

Semantics of MML Query¹

Grzegorz Bancerek Białystok Technical University Poland

Summary. In the paper the semantics of MML Query queries is given. The formalization is done according to [4].

MML identifier: MMLQUERY, version: 7.12.02 4.181.1147

The notation and terminology used here have been introduced in the following papers: [1], [5], [11], [8], [10], [6], [2], [3], [15], [13], [14], [9], [12], and [7].

1. Elementary Queries

Let X be a set. A list of X is a subset of X. An operation of X is a binary relation on X.

Let x, y, R be sets. The predicate $x, y \in R$ is defined by:

(Def. 1) $\langle x, y \rangle \in R$.

Let x, y, R be sets. We introduce $x, y \notin R$ as an antonym of $x, y \in R$.

For simplicity, we use the following convention: X, Y, z, s denote sets, L, L_1, L_2, A denote lists of X, x denotes an element of X, O, O_2, O_3 denote operations of X, and m denotes a natural number.

The following proposition is true

(1) For all binary relations R_1 , R_2 holds $R_1 \subseteq R_2$ iff for every z holds $R_1^{\circ}z \subseteq R_2^{\circ}z$.

Let us consider X, O, x. We introduce x O as a synonym of $O^{\circ}x$.

Let us consider X, O, x. Then x O is a list of X.

One can prove the following proposition

¹This work has been supported by the Polish Ministry of Science and Higher Education project "Managing a Large Repository of Computer-verified Mathematical Knowledge" (N N519 385136).

(2) $x, y \in O \text{ iff } y \in x O.$

Let us consider X, O, L. We introduce L|O as a synonym of $O^{\circ}L$.

Let us consider X, O, L. Then L|O is a list of X and it can be characterized by the condition:

(Def. 2) $L|O = \bigcup \{x \ O : x \in L\}.$

The functor L&O yielding a list of X is defined as follows:

(Def. 3) $L\&O = \bigcap \{x \ O : x \in L\}.$

The functor L where O yielding a list of X is defined as follows:

 $(\text{Def. 4}) \quad L \, \text{where} \, O = \{x : \bigvee_y \, (x,y \in O \ \land \ x \in L)\}.$

Let O_2 be an operation of X. The functor L where $O = O_2$ yielding a list of X is defined as follows:

(Def. 5) L where $O = O_2 = \{x : \overline{\overline{x} \ O} = \overline{\overline{x} \ O_2} \land x \in L\}.$

The functor L where $O \leq O_2$ yielding a list of X is defined by:

(Def. 6) L where $O \le O_2 = \{x : \overline{x \ O} \subseteq \overline{x \ O_2} \land x \in L\}.$

The functor L where $O \ge O_2$ yields a list of X and is defined by:

(Def. 7) L where $O \ge O_2 = \{x : \overline{x} \ \overline{O_2} \subseteq \overline{x} \ \overline{O} \land x \in L\}.$

The functor L where $O < O_2$ yielding a list of X is defined as follows:

(Def. 8) $L \text{ where } O < O_2 = \{x : \overline{\overline{x} \ O} \in \overline{\overline{x} \ O_2} \land x \in L\}.$

The functor L where $O > O_2$ yields a list of X and is defined by:

 $(\mathrm{Def.}\ 9)\quad L\,\mathtt{where}\,O>O_2=\{x:\overline{\overline{x\ O_2}}\in\overline{\overline{x\ O}}\ \wedge\ x\in L\}.$

Let us consider X, L, O, n. The functor L where O = n yielding a list of X is defined as follows:

 $(\text{Def. }10) \quad L \, \text{where} \, O = n = \{x : \overline{\overline{x \; O}} = n \; \wedge \; x \in L\}.$

The functor L where $O \leq n$ yielding a list of X is defined by:

(Def. 11) L where $O \le n = \{x : \overline{\overline{x} \ O} \subseteq n \land x \in L\}.$

The functor L where $O \ge n$ yielding a list of X is defined as follows:

 $(\text{Def. }12) \quad L \, \text{where} \, O \geq n = \{x : n \subseteq \overline{\overline{x \; O}} \; \wedge \; x \in L\}.$

The functor L where O < n yields a list of X and is defined as follows:

(Def. 13) L where $O < n = \{x : \overline{\overline{x} \ O} \in n \land x \in L\}.$

The functor L where O > n yields a list of X and is defined by:

 $(\text{Def. 14}) \quad L \, \text{where} \, O > n = \{x : n \in \overline{\overline{x \; O}} \; \wedge \; x \in L\}.$

One can prove the following propositions:

- (3) $x \in L$ where O iff $x \in L$ and $x O \neq \emptyset$.
- (4) L where $O \subseteq L$.
- (5) If $L \subseteq \text{dom } O$, then L where O = L.
- (6) If $n \neq 0$ and $L_1 \subseteq L_2$, then L_1 where $O \geq n \subseteq L_2$ where O.
- (7) L where $O \ge 1 = L$ where O.

- (8) If $L_1 \subseteq L_2$, then L_1 where $O > n \subseteq L_2$ where O.
- (9) L where O > 0 = L where O.
- (10) If $n \neq 0$ and $L_1 \subseteq L_2$, then L_1 where $O = n \subseteq L_2$ where O.
- (11) $L \text{ where } O \ge n+1 = L \text{ where } O > n.$
- (12) L where $O \le n = L$ where $O \le n + 1$.
- (13) If $n \leq m$ and $L_1 \subseteq L_2$ and $O_1 \subseteq O_2$, then L_1 where $O_1 \geq m \subseteq L_2$ where $O_2 \geq n$.
- (14) If $n \leq m$ and $L_1 \subseteq L_2$ and $O_1 \subseteq O_2$, then L_1 where $O_1 > m \subseteq L_2$ where $O_2 > n$.
- (15) If $n \leq m$ and $L_1 \subseteq L_2$ and $O_1 \subseteq O_2$, then L_1 where $O_2 \leq n \subseteq L_2$ where $O_1 \leq m$.
- (16) If $n \leq m$ and $L_1 \subseteq L_2$ and $O_1 \subseteq O_2$, then L_1 where $O_2 < n \subseteq L_2$ where $O_1 < m$.
- (17) If $O_1 \subseteq O_2$ and $L_1 \subseteq L_2$ and $O \subseteq O_3$, then L_1 where $O \ge O_2 \subseteq L_2$ where $O_3 \ge O_1$.
- (18) If $O_1 \subseteq O_2$ and $L_1 \subseteq L_2$ and $O \subseteq O_3$, then L_1 where $O > O_2 \subseteq L_2$ where $O_3 > O_1$.
- (19) If $O_1 \subseteq O_2$ and $L_1 \subseteq L_2$ and $O \subseteq O_3$, then L_1 where $O_3 \leq O_1 \subseteq L_2$ where $O \leq O_2$.
- (20) If $O_1 \subseteq O_2$ and $L_1 \subseteq L_2$ and $O \subseteq O_3$, then L_1 where $O_3 < O_1 \subseteq L_2$ where $O < O_2$.
- (21) L where $O > O_1 \subseteq L$ where O.
- (22) If $O_1 \subseteq O_2$ and $L_1 \subseteq L_2$, then L_1 where $O_1 \subseteq L_2$ where O_2 .
- (23) $a \in L|O$ iff there exists b such that $a \in b$ O and $b \in L$.

Let us consider X, A, B. We introduce A and B as a synonym of $A \cap B$. We introduce A or B as a synonym of $A \cup B$. We introduce A butnot B as a synonym of $A \setminus B$.

Let us consider X, A, B. Then A and B is a list of X. Then A or B is a list of X. Then A butnot B is a list of X.

We now state several propositions:

- (24) If $L_1 \neq \emptyset$ and $L_2 \neq \emptyset$, then $(L_1 \text{ or } L_2) \& O = (L_1 \& O) \text{ and } (L_2 \& O)$.
- (25) If $L_1 \subseteq L_2$ and $O_1 \subseteq O_2$, then $L_1|O_1 \subseteq L_2|O_2$.
- (26) If $O_1 \subseteq O_2$, then $L\&O_1 \subseteq L\&O_2$.
- (27) $L\&(O_1 \text{ and } O_2) = (L\&O_1) \text{ and } (L\&O_2).$
- (28) If $L_1 \neq \emptyset$ and $L_1 \subseteq L_2$, then $L_2 \& O \subseteq L_1 \& O$.

2. Operations

One can prove the following two propositions:

- (29) For all operations O_1 , O_2 of X such that for every x holds x $O_1 = x$ O_2 holds $O_1 = O_2$.
- (30) For all operations O_1 , O_2 of X such that for every L holds $L|O_1 = L|O_2$ holds $O_1 = O_2$.

The functor not O yielding an operation of X is defined as follows:

(Def. 15) For every L holds $L| \operatorname{not} O = \bigcup \{(x \ O = \emptyset \to \{x\}, \emptyset) : x \in L\}.$

Let us consider X and let O_1 , O_2 be operations of X. We introduce O_1 and O_2 as a synonym of $O_1 \cap O_2$. We introduce O_1 or O_2 as a synonym of $O_1 \cup O_2$. We introduce O_1 butnot O_2 as a synonym of $O_1 \setminus O_2$. We introduce $O_1|O_2$ as a synonym of $O_1 \cdot O_2$.

Let us consider X and let O_1 , O_2 be operations of X. Then O_1 and O_2 is an operation of X and it can be characterized by the condition:

- (Def. 16) For every L holds $L|(O_1 \text{ and } O_2) = \bigcup \{(x \ O_1) \text{ and } (x \ O_2) : x \in L\}$. Then O_1 or O_2 is an operation of X and it can be characterized by the condition:
- (Def. 17) For every L holds $L|(O_1 \text{ or } O_2) = \bigcup \{(x \ O_1) \text{ or } (x \ O_2) : x \in L\}$. Then O_1 butnot O_2 is an operation of X and it can be characterized by the condition:
- (Def. 18) For every L holds $L|(O_1 \text{ butnot } O_2) = \bigcup \{(x \ O_1) \text{ butnot}(x \ O_2) : x \in L\}$. Then $O_1|O_2$ is an operation of X and it can be characterized by the condition:
- (Def. 19) For every L holds $L|(O_1|O_2) = L|O_1|O_2$.

The functor $O_1 \& O_2$ yielding an operation of X is defined as follows:

(Def. 20) For every L holds $L|(O_1\&O_2) = \bigcup \{(x \ O_1)\&O_2 : x \in L\}.$

We now state a number of propositions:

- (31) $x(O_1 \text{ and } O_2) = (x O_1) \text{ and } (x O_2).$
- (32) $x(O_1 \text{ or } O_2) = (x O_1) \text{ or } (x O_2).$
- (33) $x (O_1 \text{ butnot } O_2) = (x O_1) \text{ butnot}(x O_2).$
- (34) $x(O_1|O_2) = (x O_1)|O_2.$
- (35) $x (O_1 \& O_2) = (x O_1) \& O_2.$
- (36) $z, s \in \text{not } O \text{ iff } z = s \text{ and } z \in X \text{ and } z \notin \text{dom } O.$
- (37) $\operatorname{not} O = \operatorname{id}_{X \setminus \operatorname{dom} O}$.
- (38) $\operatorname{dom} \operatorname{not} \operatorname{not} O = \operatorname{dom} O$.
- (39) L where not not O = L where O.
- (40) L where O = 0 = L where not O.
- (41) $\operatorname{not} \operatorname{not} \operatorname{not} O = \operatorname{not} O$.
- (42) $\operatorname{not} O_1 \operatorname{or} \operatorname{not} O_2 \subseteq \operatorname{not}(O_1 \operatorname{and} O_2).$

- (43) $\operatorname{not}(O_1 \operatorname{or} O_2) = \operatorname{not} O_1 \operatorname{and} \operatorname{not} O_2.$
- (44) If $dom O_1 = X$ and $dom O_2 = X$, then $(O_1 or O_2) \& O = (O_1 \& O)$ and $(O_2 \& O)$.

Let us consider X, O. We say that O is filtering if and only if:

(Def. 21) $O \subseteq id_X$.

Next we state the proposition

(45) O is filtering iff $O = id_{\text{dom } O}$.

Let us consider X, O. Note that **not** O is filtering.

Let us consider X. Note that there exists an operation of X which is filtering. In the sequel F_1 , F_2 denote filtering operations of X.

Let us consider X, F, O. One can check the following observations:

- * F and O is filtering,
- * O and F is filtering, and
- * F butnot O is filtering.

Let us consider X, F_1 , F_2 . One can verify that F_1 or F_2 is filtering.

- (46) If $z \in x F$, then z = x.
- (47) L|F = L where F.
- (48) not not F = F.
- (49) $\operatorname{not}(F_1 \operatorname{and} F_2) = \operatorname{not} F_1 \operatorname{or} \operatorname{not} F_2$.
- (50) $\operatorname{dom}(O \operatorname{or} \operatorname{not} O) = X.$
- (51) $F \text{ or not } F = \mathrm{id}_X$.
- (52) O and not $O = \emptyset$.
- (53) $(O_1 \text{ or } O_2)$ and not $O_1 \subseteq O_2$.

3. Rough Queries

Let A be a finite sequence and let a be a set. The functor #occurrences(a, A) yielding a natural number is defined as follows:

(Def. 22)
$$\#$$
occurrences $(a, A) = \overline{\{i : i \in \text{dom } A \land a \in A(i)\}}$.

We now state two propositions:

- (54) For every finite sequence A and for every set a holds #occurrences $(a, A) \le len A$.
- (55) For every finite sequence A and for every set a holds $A \neq \emptyset$ and # occurrences(a, A) = len A iff $a \in \bigcap rng A$.

The functor $\max \# A$ yielding a natural number is defined as follows:

(Def. 23) For every set a holds #occurrences $(a, A) \le \max \# A$ and for every n such that for every set a holds #occurrences $(a, A) \le n$ holds $\max \# A \le n$.

- (56) For every finite sequence A holds $\max \# A \leq \text{len } A$.
- (57) For every finite sequence A and for every set a such that # occurrences(a, A) = len A holds <math>max # A = len A.

Let us consider X, let A be a finite sequence of elements of 2^X , and let n be a natural number. The functor $\operatorname{rough} n(A)$ yields a list of X and is defined as follows:

- (Def. 24) rough $n(A) = \{x : n \leq \# \text{occurrences}(x, A)\}$ if $X \neq \emptyset$. Let m be a natural number. The functor rough n-m(A) yields a list of X and is defined by:
- (Def. 25) rough n- $m(A) = \{x : n \leq \# \text{occurrences}(x, A) \land \# \text{occurrences}(x, A) \leq m \}$ if $X \neq \emptyset$.

Let us consider X and let A be a finite sequence of elements of 2^X . The functor rough(A) yielding a list of X is defined by:

(Def. 26) $\operatorname{rough}(A) = \operatorname{rough} \max \# A(A)$.

Next we state several propositions:

- (58) For every finite sequence A of elements of 2^X holds rough n-len A(A) = rough n(A).
- (59) For every finite sequence A of elements of 2^X such that $n \leq m$ holds rough $m(A) \subseteq \operatorname{rough} n(A)$.
- (60) Let A be a finite sequence of elements of 2^X and n_1 , n_2 , m_1 , m_2 be natural numbers. If $n_1 \leq m_1$ and $n_2 \leq m_2$, then rough $m_1 n_2(A) \subseteq \text{rough } n_1 m_2(A)$.
- (61) For every finite sequence A of elements of 2^X holds $\operatorname{rough} n\text{-}m(A)\subseteq\operatorname{rough} n(A)$.
- (62) For every finite sequence A of elements of 2^X such that $A \neq \emptyset$ holds rough len $A(A) = \bigcap \operatorname{rng} A$.
- (63) For every finite sequence A of elements of 2^X holds $\operatorname{rough} 1(A) = \bigcup A$.
- (64) For all lists L_1 , L_2 of X holds rough $2(\langle L_1, L_2 \rangle) = L_1$ and L_2 .
- (65) For all lists L_1 , L_2 of X holds rough $1(\langle L_1, L_2 \rangle) = L_1$ or L_2 .

4. Constructor Database

We introduce constructor databases which are extensions of 1-sorted structures and are systems

⟨ a carrier, constructors, a ref-operation ⟩,

where the carrier is a set, the constructors constitute a list of the carrier, and the ref-operation is a relation between the carrier and the constructors.

Let X be a 1-sorted structure. A list of X is a list of the carrier of X. An operation of X is an operation of the carrier of X.

Let us consider X, let S be a subset of X, and let R be a relation between X and S. The functor ${}^{@}R$ yields a binary relation on X and is defined by:

(Def. 27) ${}^{@}R = R$.

Let X be a constructor database and let a be an element of X. The functor a ref yielding a list of X is defined as follows:

(Def. 28) $a \operatorname{ref} = a$ [@]the ref-operation of X.

The functor a occur yields a list of X and is defined as follows:

(Def. 29) $a \circ \mathbf{ccur} = a$ ([@]the ref-operation of X) $\check{}$.

The following proposition is true

(66) For every constructor database X and for all elements x, y of X holds $x \in y$ ref iff $y \in x$ occur.

Let X be a constructor database. We say that X is ref-finite if and only if:

(Def. 30) For every element x of X holds x ref is finite.

One can verify that every constructor database which is finite is also reffinite.

Let us note that there exists a constructor database which is finite and non empty.

Let X be a ref-finite constructor database and let x be an element of X. Observe that x ref is finite.

Let X be a constructor database and let A be a finite sequence of elements of the constructors of X. The functor $\mathtt{atleast}(A)$ yielding a list of X is defined by:

(Def. 31) $atleast(A) = \{x \in X : rng A \subseteq x ref\}$ if the carrier of $X \neq \emptyset$.

The functor atmost(A) yielding a list of X is defined as follows:

(Def. 32) $\mathsf{atmost}(A) = \{x \in X \colon x \, \mathsf{ref} \subseteq \mathrm{rng} \, A\} \text{ if the carrier of } X \neq \emptyset.$

The functor exactly(A) yields a list of X and is defined by:

- (Def. 33) exactly(A) = { $x \in X$: $x \operatorname{ref} = \operatorname{rng} A$ } if the carrier of $X \neq \emptyset$. Let n be a natural number. The functor atleast minus n(A) yields a list of X and is defined by:
- (Def. 34) at least minus $n(A) = \{x \in X \colon \overline{\operatorname{rng} A \setminus x \operatorname{ref}} \leq n\}$ if the carrier of $X \neq \emptyset$.

Let X be a ref-finite constructor database, let A be a finite sequence of elements of the constructors of X, and let n be a natural number. The functor atmost plus n(A) yields a list of X and is defined by:

(Def. 35) atmost plus $n(A) = \{x \in X \colon \overline{x \operatorname{ref} \setminus \operatorname{rng} A} \leq n\}$ if the carrier of $X \neq \emptyset$. Let m be a natural number. The functor exactly plus $n \operatorname{minus} m(A)$ yielding a list of X is defined by: (Def. 36) $\underline{\underline{\text{exactly plus }} n \min \text{sm}(A)} = \{x \in X : \overline{x \operatorname{ref} \backslash \operatorname{rng} A} \leq n \land \overline{\operatorname{rng} A \backslash x \operatorname{ref}} \leq m\}$ if the carrier of $X \neq \emptyset$.

In the sequel X denotes a constructor database, x denotes an element of X, B denotes a finite sequence of elements of the constructors of Y, and y denotes an element of Y.

The following propositions are true:

- (67) at least minus 0(A) = atleast(A).
- (68) atmost plus 0(B) = atmost(B).
- (69) exactly plus $0 \min s 0(B) = \text{exactly}(B)$.
- (70) If $n \leq m$, then at least minus $n(A) \subseteq$ at least minus m(A).
- (71) If $n \leq m$, then atmost plus $n(B) \subseteq \text{atmost plus } m(B)$.
- (72) For all natural numbers n_1 , n_2 , m_1 , m_2 such that $n_1 \le m_1$ and $n_2 \le m_2$ holds exactly plus n_1 minus $n_2(B) \subseteq$ exactly plus m_1 minus $m_2(B)$.
- (73) atleast(A) \subseteq atleast minus n(A).
- (74) $atmost(B) \subseteq atmost plus n(B)$.
- (75) exactly $(B) \subseteq \text{exactly plus } n \text{ minus } m(B).$
- (76) $\operatorname{exactly}(A) = \operatorname{atleast}(A) \operatorname{and} \operatorname{atmost}(A).$
- (77) exactly plus $n \min m(B) = \text{atleast minus } m(B) \text{ and atmost plus } n(B)$.
- (78) If $A \neq \emptyset$, then $\mathtt{atleast}(A) = \bigcap \{x \, \mathtt{occur} : x \in \operatorname{rng} A\}.$
- (79) For all elements c_1 , c_2 of X such that $A = \langle c_1, c_2 \rangle$ holds $\mathtt{atleast}(A) = c_1 \, \mathtt{occur} \, \mathtt{and} \, c_2 \, \mathtt{occur} \, .$

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [4] Grzegorz Bancerek. Information retrieval and rendering with MML query. LNCS, 4108:266–279, 2006.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [9] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [10] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [11] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [14] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

[15] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Set sequences and monotone class. Formalized Mathematics, 13(4):435-441, 2005.

Received December 18, 2011