such that $n \leq k+1$ and $1 \leq n$ holds it(n) is an alphabet,
 - (ii) $it(1) = A_1$, and
 - (iii) for every natural number n such that n < k+1 and $1 \le n$ there exists an alphabet A_2 such that $it(n) = A_2$ and $it(n+1) = FCEx A_2$.

The following propositions are true:

- (3) For every natural number k and for every FCEx-sequence S of A_1 and k holds S(k+1) is an alphabet.
- (4) For every natural number k and for every FCEx-sequence S of A_1 and k holds S(k+1) is an A_1 -expanding alphabet.

Let us consider A_1 and let k be a natural number. The k-th FCEx of A_1 yielding an A_1 -expanding alphabet is defined as follows:

(Def. 8) The k-th FCEx of A_1 = the FCEx-sequence of A_1 and k(k+1).

Let us consider A_1 , P_1 . A function is called an EF-sequence of A_1 and P_1 if it satisfies the conditions (Def. 9).

- (Def. 9)(i) dom it = \mathbb{N} ,
 - (ii) $it(0) = P_1$, and
 - (iii) for every natural number n holds it $(n + 1) = it(n) \cup the$ example formulae of the n-th FCEx of A_1 .

Next we state two propositions:

- (5) For every natural number k holds FCEx (the k-th FCEx of A_1) = the (k+1)-th FCEx of A_1 .
- (6) For all k, n such that $n \leq k$ holds the n-th FCEx of $A_1 \subseteq$ the k-th FCEx of A_1 .

Let us consider A_1 , P_1 and let k be a natural number. The k-th EF of A_1 and P_1 yields a subset of CQC-WFF (the k-th FCEx of A_1) and is defined as follows:

(Def. 10) The k-th EF of A_1 and P_1 = the EF-sequence of A_1 and $P_1(k)$.

One can prove the following propositions:

- (7) For all r, s, x holds A_2 -Cast $(r \lor s) = A_2$ -Cast $r \lor A_2$ -Cast s and A_2 -Cast $\exists_x r = \exists_{A_2 \text{-Cast } x} (A_2 \text{-Cast } r)$.
- (8) For all p, q, A, J, v holds $J \models_v p$ or $J \models_v q$ iff $J \models_v p \lor q$.
- (9) $P_1 \cup$ the example formulae of A_1 is a consistent subset of CQC-WFF FCEx A_1 .

2. The Completeness Theorem

We now state four propositions:

- (10) There exists an A_1 -expanding alphabet A_2 and there exists a consistent subset P_2 of CQC-WFF A_2 such that $P_1 \subseteq P_2$ and P_2 has examples.
- (11) $P_1 \cup \{p\}$ is consistent or $P_1 \cup \{\neg p\}$ is consistent.
- (12) Let P_2 be a consistent subset of CQC-WFF A_1 . Then there exists a consistent subset T_1 of CQC-WFF A_1 such that T_1 is negation faithful and $P_2 \subseteq T_1$.
- (13) For every consistent subset T_1 of CQC-WFF A_1 such that $P_1 \subseteq T_1$ and P_1 has examples holds T_1 has examples.

Let us consider A_1 . One can check that every subset of CQC-WFF A_1 which is consistent is also satisfiable.

We now state the proposition

 $(14)^2$ If $P_2 \models p$, then $P_2 \vdash p$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589–593, 1990.
- [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [6] Patrick Braselmann and Peter Koepke. Equivalences of inconsistency and Henkin models. Formalized Mathematics, 13(1):45–48, 2005.
- [7] Patrick Braselmann and Peter Koepke. Gödel's completeness theorem. Formalized Mathematics, 13(1):49–53, 2005.
- [8] Patrick Braselmann and Peter Koepke. A sequent calculus for first-order logic. Formalized Mathematics, 13(1):33–39, 2005.
- [9] Patrick Braselmann and Peter Koepke. Substitution in first-order formulas. Part II. The construction of first-order formulas. Formalized Mathematics, 13(1):27–32, 2005.
- [10] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676, 1990.
- [11] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [12] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [13] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [14] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [15] Kurt Gödel. Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für Mathematik und Physik 37, 1930.
- [16] W. Thomas H.-D. Ebbinghaus, J. Flum. Einführung in die Mathematische Logik. Springer-Verlag, Berlin Heidelberg, 2007.
- [17] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303–311, 1990.

²Completeness Theorem.

- [18] Julian J. Schlöder and Peter Koepke. Transition of consistency and satisfiability under language extensions. Formalized Mathematics, 20(3):193-197, 2012, doi: 10.2478/v10037-012-0022-0.
 [19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
- [19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [21] Edmund Woronowicz. Interpretation and satisfiability in the first order logic. Formalized Mathematics, 1(4):739–743, 1990.
- [22] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733-737,
- 1990.
 [23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received May 7, 2012