

The Borsuk-Ulam Theorem

Artur Korniłowicz¹ Institute of Informatics University of Białystok Sosnowa 64, 15-887 Białystok Poland

Marco Riccardi Via del Pero 102 54038 Montignoso Italy

Summary. The Borsuk-Ulam theorem about antipodals is proven, [18, pp. 32–33].

MML identifier: [BORSUK](http://fm.mizar.org/miz/borsuk_7.miz) 7, version: [7.12.02 4.176.1140](http://ftp.mizar.org/)

The notation and terminology used here have been introduced in the following papers: [33], [36], [15], [16], [2], [5], [28], [35], [13], [26], [20], [30], [4], [34], [6], [7], [8], [38], [27], [1], [3], [9], [29], [31], [19], [41], [42], [39], [11], [43], [37], [40], [25], [32], [14], [23], [24], [22], [12], [21], [17], and [10].

1. Preliminaries

For simplicity, we adopt the following rules: *a*, *b*, *x*, *y*, *z*, *X*, *Y* , *Z* denote sets, *n* denotes a natural number, *i* denotes an integer, *r*, *r*1, *r*2, *r*3, *s* denote real numbers, *c*, *c*₁, *c*₂ denote complex numbers, and *p* denotes a point of \mathcal{E}_{T}^{n} .

Let us observe that every element of IQ is irrational.

Next we state a number of propositions:

- (1) If $0 \le r$ and $0 \le s$ and $r^2 = s^2$, then $r = s$.
- (2) If frac $r \geq \text{frac } s$, then $\text{frac}(r s) = \text{frac } r \text{frac } s$.
- (3) If frac *r* < frac *s*, then $\text{frac}(r s) = (\text{frac } r \text{frac } s) + 1$.

 $\overline{\text{C}}$ 2012 University of Białystok CC-BY-SA License ver. 3.0 or later ISSN 1426–2630(p), 1898-9934(e)

¹This work has been supported by the Polish Ministry of Science and Higher Education project "Managing a Large Repository of Computer-verified Mathematical Knowledge" (N N519 385136).

- (4) There exists *i* such that $\text{frac}(r s) = (\text{frac } r \text{frac } s) + i$ but $i = 0$ or $i = 1$.
- (5) If $\sin r = 0$, then $r = 2 \cdot \pi \cdot \lfloor \frac{r}{2 \cdot \pi} \rfloor$ or $r = \pi + 2 \cdot \pi \cdot \lfloor \frac{r}{2 \cdot \pi} \rfloor$.
- (6) If $\cos r = 0$, then $r = \frac{\pi}{2} + 2 \cdot \pi \cdot \lfloor \frac{r}{2 \cdot \pi} \rfloor$ or $r = \frac{3 \cdot \pi}{2} + 2 \cdot \pi \cdot \lfloor \frac{r}{2 \cdot \pi} \rfloor$.
- (7) If $\sin r = 0$, then there exists *i* such that $r = \pi \cdot i$.
- (8) If $\cos r = 0$, then there exists *i* such that $r = \frac{\pi}{2} + \pi \cdot i$.
- (9) If $\sin r = \sin s$, then there exists *i* such that $r = s + 2 \cdot \pi \cdot i$ or $r =$ $(\pi - s) + 2 \cdot \pi \cdot i$.
- (10) If $\cos r = \cos s$, then there exists *i* such that $r = s + 2 \cdot \pi \cdot i$ or $r = -s + 2 \cdot \pi \cdot i$.
- (11) If $\sin r = \sin s$ and $\cos r = \cos s$, then there exists *i* such that $r = s + 2 \cdot \pi \cdot i$.
- (12) If $|c_1| = |c_2|$ and $\text{Arg } c_1 = \text{Arg } c_2 + 2 \cdot \pi \cdot i$, then $c_1 = c_2$.

Let *f* be a one-to-one complex-valued function and let us consider *c*. One can verify that $f + c$ is one-to-one.

Let *f* be a one-to-one complex-valued function and let us consider *c*. Note that $f - c$ is one-to-one.

One can prove the following propositions:

- (13) For every complex-valued finite sequence f holds len $(-f) = \text{len } f$.
- $(14) -\langle 0, \ldots, 0 \rangle$ \sum_{n} $\rangle = \langle 0, \ldots, 0 \rangle$ \sum_{n} *i.*

(15) For every complex-valued function *f* such that $f \neq \langle 0, \ldots, 0 \rangle$ \sum_{n} *j* holds *−f* \neq

$$
\langle \underbrace{0,\ldots,0}_{n}\rangle
$$

$$
(16) \quad {}^{2}\langle r_1, r_2, r_3 \rangle = \langle {r_1}^2, {r_2}^2, {r_3}^2 \rangle.
$$

- (17) $\sum_{}^{2} \langle r_1, r_2, r_3 \rangle = r_1^2 + r_2^2 + r_3^2.$
- (18) For every complex-valued finite sequence f holds $(c \cdot f)^2 = c^2 \cdot f^2$.
- (19) For every complex-valued finite sequence f holds $(f/c)^2 = f^2/c^2$.
- (20) For every real-valued finite sequence f such that $\sum f \neq 0$ holds $\sum(f/\sum f) = 1.$

Let *a*, *b*, *c*, *x*, *y*, *z* be sets. The functor $[a \mapsto x, b \mapsto y, c \mapsto z]$ is defined by: $[Def. 1]$ $[a \mapsto x, b \mapsto y, c \mapsto z] = [a \mapsto x, b \mapsto y] + (c \mapsto z).$

Let *a*, *b*, *c*, *x*, *y*, *z* be sets. One can check that $[a \mapsto x, b \mapsto y, c \mapsto z]$ is function-like and relation-like.

The following propositions are true:

- (21) dom $([a \mapsto x, b \mapsto y, c \mapsto z]) = \{a, b, c\}.$
- (22) rng $([a \mapsto x, b \mapsto y, c \mapsto z]) \subseteq \{x, y, z\}.$
- (23) $[a \mapsto x, a \mapsto y, a \mapsto z] = a \mapsto z.$
- (24) $[a \mapsto x, a \mapsto y, b \mapsto z] = [a \mapsto y, b \mapsto z].$
- (25) If $a \neq b$, then $[a \mapsto x, b \mapsto y, a \mapsto z] = [a \mapsto z, b \mapsto y]$.

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku Authenticated Download Date | 12/8/15 12:40 PM

- (26) $[a \mapsto x, b \mapsto y, b \mapsto z] = [a \mapsto x, b \mapsto z].$
- (27) If $a \neq b$ and $a \neq c$, then $([a \mapsto x, b \mapsto y, c \mapsto z])(a) = x$.
- (28) If *a*, *b*, *c* are mutually different, then $([a \mapsto x, b \mapsto y, c \mapsto z])(a) = x$ and $([a \mapsto x, b \mapsto y, c \mapsto z])(b) = y$ and $([a \mapsto x, b \mapsto y, c \mapsto z])(c) = z$.
- (29) For every function *f* such that dom $f = \{a, b, c\}$ and $f(a) = x$ and $f(b) = y$ and $f(c) = z$ holds $f = [a \mapsto x, b \mapsto y, c \mapsto z]$.
- (30) $\langle a, b, c \rangle = [1 \mapsto a, 2 \mapsto b, 3 \mapsto c].$
- (31) If *a*, *b*, *c* are mutually different, then $\prod([a \mapsto \{x\}, b \mapsto \{y\}, c \mapsto \{z\}])$ = $\{[a \mapsto x, b \mapsto y, c \mapsto z]\}.$
- (32) For all sets *A*, *B*, *C*, *D*, *E*, *F* such that $A \subseteq B$ and $C \subseteq D$ and $E \subseteq F$ $\text{holds } \prod([a \mapsto A, b \mapsto C, c \mapsto E]) \subseteq \prod([a \mapsto B, b \mapsto D, c \mapsto F]).$
- (33) If *a*, *b*, *c* are mutually different and $x \in X$ and $y \in Y$ and $z \in Z$, then $[a \mapsto x, b \mapsto y, c \mapsto z] \in \Pi([a \mapsto X, b \mapsto Y, c \mapsto Z]).$

Let f be a function. We say that f is odd if and only if:

(Def. 2) For all complex-valued functions *x*, *y* such that $x, -x \in \text{dom } f$ and $y = f(x)$ holds $f(-x) = -y$.

Let us mention that *∅* is odd.

Let us observe that there exists a function which is odd and complexfunctions-valued.

The following propositions are true:

- (34) For every point *p* of $\mathcal{E}_{\rm T}^3$ holds $^2p = \langle (p_1)^2, (p_2)^2, (p_3)^2 \rangle$.
- (35) For every point *p* of $\mathcal{E}_{\rm T}^3$ holds $\sum^2 p = (p_1)^2 + (p_2)^2 + (p_3)^2$.

The following two propositions are true:

- (36) For every subset *S* of \mathbb{R}^1 such that $S = \mathbb{Q}$ holds $\mathbb{Q} \cap]-\infty, r[$ is an open subset of $\mathbb{R}^1 \upharpoonright S$.
- (37) For every subset *S* of \mathbb{R}^1 such that $S = \mathbb{Q}$ holds $\mathbb{Q} \cap [r, +\infty]$ is an open subset of $\mathbb{R}^1 \upharpoonright S$.

Let X be a connected non empty topological space, let Y be a non empty topological space, and let *f* be a continuous function from *X* into *Y* . Note that Im *f* is connected.

Next we state two propositions:

- (38) Let *S* be a subset of \mathbb{R}^1 . Suppose $S = \mathbb{Q}$. Let *T* be a connected topological space and *f* be a function from *T* into \mathbb{R}^1 *S*. If *f* is continuous, then *f* is constant.
- (39) Let *a*, *b* be real numbers, *f* be a continuous function from $[a, b]_T$ into \mathbb{R}^1 , and *g* be a partial function from \mathbb{R} to \mathbb{R} . If $a \leq b$ and $f = g$, then *g* is continuous.

Let *s* be a point of \mathbb{R}^1 and let *r* be a real number. Then $s + r$ is a point of \mathbb{R}^1 .

Let *s* be a point of \mathbb{R}^1 and let *r* be a real number. Then $s - r$ is a point of \mathbb{R}^1 .

Let *X* be a set, let *f* be a function from *X* into \mathbb{R}^1 , and let us consider *r*. Then $f + r$ is a function from X into \mathbb{R}^1 .

Let *X* be a set, let *f* be a function from *X* into \mathbb{R}^1 , and let us consider *r*. Then $f - r$ is a function from X into \mathbb{R}^1 .

Let *s*, *t* be points of \mathbb{R}^1 , let *f* be a path from *s* to *t*, and let *r* be a real number. Then $f + r$ is a path from $s + r$ to $t + r$. Then $f - r$ is a path from *s − r* to *t − r.*

The point c[100] of TopUnitCircle 3 is defined by:

$$
(\text{Def. 3}) \quad \text{c}[100] = [1, 0, 0].
$$

The point c[*−*100] of TopUnitCircle 3 is defined by:

$$
(Def. 4) c[-100] = [-1, 0, 0].
$$

Next we state several propositions:

- $(40) -c[100] = c[-100]$.
- $(41) -c[-100] = c[100].$
- (42) c[100] $c[-100] = [2, 0, 0].$
- (43) For every point *p* of $\mathcal{E}_{\rm T}^2$ holds $p_1 = |p| \cdot \cos \operatorname{Arg} p$ and $p_2 = |p| \cdot \sin \operatorname{Arg} p$.
- (44) For every point *p* of $\mathcal{E}_{\rm T}^2$ holds $p = \text{cpx2euc}(|p| \cdot \cos \text{Arg } p + |p| \cdot \sin \text{Arg } p \cdot i)$.
- (45) For all points p_1 , p_2 of $\mathcal{E}_{\rm T}^2$ such that $|p_1| = |p_2|$ and $\text{Arg } p_1 = \text{Arg } p_2 + 2 \cdot \pi \cdot i$ holds $p_1 = p_2$.

One can prove the following propositions:

- (46) For every point *p* of $\mathcal{E}_{\rm T}^2$ such that $p =$ CircleMap(*r*) holds Arg $p =$ $2 \cdot \pi \cdot \text{frac }{r}$
- (47) Let p_1 , p_2 be points of $\mathcal{E}_{\rm T}^3$ and u_1 , u_2 be points of \mathcal{E}^3 . If $u_1 = p_1$ and $u_2 = p_2$, then $\rho^3(u_1, u_2) =$ $\sqrt{((p_1)_1 - (p_2)_1)^2 + ((p_1)_2 - (p_2)_2)^2 + ((p_1)_3 - (p_2)_3)^2}.$
- (48) Let *p* be a point of $\mathcal{E}_{\rm T}^3$ and *e* be a point of \mathcal{E}^3 . If $p = e$ and $p_3 = 0$, then $\Pi([1 \mapsto]p_1 - \frac{r}{\sqrt{2}}, p_1 + \frac{r}{\sqrt{2}}[, 2 \mapsto]p_2 - \frac{r}{\sqrt{2}}, p_2 + \frac{r}{\sqrt{2}}[, 3 \mapsto \{0\}]) \subseteq \text{Ball}(e, r).$
- (49) For every real number *s* holds $c \circ s = c \circ s + 2 \cdot \pi \cdot i$.
- (50) For every real number *s* holds Rotate $s = \text{Rotate}(s + 2 \cdot \pi \cdot i)$.
- (51) For every real number *s* and for every point *p* of $\mathcal{E}_{\rm T}^2$ holds $|(\text{Rotate } s)(p)| = |p|.$
- (52) For every real number *s* and for every point *p* of $\mathcal{E}_{\rm T}^2$ holds $Arg(Rotate s)(p) = Arg(euc2cpx(p) \circ s).$
- (53) For every real number *s* and for every point *p* of $\mathcal{E}_{\rm T}^2$ such that $p \neq 0_{\mathcal{E}_{\rm T}^2}$ there exists *i* such that $\text{Arg}(\text{Rotate } s)(p) = s + \text{Arg } p + 2 \cdot \pi \cdot i$.
- (54) For every real number *s* holds $(Rotate s)(0_{\mathcal{E}_T^2}) = 0_{\mathcal{E}_T^2}$.

- (55) For every real number *s* and for every point *p* of $\mathcal{E}_{\rm T}^2$ such that $(\text{Rotate } s)(p) = 0_{\mathcal{E}_{\mathrm{T}}^2} \text{ holds } p = 0_{\mathcal{E}_{\mathrm{T}}^2}.$
- (56) For every real number *s* and for every point *p* of $\mathcal{E}_{\rm T}^2$ holds $(Rotate s)((Rotate(-s))(p)) = p.$
- (57) For every real number *s* holds Rotate $s \cdot \text{Rotate}(-s) = \text{id}_{\mathcal{E}_{\text{T}}^2}$.
- (58) For every real number *s* and for every point *p* of $\mathcal{E}_{\rm T}^2$ holds $p \in$ $\text{Sphere}((0_{\mathcal{E}_{\mathrm{T}}^2}), r) \text{ iff } (\text{Rotate } s)(p) \in \text{Sphere}((0_{\mathcal{E}_{\mathrm{T}}^2}), r).$
- (59) For every non negative real number *r* and for every real number *s* holds $(\text{Rotate } s)$ [°] Sphere $((0_{\mathcal{E}^2_T}), r) = \text{Sphere}((0_{\mathcal{E}^2_T}), r)$.

Let *r* be a non negative real number and let *s* be a real number. The functor RotateCircle(r, s) yields a function from Tcircle($0_{\mathcal{E}_{\rm T}^2}$, r) into Tcircle($0_{\mathcal{E}_{\rm T}^2}$, r) and is defined by:

(Def. 5) RotateCircle (r, s) = Rotate $s \upharpoonright$ Tcircle $(0_{\mathcal{E}_{\mathrm{T}}^2}, r)$ *.*

Let r be a non negative real number and let s be a real number. Note that RotateCircle(*r, s*) is homeomorphism.

One can prove the following proposition

(60) For every point *p* of $\mathcal{E}_{\rm T}^2$ such that $p =$ CircleMap(*r*₂) holds $(\text{RotateCircle}(1, (-\text{Arg } p)))(\text{CircleMap}(r_1)) = \text{CircleMap}(r_1 - r_2).$

2. On the Antipodals

Let *n* be a non empty natural number, let *p* be a point of $\mathcal{E}_{\mathrm{T}}^n$, and let *r* be a non negative real number. The functor $CircleIso(p, r)$ yields a function from TopUnitCircle *n* into T circle (p, r) and is defined as follows:

(Def. 6) For every point *a* of TopUnitCircle *n* and for every point *b* of $\mathcal{E}_{\mathrm{T}}^n$ such that $a = b$ holds $(CircleIso(p, r))(a) = r \cdot b + p$.

Let *n* be a non empty natural number, let *p* be a point of $\mathcal{E}_{\mathrm{T}}^n$, and let *r* be a positive real number. Note that $CircleIso(p, r)$ is homeomorphism.

The function SphereMap from \mathbb{R}^1 into TopUnitCircle 3 is defined by:

(Def. 7) For every real number *x* holds $(SphereMap)(x) = [\cos(2 \cdot \pi \cdot x), \sin(2 \cdot \pi \cdot x)]$ *x*)*,* 0]*.*

We now state the proposition

(61) (SphereMap)(*i*) = c[100].

Let us note that SphereMap is continuous.

Let r be a real number. The functor eLoop r yields a function from $\mathbb I$ into TopUnitCircle 3 and is defined as follows:

- $(Def. 8)$ For every point x of I holds $(eLoop r)(x) = [\cos(2 \cdot \pi \cdot r \cdot x), \sin(2 \cdot \pi \cdot r \cdot x), 0].$ We now state the proposition
	- (62) ϵ Loop $r =$ SphereMap \cdot ExtendInt r .

Let us consider *i*. Then eLoop *i* is a loop of c[100].

One can check that eLoop *i* is null-homotopic as a loop of c[100].

One can prove the following proposition

(63) If $p \neq 0_{\mathcal{E}_{\mathrm{T}}^n}$, then $|p/|p|| = 1$.

Let *n* be a natural number and let *p* be a point of \mathcal{E}_T^n . Let us assume that $p \neq 0_{\mathcal{E}_{\mathrm{T}}^n}$. The functor $(R^n \to S^1)$ *p* yields a point of Tcircle($0_{\mathcal{E}_{\mathrm{T}}^n}$, 1) and is defined by:

(Def. 9)
$$
(R^n \to S^1)p = p/|p|
$$
.

Let *n* be a non zero natural number and let *f* be a function

from $T \text{circle}(0_{\mathcal{E}_{\text{T}}^{n+1}}, 1)$ into \mathcal{E}_{T}^n . The functor $(S^{n+1} \to S^n) f$ yielding a function from TopUnitCircle $(n + 1)$ into TopUnitCircle *n* is defined as follows:

(Def. 10) For all points *x*, *y* of Tcircle($0_{\mathcal{E}_{\rm T}^{n+1}}$, 1) such that $y = -x$ holds $((S^{n+1} \to S^n) f)(x) = (R^n \to S^1)(f(x) - f(y)).$

Let x_0 , y_0 be points of TopUnitCircle 2, let x_1 be a set, and let f be a path from x_0 to y_0 . Let us assume that $x_1 \in \text{CircleMap}^{-1}(\{x_0\})$. The functor liftPath (f, x_1) yielding a function from \mathbb{I} into \mathbb{R}^1 is defined by the conditions (Def. 11).

- $(Def. 11)(i)$ $(liftPath(f, x_1))(0) = x_1$
	- (ii) $f = \text{CircleMap} \cdot \text{liftPath}(f, x_1)$,
	- (iii) liftPath (f, x_1) is continuous, and
	- (iv) for every function f_1 from I into \mathbb{R}^1 such that f_1 is continuous and $f =$ CircleMap $\cdot f_1$ and $f_1(0) = x_1$ holds liftPath $(f, x_1) = f_1$.

Let *n* be a natural number, let *p*, *x*, *y* be points of $\mathcal{E}_{\mathrm{T}}^n$, and let *r* be a real number. We say that *x* and *y* are antipodals of *p* and *r* if and only if:

(Def. 12) *x* is a point of Tcircle(*p, r*) and *y* is a point of Tcircle(*p, r*) and $p \in$ *L*(*x, y*)*.*

Let *n* be a natural number, let *p*, *x*, *y* be points of $\mathcal{E}_{\text{T}}^{n}$, let *r* be a real number, and let *f* be a function. We say that *x* and *y* are antipodals of *p*, *r* and *f* if and only if:

(Def. 13) *x* and *y* are antipodals of *p* and *r* and *x*, $y \in \text{dom } f$ and $f(x) = f(y)$.

Let *m*, *n* be natural numbers, let *p* be a point of \mathcal{E}_{T}^m , let *r* be a real number, and let *f* be a function from $T \text{circle}(p, r)$ into \mathcal{E}_{T}^{n} . We say that *f* has antipodals if and only if:

(Def. 14) There exist points *x*, *y* of $\mathcal{E}_{\text{T}}^{m}$ such that *x* and *y* are antipodals of *p*, *r* and *f*.

Let *m*, *n* be natural numbers, let *p* be a point of $\mathcal{E}_{\text{T}}^{m}$, let *r* be a real number, and let *f* be a function from $T \text{circle}(p, r)$ into \mathcal{E}_T^n . We introduce *f* is without antipodals as an antonym of *f* has antipodals.

One can prove the following propositions:

- (64) Let *n* be a non empty natural number, *r* be a non negative real number, and *x* be a point of $\mathcal{E}_{\rm T}^n$. Suppose *x* is a point of Tcircle($0_{\mathcal{E}_{\rm T}^n}$, *r*). Then *x* and $-x$ are antipodals of $0_{\mathcal{E}_{\mathrm{T}}^n}$ and r .
- (65) Let *n* be a non empty natural number, *p*, *x*, *y*, *x*₂, *y*₁ be points of $\mathcal{E}_{\mathrm{T}}^n$, and *r* be a positive real number. Suppose *x* and *y* are antipodals of $0_{\mathcal{E}_{\rm T}^n}$ and 1 and $x_2 = (\text{CircleIso}(p, r))(x)$ and $y_1 = (\text{CircleIso}(p, r))(y)$. Then x_2 and *y*¹ are antipodals of *p* and *r*.
- (66) Let *f* be a function from Tcircle($0_{\mathcal{E}_{\mathcal{T}}^{n+1}}$, 1) into $\mathcal{E}_{\mathcal{T}}^n$ and *x* be a point of Tcircle($0_{\mathcal{E}_{\mathrm{T}}^{n+1}}$, 1). If *f* is without antipodals, then $f(x) - f(-x) \neq 0_{\mathcal{E}_{\mathrm{T}}^{n}}$.
- (67) For every function *f* from Tcircle($0_{\mathcal{E}_{\rm T}^{n+1}}$, 1) into $\mathcal{E}_{\rm T}^n$ such that *f* is without antipodals holds $(S^{n+1} \to S^n) f$ is odd.
- (68) Let *f* be a function from T circle($0_{\mathcal{E}_{T}^{n+1}}$, 1) into \mathcal{E}_{T}^{n} and *g*, B_1 be functions from Tcircle($0_{\mathcal{E}_{\text{T}}^{n+1}}$, 1) into \mathcal{E}_{T}^n . If $g = f \circ -$ and $B_1 = f - g$ and f is without antipodals, then $(S^{n+1} \to S^n) f = B_1/(n \text{ NormF} \cdot B_1)$.

Let us consider n , let r be a negative real number, and let p be a point of $\mathcal{E}_{\rm T}^{n+1}$. Observe that every function from Tcircle (p,r) into $\mathcal{E}_{\rm T}^n$ is without antipodals.

Let *r* be a non negative real number and let *p* be a point of $\mathcal{E}_{\rm T}^3$. Note that every function from $T\text{circle}(p,r)$ into \mathcal{E}_{T}^{2} which is continuous also has antipodals.²

REFERENCES

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Formalized Mathematics*, 1(**1**):41–46, 1990.
- [2] Grzegorz Bancerek. König's theorem. *Formalized Mathematics*, 1(3):589–593, 1990.
- [3] Grzegorz Bancerek. The ordinal numbers. *Formalized Mathematics*, 1(**1**):91–96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Formalized Mathematics*, 1(**1**):107–114, 1990.
- [5] Czesław Byliński. The complex numbers. *Formalized Mathematics*, 1(**3**):507–513, 1990.
- [6] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(**1**):55– 65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(**1**):153–164, 1990.
- [8] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Formalized Mathematics*, 1(**3**):521–527, 1990.
- [9] Czesław Byliński. Partial functions. *Formalized Mathematics*, 1(**2**):357–367, 1990.
- [10] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(**1**):47–53, 1990.
- [11] Czesław Byliński. The sum and product of finite sequences of real numbers. *Formalized Mathematics*, 1(**4**):661–668, 1990.
- [12] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. *Formalized Mathematics*, 1(**2**):257–261, 1990.
- [13] Agata Darmochwał. The Euclidean space. *Formalized Mathematics*, 2(**4**):599–603, 1991.
- [14] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. *Formalized Mathematics*, 2(**4**):605–608, 1991.

²The Borsuk-Ulam Theorem

- [15] Adam Grabowski. Introduction to the homotopy theory. *Formalized Mathematics*, 6(**4**):449–454, 1997.
- [16] Adam Grabowski. On the subcontinua of a real line. *Formalized Mathematics*, 11(**3**):313– 322, 2003.
- [17] Jarosław Gryko. Injective spaces. *Formalized Mathematics*, 7(**1**):57–62, 1998.
- [18] Allen Hatcher. *Algebraic Topology*. Cambridge University Press, 2002.
- [19] Krzysztof Hryniewiecki. Basic properties of real numbers. *Formalized Mathematics*, 1(**1**):35–40, 1990.
- [20] Kanchun, Hiroshi Yamazaki, and Yatsuka Nakamura. Cross products and tripple vector products in 3-dimensional Euclidean space. *Formalized Mathematics*, 11(**4**):381–383, 2003.
- [21] Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. *Formalized Mathematics*, 17(**1**):43–60, 2009, doi:10.2478/v10037-009-0005-y.
- [22] Artur Korniłowicz. On the continuity of some functions. *Formalized Mathematics*, 18(**3**):175–183, 2010, doi: 10.2478/v10037-010-0020-z.
- [23] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in \mathcal{E}_{T}^n . *Formalized Mathematics*, 12(**3**):301–306, 2004.
- [24] Artur Korniłowicz and Yasunari Shidama. Some properties of circles on the plane. *Formalized Mathematics*, 13(**1**):117–124, 2005.
- [25] Artur Korniłowicz, Yasunari Shidama, and Adam Grabowski. The fundamental group. *Formalized Mathematics*, 12(**3**):261–268, 2004.
- [26] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidian topological space. *Formalized Mathematics*, 11(**3**):281–287, 2003.
- [27] Adam Naumowicz and Grzegorz Bancerek. Homeomorphisms of Jordan curves. *Formalized Mathematics*, 13(**4**):477–480, 2005.
- [28] Beata Padlewska. Connected spaces. *Formalized Mathematics*, 1(**1**):239–244, 1990.
- [29] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Formalized Mathematics*, 1(**1**):223–230, 1990.
- [30] Konrad Raczkowski and Paweł Sadowski. Real function continuity. *Formalized Mathematics*, 1(**4**):787–791, 1990.
- [31] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Formalized Mathematics*, 1(**4**):777–780, 1990.
- [32] Marco Riccardi and Artur Korniłowicz. Fundamental group of *n*-sphere for *n ≥* 2. *Formalized Mathematics*, 20(**2**):97–104, 2012, doi: 10.2478/v10037-012-0013-1.
- [33] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. *Formalized Mathematics*, 6(**3**):335–338, 1997.
- [34] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(**2**):329–334, 1990.
- [35] Andrzej Trybulec. Enumerated sets. *Formalized Mathematics*, 1(**1**):25–34, 1990.
- [36] Andrzej Trybulec. A Borsuk theorem on homotopy types. *Formalized Mathematics*, 2(**4**):535–545, 1991.
- [37] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. *Formalized Mathematics*, 1(**3**):445–449, 1990.
- [38] Michał J. Trybulec. Integers. *Formalized Mathematics*, 1(**3**):501–505, 1990.
- [39] Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(**2**):291–296, 1990.
- [40] Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(**1**):67–71, 1990.
- [41] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(**1**):73–83, 1990.
- [42] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(**1**):181–186, 1990.
- [43] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. *Formalized Mathematics*, 7(**2**):255–263, 1998.

Received September 20, 2011

-
-