FORMALIZED MATHEMATICS
vol. 19, No. 3, Pages 179-192, 2011
DOI: 10.2478/v10037-011-0027-0

First Order Languages: Further Syntax and
Semantics!

Marco B. Caminati?
Mathematics Department “G.Castelnuovo”
Sapienza University of Rome
Piazzale Aldo Moro 5, 00185 Roma, Italy

Summary. Third of a series of articles laying down the bases for classical
first order model theory. Interpretation of a language in a universe set. Evaluation
of a term in a universe. Truth evaluation of an atomic formula. Reassigning the
value of a symbol in a given interpretation. Syntax and semantics of a non atomic
formula are then defined concurrently (this point is explained in [16], 4.2.1).
As a consequence, the evaluation of any w.f.f. string and the relation of logical
implication are introduced. Depth of a formula. Definition of satisfaction and
entailment (aka entailment or logical implication) relations, see [18] II1.3.2 and
I11.4.1 respectively.

MML identifier: FOMODEL2, version: 7.11.07 4.160.1126

The terminology and notation used in this paper have been introduced in the
following papers: [7], [1], [23], [6], [8], [17], [14], [15], [22], [9], [10], [11], [2], [21],
[26], [24], [5], [3], [4], [12], [27], [28], [19], [20], [25], and [13].

For simplicity, we follow the rules: m, n denote natural numbers, m; denotes
an element of N, A, B, X, Y, Z, x, y denote sets, S, S, So denote languages, s
denotes an element of S, w, wy, we denote strings of S, U denotes a non empty
set, f, g denote functions, and p, ps denote finite sequences.

Let us consider S. Then TheNorSymbOf S is an element of S.

Let U be a non empty set. The functor U-deltalnterpreter yielding a function
from U? into Boolean is defined by:

(Def. 1) U-deltalnterpreter = X(the concatenation of U)° (idy1),U?-

IThe author wrote this paper as part of his PhD thesis research.
2T would like to thank Marco Pedicini for his encouragement and support.

(© 2011 University of Bialystok
179 ISSN 1426-2630(p), 1898-9934(c)

http://fm.mizar.org/miz/fomodel2.miz
http://ftp.mizar.org/

180 MARCO B. CAMINATI

Let X be a set. Then idx is an equivalence relation of X.
Let S be a language, let U be a non empty set, and let s be an of-atomic-
formula element of S. Interpreter of s and U is defined as follows:

(Def. 2)(i) It is a function from U!* ¢l into Boolean if s is relational,
(ii) it is a function from Ul into U, otherwise.

Let us consider S, U and let s be an of-atomic-formula element of S. We see
that the interpreter of s and U is a function from U/?*5l into U U Boolean .

Let us consider S, U and let s be a termal element of S. One can verify that
every interpreter of s and U is U-valued.

Let S be a language. Note that every element of S which is literal is also
OWnL.

Let us consider S, U. A function is called an interpreter of S and U if:

(Def. 3) For every own element s of S holds it(s) is an interpreter of s and U.

Let us consider S, U, f. We say that f is (S, U)-interpreter-like if and only
if:

(Def. 4) f is an interpreter of S and U and function yielding.

Let us consider S and let U be a non empty set. One can verify that every
function which is (S, U)-interpreter-like is also function yielding.

Let us consider S, U and let s be an own element of S. Observe that every
interpreter of s and U is non empty.

Let S be a language and let U be a non empty set. Note that there exists a
function which is (S, U)-interpreter-like.

Let us consider S, U, let I be an (S, U)-interpreter-like function, and let s
be an own element of S. Then I(s) is an interpreter of s and U.

Let S be a language, let U be a non empty set, let I be an (.S, U)-interpreter-
like function, let x be an own element of S, and let f be an interpreter of x and
U. One can check that I+-(z——f) is (S, U)-interpreter-like.

Let us consider f, x, y. The functor (z,y) Reassignln f yields a function and
is defined by:

(Def. 5) (x,y) Reassignln f = f+-(z——(0——y)).

Let S be a language, let U be a non empty set, let I be an (.S, U)-interpreter-
like function, let = be a literal element of S, and let u be an element of U. One
can verify that (z,u) Reassignln I is (S, U)-interpreter-like.

Let S be a language. One can check that AllISymbolsOf S is non empty.

Let Y be a set and let X, Z be non empty sets. Observe that every function
from X into ZY is function yielding.

Let X, Y, Z be non empty sets. One can verify that there exists a function
from X into Z¥ which is function yielding.

Let f be a function yielding function and let g be a function. The functor
[g, f] yields a function and is defined by:

FIRST ORDER LANGUAGES: FURTHER SYNTAX AND ... 181

(Def. 6) domlg, f] = dom f and for every z such that x € dom f holds [g, f](x) =
g f(z).
Let f be an empty function and let g be a function. One can verify that
9, f] is empty.
Let f be a function yielding function and let g be a function. The functor
[f, g] yielding a function is defined as follows:

(Def. 7) dom|[f, g] = dom f N'dom g and for every set x such that z € dom|[f, g|
holds [f, g](x) = f(z)(g(z)).

Let f be a function yielding function and let g be an empty function. One
can check that [f, g] is empty.

Let X be a finite sequence-membered set. Observe that every function which
is X-valued is also function yielding.

Let E, D be non empty sets, let p be a D-valued finite sequence, and let h
be a function from D into E. Note that h - p is len p-element.

Let X, Y be non empty sets, let f be a function from X into Y, and let p
be an X-valued finite sequence. One can verify that f - p is finite sequence-like.

Let E, D be non empty sets, let n be a natural number, let p be an n-element
D-valued finite sequence, and let h be a function from D into E. Observe that
h - p is n-element.

We now state the proposition

(1) For every O-termal string to of S holds ¢ty = (S-firstChar(ty)).

Let us consider S, let U be a non empty set, let v be an element of U, and
let I be an (S, U)-interpreter-like function. The functor (I, u)-TermEval yields

UAllTermsOf S

a function from N into and is defined as follows:

(Def. 8) (I,u)-TermEval(0) = AllTermsOfS ~— wu and for every m; holds
(I,u)-TermEval(m; + 1) = [I - S-firstChar, [((I, u) -TermEval(m;) qua
function), S-subTerms]].

Let us consider S, U, let I be an (S, U)-interpreter-like function, and let ¢
be an element of AllTermsOf S. The functor I-TermEvalt yields an element of
U and is defined as follows:

(Def. 9) For every element w; of U and for every m; such that t €
S-termsOfMaxDepth(m;) holds I-TermEvalt = (I, u;)-TermEval(m; +
1)(¢t).

Let us consider S, U and let I be an (S, U)-interpreter-like function. The
functor I-TermEval yielding a function from AllTermsOf S into U is defined by:

(Def. 10) For every element ¢ of AllTermsOfS holds I-TermEval(t) =
I-TermEval t.

Let us consider S, U and let I be an (S, U)-interpreter-like function. The

functor I === yielding a function is defined as follows:

(Def. 11) [==== I+-(TheEqSymbOf S——U-deltalnterpreter).

182 MARCO B. CAMINATI

Let us consider S, U, let I be an (S, U)-interpreter-like function, and let x

be a set. We say that z is I-extension if and only if:
(Def. 12) z=1===.

Let us consider S, U and let I be an (S, U)-interpreter-like function. Note
that I === is I-extension and every set which is [-extension is also function-
like. Observe that there exists a function which is I-extension. Observe that

=== is (5, U)-interpreter-like.

Let f be an I-extension function, and let s be an of-atomic-formula element
of S. Then f(s) is an interpreter of s and U.

Let p1 be a 0-w.f.f. string of S. The functor I-AtomicEval p; is defined as
follows:

(Def. 13) I-AtomicEval p; = (I === (S-firstChar(p;)))(I/-TermEval - SubTerms p;).

Let us consider S, U, let I be an (S, U)-interpreter-like function, and let p; be
a 0-w.f.f. string of S. Then I-AtomicEval p; is an element of Boolean. Note that
IT OwnSymbolsOf S is (U*—(U U Boolean))-valued and I OwnSymbolsOf S is
(S, U)-interpreter-like.

Let us consider S, U and let I be an (S, U)-interpreter-like function. Observe
that 1T OwnSymbolsOf S is total.

Let us consider S, U. The functor U-InterpretersOf S is defined by:

(Def. 14) U-InterpretersOf S = {f € (U*~>(U U Boolean))OWnSymbolsOf 5. ¢ g
(S, U)-interpreter-like}.

Let us consider S, U. Then U-InterpretersOf S is a subset of (U*=(U U
Boolean))OWnSymbolsOfS - Ohgerve that U-InterpretersOf S is non empty. One
can verify that every element of U-InterpretersOf S is (S, U)-interpreter-like.
The functor S-TruthEval U yields a function from

(U-InterpretersOf S) x AtomicFormulasOf S into Boolean and is defined by:

(Def. 15) For every element I of U-InterpretersOf S and for every element p; of
AtomicFormulasOf S holds (S-TruthEvalU)(, p1) = I-AtomicEval p;.

Let us consider S, U, let I be an element of U-InterpretersOf.S, let f be
a partial function from (U-InterpretersOf.S) x ((AllSymbolsOf S)* \ {0}) to
Boolean, and let p; be an element of (AllSymbolsOf S)* \ {#}. The functor
f-ExFunctor (I, p;) yielding an element of Boolean is defined as follows:

true, if there exists an element u of U and
there exists a literal element v of S such
(Def. 16) f-ExFunctor(l,p;) = that pi(1) = v and
f((v,u) Reassignln I, (p1)1) = true,
false, otherwise.
Let us consider S, U and let g be an element of (U-InterpretersOf S) x
((AllSymbolsOf S)* \ {@})— Boolean . The functor ExIterator g yields a partial
function from (U-InterpretersOf S) x ((AllSymbolsOf S)*\ {#}) to Boolean and

FIRST ORDER LANGUAGES: FURTHER SYNTAX AND ... 183

is defined by the conditions (Def. 17).

(Def. 17)(i) For every element z of U-InterpretersOf S and for every element y
of (AllSymbolsOf S)* \ {0} holds (z, y) € dom ExlIterator g iff there exists
a literal element v of S and there exists a string w of S such that (z,
w) € domg and y = (v) ~ w, and
(ii) for every element = of U-InterpretersOf S and for every element y
of (AllSymbolsOf S)* \ {#} such that {z, y) € dom ExIteratorg holds
(ExIterator g)(z, y) = g-ExFunctor(x, y).

Let us consider S, U, let f be a partial function from (U-InterpretersOf S) x
((AlISymbolsOf S)*\ {@}) to Boolean, let I be an element of U-InterpretersOf S,
and let p; be an element of (AllSymbolsOf S)* \ {0}.

The functor f-NorFunctor(7,p;) yielding an element of Boolean is defined
by:
true, if there exist elements wy, wg of

(AllSymbolsOf S)* \ {0} such that

(I, w1) € dom f and f(I, wy) = false

and f(I, wy) = false and

p1 = (TheNorSymbOf S) ™ w; ™ way,
false, otherwise.

(Def. 18) f-NorFunctor(I,p1) =

Let us consider S, U and let g be an element of (U-InterpretersOf S) x
((AllSymbolsOf S)* \ {#})— Boolean . The functor Norlterator g yielding a par-
tial function from (U-InterpretersOf S) x ((AllSymbolsOf S)* \ {#}) to Boolean
is defined by the conditions (Def. 19).

(Def. 19)(i) For every element x of U-InterpretersOf S and for every element
y of (AllSymbolsOf S)* \ {0} holds (z, y) € dom Norlterator g iff the-
re exist elements ps, py of (AllSymbolsOf S)* \ {0} such that y =
(TheNorSymbOf S) ™ p3 ™ ps and (x, p3), (z, pa) € domg, and

(ii) for every element = of U-InterpretersOf S and for every element y
of (AllSymbolsOf S)* \ {#} such that (z,y) € dom Norlterator g holds
(Norlterator g)(x, y) = g-NorFunctor(z, y).

Let us consider S, U. The functor (S, U) -TruthEval yields a function from N

into (U-InterpretersOf S) x ((AllSymbolsOf S)* \ {#})— Boolean and is defined
as follows:

(Def. 20) (S,U)-TruthEval(0) = S-TruthEvalU and for every m; holds
(S,U) -TruthEval(m;+1) = ExlIterator(S, U) -TruthEval(m;)+ NorIterator
(S,U)-TruthEval(m;)+-(S, U) -TruthEval(m;).

Next we state the proposition

(2) For every (S, U)-interpreter-like function I holds IT OwnSymbolsOf S €
U-InterpretersOf S.

Let S be a language, let m be a natural number, and let U be a non empty set.

184 MARCO B. CAMINATI

The functor (S, U)-TruthEvalm yielding an element of (U-InterpretersOf S) x
((AllSymbolsOf S)* \ {#})— Boolean is defined as follows:

(Def. 21) For every m; such that m = my holds (S,U)-TruthEvalm =
(S,U)-TruthEval(m,).
Let us consider S, U, m and let I be an element of U-InterpretersOf S. The

functor (I, m)-TruthEval yields an element of
((AlISymbolsOf S)* \ {#})— Boolean and is defined by:

(Def. 22) (I, m)-TruthEval = (curry((S,U)-TruthEvalm))(I).

Let us consider S, m. The functor S-formulasOfMaxDepth m yielding a sub-
set of (AllSymbolsOf S)* \ {0} is defined as follows:

(Def. 23) For every non empty set U and for every element I of U-InterpretersOf S
and for every element mq of N such that m = mq holds
S-formulasOfMaxDepth m = dom((I, m) -TruthEval).

Let us consider S, m, w. We say that w is m-w.f.f. if and only if:
(Def. 24) w € S-formulasOfMaxDepth m.

Let us consider S, w. We say that w is w.f.f. if and only if:
(Def. 25) There exists m such that w is m-w.f.f..

Let us consider S. Note that every string of S which is 0-w.f.f. is also 0-w.f.f.
and every string of S which is 0-w.f.f. is also 0-w.f.f.. Let us consider m. One can
check that every string of S which is m-w.f.f. is also w.f.f.. Let us consider n.
One can check that every string of S which is m 40 - n-w.f.f. is also m + n-w.f.f..

Let us consider S, m. Observe that there exists a string of S which is m-
w.f.f.. Note that S-formulasOfMaxDepth m is non empty. One can verify that
there exists a string of S which is w.f.f..

Let us consider S, U, let I be an element of U-InterpretersOf S, and let w
be a w.f.f. string of S. The functor I-TruthEval w yields an element of Boolean
and is defined as follows:

(Def. 26) For every natural number m such that w is m-w.f.f. holds
I-TruthEvalw = (I, m)-TruthEval(w).

Let us consider S. The functor AllFormulasOf S is defined by:
(Def. 27) AllFormulasOf S = {w; w ranges over strings of S:\/,, w is m-w.f.f.}.

Let us consider S. One can check that AllFormulasOf .S is non empty.

For simplicity, we follow the rules: u, ui, uo are elements of U, ¢ is a termal
string of S, I is an (S, U)-interpreter-like function, I, l1, I are literal elements
of S, mo, n1 are non zero natural numbers, pg is a 0-w.f.f. string of .S, and ps,
1, P3, p4 are w.f.f. strings of S.

The following propositions are true:

(3) (I,u)-TermEval(m + 1)(t) = I(S-firstChar(t))((,u)-TermEval(m) -
SubTermst) and if ¢ is O-termal, then (I,u)-TermEval(m + 1)(t) =
I(S-firstChar(t))(0).

FIRST ORDER LANGUAGES: FURTHER SYNTAX AND ... 185

(4) For every m-termal string ¢ of S holds (I,u;)-TermEval(m + 1)(t) =
(I,u2)-TermEval(m + 1 4+ n)(t).

(5) curry((S,U)-TruthEvalm) is a function from U-InterpretersOf S into
((AlISymbolsOf S)* \ {#})— Boolean .

6) reXUYUZiffreXorzeYorzeZ

(7) S-formulasOfMaxDepth 0 = AtomicFormulasOf S.

Let us consider S, m. Then S-formulasOfMaxDepth m can be characterized
by the condition:

(Def. 28) For every non empty set U and for every element I of U-InterpretersOf S

holds S-formulasOfMaxDepth m = dom((Z, m)-TruthEval).
Next we state the proposition
(8) (S,U)-TruthEvalm € Boolean(U-TnterpretersOf §)x (S-formulasOfMaxDepth m)
and
(S,U)-TruthEval(m) € B oolean U-InterpretersOf §) x (S-formulasOfMaxDepth m)
Let us consider S, m. The functor m-ExFormulasOf S is defined by:

(Def. 29) m-ExFormulasOf S = {(v)"p; : v ranges over elements of LettersOf S, p

ranges over elements of S-formulasOfMaxDepthm}.
The functor m-NorFormulasOf S is defined as follows:

(Def. 30) m-NorFormulasOf S = {(TheNorSymbOfS) ™ p3 ™ ps : ps ranges
over elements of S-formulasOfMaxDepthm,ps ranges over elements of
S-formulasOfMaxDepth m}.

Let us consider S and let wy, we be strings of S. Then wy ~ ws is a string of
S.

Let us consider S, s. Then (s) is a string of S.

One can prove the following two propositions:

(9) S-formulasOfMaxDepth(m + 1) =
(m-ExFormulasOf S)U(m-NorFormulasOf S)U(S-formulasOfMaxDepth m).
(10) AtomicFormulasOf S is S-prefix.

Let us consider S. Note that AtomicFormulasOf S is S-prefix. Observe that
S-formulasOfMaxDepth 0 is S-prefix.

Let us consider p;. The functor Depth p; yielding a natural number is defined
by:

(Def. 31) p; is Depthpi-w.f.f. and for every n such that p; is n-w.f.f. holds
Depthp; < n.

Let us consider S, m and let ps, ps be m-w.f.f. strings of S. Note that
(TheNorSymbOf S) ™ p3 ™ pyg is m + 1-w.L.f..
Let us consider S, p3, ps. Observe that (TheNorSymbOf S) ~ps " py is w.f.f..

Let us consider S, m, let p; be an m-w.f.f. string of .S, and let v be a literal
element of S. Note that (v) ™ p; is m + 1-w.f.f..

186 MARCO B. CAMINATI

Let us consider S, [, p;. Note that (I) ™ py is w.f.f..

Let us consider S, w and let s be a non relational element of S. One can
check that (s) ™ w is non 0-w.f.f..

Let us consider S, w1, we and let s be a non relational element of .S. Observe
that (s) ~w; ~ wsy is non 0-w.f.f.

Let us consider S. Observe that TheNorSymbOf S is non relational.

Let us consider S, w. Observe that (TheNorSymbOf S) ™ w is non 0-w.f.f..

Let us consider S, I, w. Note that (I) ™ w is non 0-w.f.f..

Let us consider S, w. We say that w is exal if and only if:
(Def. 32) S-firstChar(w) is literal.

Let us consider S, w, . One can verify that (I) ™ w is exal.

Let us consider S, mo. Observe that there exists an mo-w.f.f. string of S
which is exal.

Let us consider S. Note that every string of S which is exal is also non
0-w.f.f..

Let us consider S, msy. One can check that there exists an exal mo-w.f.f.
string of S which is non 0-w.f.f..

Let us consider S. One can verify that there exists an exal w.f.f. string of S
which is non 0-w.f.f..

Let us consider S and let p; be a non 0-w.f.f. w.f.f. string of S. Note that
Depth p; is non zero.

Let us consider S and let w be a non 0-w.f.f. w.f.f. string of S. Observe that
S-firstChar(w) is non relational.

Let us consider S, m. Observe that S-formulasOfMaxDepthm is S-prefix.
Then AllFormulasOf S is a subset of (AllSymbolsOf S)*\{0}. Observe that every
element of AllFormulasOf S is w.f.f.. Note that AllFormulasOf S is S-prefix.

We now state three propositions:

(11) dom NorlIterator((S,U)-TruthEvalm) =
(U-InterpretersOf S) x (m-NorFormulasOf 5).

(12) dom ExlIterator((S,U)-TruthEvalm) =
(U-InterpretersOf S) x (m-ExFormulasOf S).

(13) U-deltalnterpreter ~*({1}) = {(u,u) : u ranges over elements of U}.

Let us consider S. Then TheEqSymbOf S is an element of S.
Let us consider S. One can verify that ar TheEqSymbOf S + 2 is zero and
|ar TheEqSymbOf S| — 2 is zero.
We now state two propositions:
(14) Let p; be a 0-w.f.f. string of S and I be an (S, U)-interpreter-like func-

tion. Then

(i) if S-firstChar(p1) # TheEqSymbOfS, then I-AtomicEvalp; =
I(S-firstChar(p;))(I-TermEval - SubTerms p;), and

FIRST ORDER LANGUAGES: FURTHER SYNTAX AND ...

(i) if S-firstChar(p;) = TheEqSymbOf S, then [-AtomicEvalp; =
U-deltalnterpreter(I-TermEval - SubTerms py).
(15) Let I be an (S, U)-interpreter-like function and p; be a 0-w.f.f. string
of S. If S-firstChar(p;) = TheEqSymbOf S, then I-AtomicEvalp; = 1 iff
I-TermEval((SubTerms p;)(1)) = I-TermEval((SubTerms p;)(2)).

Let us consider .S, m. One can check that m-ExFormulasOf S is non empty.
Note that m-NorFormulasOf S is non empty. Then m-NorFormulasOf S is a
subset of (AllSymbolsOf S)* \ {0}.

Let us consider S and let w be an exal string of S. One can verify that
S-firstChar(w) is literal.

Let us consider S, m. Observe that every element of m-NorFormulasOf S is
non exal. Then m-ExFormulasOf S is a subset of (AllSymbolsOf S)* \ {0}.

Let wus consider S, m. One can check that every element of
m-ExFormulasOf S is exal.

Let us consider S. One can check that there exists an element of S which is
non literal.

Let us consider S, w and let s be a non literal element of S. Note that (s) ~w
is non exal.

Let us consider S, w1, we and let s be a non literal element of S. Observe
that (s) ™~ w; ™~ we is non exal.

Let us consider S. Note that TheNorSymbOf S is non literal.

Next we state the proposition

(16) p1 € AllFormulasOf S.

Let us consider S, m, w. We introduce w is m-non-w.f.f. as an antonym of
w is m-w.f.f..

Let us consider m, S. One can verify that every string of S which is non
m-w.f.f. is also m-non-w.f.f..

Let us consider S, p3, ps. Observe that (TheNorSymbOfS) ™ ps ™ py4 is
max(Depth ps, Depth py)-non-w.f.f..

Let us consider S, p1, I. Note that (I) ™ py is Depth p;-non-w.f.f..

Let us consider S, p1, . One can check that (I) ™ p; is 1 + Depth p;-w.f.f..

Let us consider S, U. Observe that every element of U-InterpretersOf S is
OwnSymbolsOf S-defined.

Let us consider S, U. Note that there exists an element of U-InterpretersOf S
which is OwnSymbolsOf S-defined.

Let us consider S, U. Note that every OwnSymbolsOf S-defined element of
U-InterpretersOf S is total.

Let us consider S, U, let I be an element of U-InterpretersOf .S, let x be a
literal element of S, and let u be an element of U. Then (z,u) Reassignln I is
an element of U-InterpretersOf S.

In the sequel I denotes an element of U-InterpretersOf S.

187

188 MARCO B. CAMINATI

Let us consider S, w. The functor xnot w yields a string of S and is defined
as follows:

(Def. 33) xnot w = (TheNorSymbOf S) ~ w ~ w.

Let us consider S, m and let p; be an m-w.f.f. string of S. Observe that
xnot py is m + 1-w.f.f..
Let us consider S, p1. Note that xnot p; is w.f.f..
Let us consider S. One can verify that TheEqSymbOf S is non own.
Let us consider S, X. We say that X is S-mincover if and only if:
(Def. 34) For every p; holds p; € X iff xnot p; ¢ X.
One can prove the following propositions:
(17) Depth({TheNorSymbOf S) ™~ p3 ~ps) = 1+ max(Depth p3, Depth ps) and
Depth({l) ™ p3) = Depth ps + 1.
(18) If Depthp; = m + 1, then p; is exal iff p; € m-ExFormulasOf S and p;
is non exal iff p; € m-NorFormulasOf S.
(19) I-TruthEval(l) ™ p; = true iff there exists u such that
((1,u) Reassignln I')-TruthEval p; = 1 and I-TruthEval(TheNorSymbOf S)™
p3 " pg = true iff I-TruthEval ps = false and I-TruthEval py = false.
In the sequel I denotes an (S, U)-interpreter-like function.
One can prove the following two propositions:
(20) (I,u)-TermEval(m + 1)[S-termsOfMaxDepth(m) =
I-TermEval [S-termsOfMaxDepth(m).
(21) I-TermEval(t) = I(S-firstChar(¢))(/-TermEval - SubTermst).
Let us consider S, p;. The functor SubW{fsOf p; is defined as follows:

(Def. 35)(1) There exist p3, p such that p is AllSymbolsOf S-valued and
SubWfsOf p1 = (ps, p) and p; = (S-firstChar(p;)) ~ ps ~ p if p1 is non
0-w.f.f.,

(i) SubWifsOf p; = (p1, 0), otherwise.
Let us consider S, p;. The functor head p; yields a w.f.f. string of S and is
defined as follows:

(Def. 36) headp; = (SubWHfsOf p1)1.

The functor tail p; yields an element of (AllSymbolsOf S)* and is defined by:

(Def. 37) tailp; = (SubWHsOf py)2.

Let us consider S, m. One can verify that (S-formulasOfMaxDepthm) \
AllFormulasOf S is empty.
Let us consider S. Observe that AtomicFormulasOf S\ AllFormulasOf S is
empty.
We now state two propositions:
(22) Depth((l) ™ p3) > Depth ps and Depth((TheNorSymbOf S) = p3 " ps) >
Depth ps and Depth((TheNorSymbOf S) ™ p3 ™ p4) > Depth py.

FIRST ORDER LANGUAGES: FURTHER SYNTAX AND ... 189

(23) If py is not O-w.f.f., then p; = (z) " ps " po iff = S-firstChar(p;) and
ps = head p; and po = tail py.

Let us consider S, msy. Observe that there exists a non 0-w.f.f. mo-w.f.f.
string of S which is non exal.

Let us consider S and let p; be an exal w.f.f. string of S. One can verify that
tail p; is empty.

Let us consider S and let p; be a non exal non 0-w.f.f. w.ff. string of S.
Then tail p; is a w.f.f. string of S.

Let us consider S and let p; be a non exal non 0-w.f.f. w.f.f. string of S. One
can check that tail p; is w.f.f..

Let us consider S and let p; be a non 0-w.f.f. non exal w.f.f. string of S. One
can verify that S-firstChar(p;)— TheNorSymbOf S is empty.

Let us consider m, S and let p; be an m + 1-w.f.f. string of S. Note that
head py is m-w.f.f..

Let us consider m, S and let p; be an m+ 1-w.f.f. non exal non 0-w.f.f. string
of S. Observe that tail p; is m-w.f.f..

One can prove the following proposition

(24) For every element I of U-InterpretersOf S holds (I,m)-TruthEval €

BooleanS-formulasOfMaxDepth m

Let us consider S. One can check that there exists an of-atomic-formula
element of S which is non literal.
One can prove the following proposition

(25) 1If ly ¢ rngp, then ((I2,u) Reassignln I')-TermEval(p) = I-TermEval(p).
Let us consider X, S, s. We say that s is X-occurring if and only if:
(Def. 38) s € SymbolsOf(((AllSymbolsOf S)* \ {0}) N X).

Let us consider S, s and let us consider X. We say that X is s-containing if
and only if:

(Def. 39) s € SymbolsOf((AllSymbolsOf S)* \ {0} N X).

Let us consider X, S, s. We introduce s is X-absent as an antonym of s is
X-occurring.

Let us consider S, s, X. We introduce X is s-free as an antonym of X is
s-containing.

Let X be a finite set and let us consider S. Observe that there exists a literal
element of S which is X-absent.

Let us consider S, t. Note that rngt N LettersOf S is non empty.

Let us consider S, p1. One can verify that rng p; N LettersOf S is non empty.

Let us consider B, S and let A be a subset of B. Note that every element of
S which is A-occurring is also B-occurring.

Let us consider A, B, S. Observe that every element of S which is A null B-
absent is also A N B-absent.

190 MARCO B. CAMINATI

Let F' be a finite set and let us consider A, S. Note that every F-absent
element of S which is A-absent is also A U F-absent.

Let us consider S, U and let I be an (S, U)-interpreter-like function. One
can check that OwnSymbolsOf S\ dom I is empty.

One can prove the following proposition

(26) There exists u such that w = I(1)(0) and (I,u) ReassignIn I = 1.
Let us consider S, X. We say that X is S-covering if and only if:
(Def. 40) For every p; holds p; € X or xnotp; € X.

Let us consider S. One can check that every set which is S-mincover is also
S-covering.

Let us consider U, let p; be a non 0-w.f.f. non exal w.f.f. string of S, and let
I be an element of U-InterpretersOf S.

One can verify that (I-TruthEval p)=((/-TruthEval head p;) 'nor’

(I-TruthEval tailp;)) is empty.

The functor ExFormulasOf S yielding a subset of (AllSymbolsOf S)*\ {0} is
defined by:

(Def. 41) ExFormulasOf S = {p;;p; ranges over strings of S: p; is w.f.. A p; is
exal}.

Let us consider S. Note that ExFormulasOf S is non empty.

Let us consider S. One can check that every element of ExFormulasOf S is
exal and w.f.f..

Let us consider S. Note that every element of ExFormulasOf S is w.f.f..

Let us consider S. Observe that every element of ExFormulasOf S is exal.

Let us consider S. Observe that ExFormulasOf S\ AllFormulasOf S is empty.

Let us consider U, S1 and let So be an Sj-extending language. Note that
every function which is (Se, U)-interpreter-like is also (S1, U)-interpreter-like.

Let us consider U, S, let So be an Si-extending language, and let I be an
(S2, U)-interpreter-like function. Observe that I[OwnSymbolsOf Sy is (S1,U)-
interpreter-like.

Let us consider U, Si, let Sy be an Si-extending language, let I; be an
element of U-InterpretersOf S, and let I be an (S, U)-interpreter-like function.
Note that Io+-1; is (Sz, U)-interpreter-like.

Let us consider U, S, let I be an element of U-InterpretersOf .S, and let us
consider X. We say that X is I-satisfied if and only if:

(Def. 42) For every p; such that p; € X holds I-TruthEvalp; = 1.

Let us consider S, U, X and let I be an element of U-InterpretersOf S. We
say that I satisfies X if and only if:

(Def. 43) X is I-satisfied.

Let us consider U, S, let e be an empty set, and let I be an element of
U-InterpretersOf S. Observe that enull I is [-satisfied.

FIRST ORDER LANGUAGES: FURTHER SYNTAX AND ... 191

Let us consider X, U, S and let I be an element of U-InterpretersOf S.
Observe that there exists a subset of X which is I-satisfied.

Let us consider U, S and let I be an element of U-InterpretersOf S. One can
check that there exists a set which is I-satisfied.

Let us consider U, S, let I be an element of U-InterpretersOf S, and let X
be an [-satisfied set. One can check that every subset of X is I-satisfied.

Let us consider U, S, let I be an element of U-InterpretersOf S, and let X,
Y be [-satisfied sets. One can verify that X UY is [-satisfied.

Let us consider U, S, let I be an element of U-InterpretersOf S, and let X
be an I-satisfied set. Observe that I null X satisfies X .

Let us consider S, X. We say that X is S-correct if and only if the condition
(Def. 44) is satisfied.

(Def. 44) Let U be a non empty set, I be an element of U-InterpretersOf S, x be
an [-satisfied set, and given p;. If (x, p1) € X, then I-TruthEval p; = 1.

Let us consider S. Note that (null S is S-correct.

Let us consider S, X. Observe that there exists a subset of X which is
S-correct.

Next we state two propositions:

(27) For every element I of U-InterpretersOf S holds I-TruthEvalp; = 1 iff
{p1} is I-satisfied.
(28) s is {w}-occurring iff s € rngw.
Let us consider U, S, let us consider ps, p4, and let I be an element of
U-InterpretersOf S. Observe that (I-TruthEval(TheNorSymbOf S) ™~ ps ™ ps4)—
((I-TruthEval p3) 'nor’ (I-TruthEvalpy)) is empty.
Let us consider S, p1, U and let I be an element of U-InterpretersOf S. Note
that (I-TruthEval xnot p;)-——(I-TruthEval p;) is empty.
Let us consider X, S, p1. We say that p; is X-implied if and only if:

(Def. 45) For every non empty set U and for every element I of U-InterpretersOf S
such that X is I-satisfied holds I-TruthEvalp; = 1.

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537—
541, 1990.

[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[5] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.

[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[7] Czestaw Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

[8] Czestaw Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529-536, 1990.

192

[9]
[10]
[11]

[12]
[13]

[14]

[15]

MARCO B. CAMINATI

Czestaw Byliniski. Functions and their basic properties. Formalized Mathematics, 1(1):55—
65, 1990.
Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,

1990.
Czestaw Bylinski. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
Czestaw Byliniski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
Czestaw Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,

1990.
Marco B. Caminati. Preliminaries to classical first order model theory. Formalized Ma-

thematics, 19(3):155-167, 2011, doi: 10.2478/v10037-011-0025-2.

Marco B. Caminati. Definition of first order language with arbitrary alphabet. Syntax
of terms, atomic formulas and their subterms. Formalized Mathematics, 19(3):169-178,
2011, doi: 10.2478/v10037-011-0026-1.

M.B. Caminati. Basic first-order model theory in Mizar. Journal of Formalized Reasoning,
3(1):49-77, 2010.

Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

H.D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical logic. Springer, 1994.
Jarostaw Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275-278, 1992.

Jarostaw Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the
set of real numbers. Formalized Mathematics, 3(2):279-288, 1992.

Rafal Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes.
Formalized Mathematics, 1(5):829-832, 1990.

Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329-334, 1990.

Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115-122, 1990.

Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97-105, 1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Edmund Woronowicz. Many—argument relations. Formalized Mathematics, 1(4):733-737,

1990.
Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73-83, 1990.
Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186,
1990.

Received December 29, 2010

