More on the Continuity of Real Functions

Keiko Narita
Hirosaki-city
Aomori, Japan

Artur Kornilowicz
Institute of Informatics
University of Białystok
Sosnowa 64, 15-887 Białystok, Poland

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article we demonstrate basic properties of the continuous functions from \mathbb{R} to \mathbb{R}^n which correspond to state space equations in control engineering.

MML identifier: NFCONT_4, version: 7.11.07 4.160.1126

The terminology and notation used here have been introduced in the following articles: [3], [7], [17], [2], [4], [12], [13], [14], [16], [1], [5], [9], [15], [18], [10], [8], [20], [21], [19], [11], [22], and [6].

For simplicity, we use the following convention: n, i denote elements of \mathbb{N}, X, X_1 denote sets, r, p, s, x_0, x_1, x_2 denote real numbers, f, f_1, f_2 denote partial functions from \mathbb{R} to \mathbb{R}^n, and h denotes a partial function from \mathbb{R} to the carrier of $(\mathcal{E}^n, \| \cdot \|)$.

Let us consider n, f, x_0. We say that f is continuous in x_0 if and only if:

(Def. 1) There exists a partial function g from \mathbb{R} to the carrier of $(\mathcal{E}^n, \| \cdot \|)$ such that $f = g$ and g is continuous in x_0.

We now state four propositions:

(1) If $h = f$, then f is continuous in x_0 iff h is continuous in x_0.

(2) If $x_0 \in X$ and f is continuous in x_0, then $f|X$ is continuous in x_0.

1This work was supported by JSPS KAKENHI 22300285.
(3) f is continuous in x_0 if and only if the following conditions are satisfied:

(i) $x_0 \in \text{dom } f$, and

(ii) for every r such that $0 < r$ there exists s such that $0 < s$ and for every x_1 such that $x_1 \in \text{dom } f$ and $|x_1 - x_0| < s$ holds $|f(x_1) - f(x_0)| < r$.

(4) Let r be a real number, z be an element of \mathcal{R}^n, and w be a point of $\langle \mathcal{E}^n, \| \cdot \| \rangle$. Suppose $z = w$. Then $\{ y \in \mathcal{R}^n : |y - z| < r \} = \{ y; y \text{ ranges over points of } \langle \mathcal{E}^n, \| \cdot \| \rangle: \|y - w\| < r \}$.

Let n be an element of \mathbb{N}, let Z be a set, and let f be a partial function from Z to \mathcal{R}^n. The functor $|f|$ yielding a partial function from Z to \mathbb{R} is defined by:

(Def. 2) $\text{dom } |f| = \text{dom } f$ and for every set x such that $x \in \text{dom } f$ holds $|f|_x = |f|_x$.

Let n be an element of \mathbb{N}, let Z be a non empty set, and let f be a partial function from Z to \mathcal{R}^n. The functor $-f$ yields a partial function from Z to \mathcal{R}^n and is defined by:

(Def. 3) $\text{dom } (-f) = \text{dom } f$ and for every set c such that $c \in \text{dom } (-f)$ holds $(-f)_c = -f_c$.

One can prove the following propositions:

(5) Let f_1, f_2 be partial functions from \mathbb{R} to the carrier of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ and g_1, g_2 be partial functions from \mathbb{R} to \mathcal{R}^n. If $f_1 = g_1$ and $f_2 = g_2$, then $f_1 + f_2 = g_1 + g_2$.

(6) Let f_1 be a partial function from \mathbb{R} to the carrier of $\langle \mathcal{E}^n, \| \cdot \| \rangle$, g_1 be a partial function from \mathbb{R} to \mathcal{R}^n, and a be a real number. If $f_1 = g_1$, then $a \cdot f_1 = a \cdot g_1$.

(7) For every partial function f_1 from \mathbb{R} to \mathcal{R}^n holds $(-1) \cdot f_1 = -f_1$.

(8) Let f_1 be a partial function from \mathbb{R} to the carrier of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ and g_1 be a partial function from \mathbb{R} to \mathcal{R}^n. If $f_1 = g_1$, then $-f_1 = -g_1$.

(9) Let f_1 be a partial function from \mathbb{R} to the carrier of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ and g_1 be a partial function from \mathbb{R} to \mathcal{R}^n. If $f_1 = g_1$, then $\|f_1\| = |g_1|$.

(10) Let f_1, f_2 be partial functions from \mathbb{R} to the carrier of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ and g_1, g_2 be partial functions from \mathbb{R} to \mathcal{R}^n. If $f_1 = g_1$ and $f_2 = g_2$, then $f_1 - f_2 = g_1 - g_2$.

(11) f is continuous in x_0 if and only if the following conditions are satisfied:

(i) $x_0 \in \text{dom } f$, and

(ii) for every subset N_1 of \mathcal{R}^n such that there exists a real number r such that $0 < r$ and $\{ y \in \mathcal{R}^n : |y - f(x_0)| < r \} = N_1$ there exists a neighbourhood N of x_0 such that for every x_1 such that $x_1 \in \text{dom } f$ and $x_1 \in N$ holds $f(x_1) \in N_1$.

(12) f is continuous in x_0 if and only if the following conditions are satisfied:

(i) $x_0 \in \text{dom } f$, and
(ii) for every subset N_1 of \mathbb{R}^n such that there exists a real number r such that $0 < r$ and \(\{ y \in \mathbb{R}^n: |y - f_{x_0}| < r \} = N_1 \) there exists a neighbourhood N of x_0 such that $f^* N \subseteq N_1$.

(13) If there exists a neighbourhood N of x_0 such that $\text{dom}\ f \cap N = \{ x_0 \}$, then f is continuous in x_0.

(14) If $x_0 \in \text{dom}\ f_1 \cap \text{dom}\ f_2$ and f_1 is continuous in x_0 and f_2 is continuous in x_0, then $f_1 + f_2$ is continuous in x_0.

(15) If $x_0 \in \text{dom}\ f_1 \cap \text{dom}\ f_2$ and f_1 is continuous in x_0 and f_2 is continuous in x_0, then $f_1 - f_2$ is continuous in x_0.

(16) If f is continuous in x_0, then $r \cdot f$ is continuous in x_0.

(17) If $x_0 \in \text{dom}\ f$ and f is continuous in x_0, then $|f|$ is continuous in x_0.

(18) If $x_0 \in \text{dom}\ f$ and f is continuous in x_0, then $-f$ is continuous in x_0.

(19) Let S be a real normed space, z be a point of \(\langle \mathcal{E}^n, \| \cdot \| \rangle \), f_1 be a partial function from \mathbb{R} to \mathbb{R}^n, and f_2 be a partial function from the carrier of \(\langle \mathcal{E}^n, \| \cdot \| \rangle \) to the carrier of S. Suppose $x_0 \in \text{dom}(f_2 \cdot f_1)$ and f_1 is continuous in x_0 and $z = (f_1)_{x_0}$ and f_2 is continuous in z. Then $f_2 \cdot f_1$ is continuous in x_0.

(20) Let S be a real normed space, f_1 be a partial function from \mathbb{R} to the carrier of S, and f_2 be a partial function from the carrier of S to \mathbb{R}. Suppose $x_0 \in \text{dom}(f_2 \cdot f_1)$ and f_1 is continuous in x_0 and f_2 is continuous in $(f_1)_{x_0}$. Then $f_2 \cdot f_1$ is continuous in x_0.

Let us consider n, let f be a partial function from \mathbb{R}^n to \mathbb{R}, and let x_0 be an element of \mathbb{R}^n. We say that f is continuous in x_0 if and only if the condition (Def. 4) is satisfied.

(Def. 4) There exists a point y_0 of \(\langle \mathcal{E}^n, \| \cdot \| \rangle \) and there exists a partial function g from the carrier of \(\langle \mathcal{E}^n, \| \cdot \| \rangle \) to \mathbb{R} such that $x_0 = y_0$ and $f = g$ and g is continuous in y_0.

One can prove the following two propositions:

(21) Let f be a partial function from \mathbb{R}^n to \mathbb{R}, h be a partial function from the carrier of \(\langle \mathcal{E}^n, \| \cdot \| \rangle \) to \mathbb{R}, x_0 be an element of \mathbb{R}^n, and y_0 be a point of \(\langle \mathcal{E}^n, \| \cdot \| \rangle \). Suppose $f = h$ and $x_0 = y_0$. Then f is continuous in x_0 if and only if h is continuous in y_0.

(22) Let f_1 be a partial function from \mathbb{R} to \mathbb{R} and f_2 be a partial function from \mathbb{R}^n to \mathbb{R}. Suppose $x_0 \in \text{dom}(f_2 \cdot f_1)$ and f_1 is continuous in x_0 and f_2 is continuous in $(f_1)_{x_0}$. Then $f_2 \cdot f_1$ is continuous in x_0.

Let us consider n, f. We say that f is continuous if and only if:

(Def. 5) For every x_0 such that $x_0 \in \text{dom}\ f$ holds f is continuous in x_0.

One can prove the following propositions:
(23) Let g be a partial function from \mathbb{R} to the carrier of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ and f be a partial function from \mathbb{R} to \mathcal{R}^n. If $g = f$, then g is continuous iff f is continuous.

(24) Suppose $X \subseteq \text{dom } f$. Then $f|X$ is continuous if and only if for all x_0, r such that $x_0 \in X$ and $0 < r$ there exists s such that $0 < s$ and for every x_1 such that $x_1 \in X$ and $|x_1 - x_0| < s$ holds $|f_{x_1} - f_{x_0}| < r$.

Let us consider n. Observe that every partial function from \mathbb{R} to \mathcal{R}^n which is constant is also continuous.

Let us consider n. Observe that there exists a partial function from \mathbb{R} to \mathcal{R}^n which is empty.

Let us consider n, let f be a continuous partial function from \mathbb{R} to \mathcal{R}^n, and let X be a set. One can verify that $f|X$ is continuous.

One can prove the following proposition

(25) If $f|X$ is continuous and $X_1 \subseteq X$, then $f|X_1$ is continuous.

Let us consider n. Note that every partial function from \mathbb{R} to \mathcal{R}^n which is empty is also continuous.

Let us consider n, f and let X be a trivial set. One can verify that $f|X$ is continuous.

Let us consider n and let f_1, f_2 be continuous partial functions from \mathbb{R} to \mathcal{R}^n. One can check that $f_1 + f_2$ is continuous.

The following propositions are true:

(26) If $X \subseteq \text{dom } f_1 \cap \text{dom } f_2$ and $f_1|X$ is continuous and $f_2|X$ is continuous, then $(f_1 + f_2)|X$ is continuous and $(f_1 - f_2)|X$ is continuous.

(27) If $X \subseteq \text{dom } f_1$ and $X \subseteq \text{dom } f_2$ and $f_1|X$ is continuous and $f_2|X_1$ is continuous, then $(f_1 + f_2)|(X \cap X_1)$ is continuous and $(f_1 - f_2)|(X \cap X_1)$ is continuous.

Let us consider n, let f be a continuous partial function from \mathbb{R} to \mathcal{R}^n, and let us consider r. Observe that $r \cdot f$ is continuous.

The following propositions are true:

(28) If $X \subseteq \text{dom } f$ and $f|X$ is continuous, then $(r \cdot f)|X$ is continuous.

(29) If $X \subseteq \text{dom } f$ and $f|X$ is continuous, then $|f||X$ is continuous and $(-f)|X$ is continuous.

(30) If f is total and for all x_1, x_2 holds $f_{x_1 + x_2} = f_{x_1} + f_{x_2}$ and there exists x_0 such that f is continuous in x_0, then $f|\mathbb{R}$ is continuous.

(31) For every subset Y of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ such that $\text{dom } f$ is compact and $f|\text{dom } f$ is continuous and $Y = \text{rng } f$ holds Y is compact.

(32) Let Y be a subset of \mathbb{R} and Z be a subset of $\langle \mathcal{E}^n, \| \cdot \| \rangle$. Suppose $Y \subseteq \text{dom } f$ and $Z = f^0Y$ and Y is compact and $f|Y$ is continuous. Then Z is compact.

Let us consider n, f. We say that f is Lipschitzian if and only if:
There exists a partial function \(g \) from \(\mathbb{R} \) to the carrier of \((\mathcal{E}^n, \| \cdot \|) \) such that \(g = f \) and \(g \) is Lipschitzian.

The following propositions are true:

1. \(f \) is Lipschitzian if and only if there exists a real number \(r \) such that \(0 < r \) and for all \(x_1, x_2 \) such that \(x_1, x_2 \in \text{dom } f \) holds \(|f(x_1) - f(x_2)| \leq r \cdot |x_1 - x_2| \).

2. If \(f = h \), then \(f \) is Lipschitzian if and only if \(h \) is Lipschitzian.

3. \(f \upharpoonright X \) is Lipschitzian if and only if there exists a real number \(r \) such that \(0 < r \) and for all \(x_1, x_2 \) such that \(x_1, x_2 \in \text{dom}(f \upharpoonright X) \) holds \(|f(x_1) - f(x_2)| \leq r \cdot |x_1 - x_2| \).

Let us consider \(n \). Note that every partial function from \(\mathbb{R} \) to \(\mathbb{R}^n \) which is empty is also Lipschitzian.

Let us consider \(n \). Note that there exists a partial function from \(\mathbb{R} \) to \(\mathbb{R}^n \) which is empty.

Let us consider \(n \), let \(f \) be a Lipschitzian partial function from \(\mathbb{R} \) to \(\mathbb{R}^n \), and let \(X \) be a set. Note that \(f \upharpoonright X \) is Lipschitzian.

We now state the proposition

\(f \upharpoonright X \) is Lipschitzian and \(X_1 \subseteq X \), then \(f \upharpoonright X_1 \) is Lipschitzian.

Let us consider \(n \) and let \(f_1, f_2 \) be Lipschitzian partial functions from \(\mathbb{R} \) to \(\mathbb{R}^n \). Observe that \(f_1 + f_2 \) is Lipschitzian and \(f_1 - f_2 \) is Lipschitzian.

We now state two propositions:

1. If \(f_1 \upharpoonright X \) is Lipschitzian and \(f_2 \upharpoonright X_1 \) is Lipschitzian, then \((f_1 + f_2) \upharpoonright (X \cap X_1)\) is Lipschitzian.

2. If \(f_1 \upharpoonright X \) is Lipschitzian and \(f_2 \upharpoonright X_1 \) is Lipschitzian, then \((f_1 - f_2) \upharpoonright (X \cap X_1)\) is Lipschitzian.

Let us consider \(n \), let \(f \) be a Lipschitzian partial function from \(\mathbb{R} \) to \(\mathbb{R}^n \), and let us consider \(p \). Observe that \(p \cdot f \) is Lipschitzian.

Next we state the proposition

1. If \(f \upharpoonright X \) is Lipschitzian and \(X \subseteq \text{dom } f \), then \((p \cdot f) \upharpoonright X\) is Lipschitzian.

Let us consider \(n \) and let \(f \) be a Lipschitzian partial function from \(\mathbb{R} \) to \(\mathbb{R}^n \). Observe that \(|f| \) is Lipschitzian.

Next we state the proposition

1. If \(f \upharpoonright X \) is Lipschitzian, then \(-f \upharpoonright X \) is Lipschitzian and \(|f| \upharpoonright X \) is Lipschitzian.

Let us consider \(n \). One can check that every partial function from \(\mathbb{R} \) to \(\mathbb{R}^n \) which is constant is also Lipschitzian.

Let us consider \(n \). One can verify that every partial function from \(\mathbb{R} \) to \(\mathbb{R}^n \) which is Lipschitzian is also continuous.

The following propositions are true:

1. For all elements \(r, p \) of \(\mathbb{R}^n \) such that for every \(x_0 \) such that \(x_0 \in X \) holds \(f_{x_0} = x_0 \cdot r + p \) holds \(f \upharpoonright X \) is continuous.
(42) For every element x_0 of \mathbb{R}^n such that $1 \leq i \leq n$ holds $\text{proj}(i, n)$ is continuous in x_0.

(43) Let n be a non empty element of \mathbb{N} and h be a partial function from \mathbb{R} to \mathbb{R}^n. Then h is continuous in x_0 if and only if the following conditions are satisfied:

(i) $x_0 \in \text{dom } h$, and

(ii) for every element i of \mathbb{N} such that $i \in \text{Seg } n$ holds $\text{proj}(i, n) \cdot h$ is continuous in x_0.

(44) Let n be a non empty element of \mathbb{N} and h be a partial function from \mathbb{R} to \mathbb{R}^n. Then h is continuous in x_0 if and only if the following conditions are satisfied:

(i) $x_0 \in \text{dom } h$, and

(ii) for every element i of \mathbb{N} such that $i \in \text{Seg } n$ holds $\text{proj}(i, n) \cdot h$ is continuous.

(45) For every point x_0 of $\langle E^n, \| \cdot \| \rangle$ such that $1 \leq i \leq n$ holds $\text{Proj}(i, n)$ is continuous in x_0.

(46) Let n be a non empty element of \mathbb{N} and h be a partial function from \mathbb{R} to the carrier of $\langle E^n, \| \cdot \| \rangle$. Then h is continuous in x_0 if and only if for every element i of \mathbb{N} such that $i \in \text{Seg } n$ holds $\text{Proj}(i, n) \cdot h$ is continuous.

(47) Let n be a non empty element of \mathbb{N} and h be a partial function from \mathbb{R} to the carrier of $\langle E^n, \| \cdot \| \rangle$. Then h is continuous if and only if for every element i of \mathbb{N} such that $i \in \text{Seg } n$ holds $\text{Proj}(i, n) \cdot h$ is continuous.

References

MORE ON THE CONTINUITY OF REAL FUNCTIONS

Received February 22, 2011