
FORMALIZED MATHEMATICS

Vol. 19, No. 3, Pages 179–192, 2011
DOI: 10.2478/v10037-011-0027-0

First Order Languages: Further Syntax and
Semantics1

Marco B. Caminati2

Mathematics Department “G.Castelnuovo”
Sapienza University of Rome

Piazzale Aldo Moro 5, 00185 Roma, Italy

Summary. Third of a series of articles laying down the bases for classical
first order model theory. Interpretation of a language in a universe set. Evaluation
of a term in a universe. Truth evaluation of an atomic formula. Reassigning the
value of a symbol in a given interpretation. Syntax and semantics of a non atomic
formula are then defined concurrently (this point is explained in [16], 4.2.1).
As a consequence, the evaluation of any w.f.f. string and the relation of logical
implication are introduced. Depth of a formula. Definition of satisfaction and
entailment (aka entailment or logical implication) relations, see [18] III.3.2 and
III.4.1 respectively.

MML identifier: FOMODEL2, version: 7.11.07 4.160.1126

The terminology and notation used in this paper have been introduced in the
following papers: [7], [1], [23], [6], [8], [17], [14], [15], [22], [9], [10], [11], [2], [21],
[26], [24], [5], [3], [4], [12], [27], [28], [19], [20], [25], and [13].

For simplicity, we follow the rules: m, n denote natural numbers, m1 denotes
an element of N, A, B, X, Y , Z, x, y denote sets, S, S1, S2 denote languages, s
denotes an element of S, w, w1, w2 denote strings of S, U denotes a non empty
set, f , g denote functions, and p, p2 denote finite sequences.

Let us consider S. Then TheNorSymbOf S is an element of S.
Let U be a non empty set. The functor U -deltaInterpreter yielding a function

from U2 into Boolean is defined by:

(Def. 1) U -deltaInterpreter = χ(the concatenation of U)◦(idU1),U2 .

1The author wrote this paper as part of his PhD thesis research.
2I would like to thank Marco Pedicini for his encouragement and support.

179
c© 2011 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/8/15 8:51 AM

http://fm.mizar.org/miz/fomodel2.miz
http://ftp.mizar.org/

180 marco b. caminati

Let X be a set. Then idX is an equivalence relation of X.
Let S be a language, let U be a non empty set, and let s be an of-atomic-

formula element of S. Interpreter of s and U is defined as follows:

(Def. 2)(i) It is a function from U |ar s| into Boolean if s is relational,
(ii) it is a function from U |ar s| into U , otherwise.

Let us consider S, U and let s be an of-atomic-formula element of S. We see
that the interpreter of s and U is a function from U |ar s| into U ∪ Boolean .

Let us consider S, U and let s be a termal element of S. One can verify that
every interpreter of s and U is U -valued.

Let S be a language. Note that every element of S which is literal is also
own.

Let us consider S, U . A function is called an interpreter of S and U if:

(Def. 3) For every own element s of S holds it(s) is an interpreter of s and U .

Let us consider S, U , f . We say that f is (S,U)-interpreter-like if and only
if:

(Def. 4) f is an interpreter of S and U and function yielding.

Let us consider S and let U be a non empty set. One can verify that every
function which is (S,U)-interpreter-like is also function yielding.

Let us consider S, U and let s be an own element of S. Observe that every
interpreter of s and U is non empty.

Let S be a language and let U be a non empty set. Note that there exists a
function which is (S,U)-interpreter-like.

Let us consider S, U , let I be an (S,U)-interpreter-like function, and let s
be an own element of S. Then I(s) is an interpreter of s and U .

Let S be a language, let U be a non empty set, let I be an (S,U)-interpreter-
like function, let x be an own element of S, and let f be an interpreter of x and
U . One can check that I+·(x7−→. f) is (S,U)-interpreter-like.

Let us consider f , x, y. The functor (x, y) ReassignIn f yields a function and
is defined by:

(Def. 5) (x, y) ReassignIn f = f+·(x 7−→. (∅7−→. y)).

Let S be a language, let U be a non empty set, let I be an (S,U)-interpreter-
like function, let x be a literal element of S, and let u be an element of U . One
can verify that (x, u) ReassignIn I is (S,U)-interpreter-like.

Let S be a language. One can check that AllSymbolsOf S is non empty.
Let Y be a set and let X, Z be non empty sets. Observe that every function

from X into ZY is function yielding.
Let X, Y , Z be non empty sets. One can verify that there exists a function

from X into ZY which is function yielding.
Let f be a function yielding function and let g be a function. The functor

[g, f] yields a function and is defined by:

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/8/15 8:51 AM

first order languages: further syntax and . . . 181

(Def. 6) dom[g, f] = dom f and for every x such that x ∈ dom f holds [g, f](x) =
g · f(x).

Let f be an empty function and let g be a function. One can verify that
[g, f] is empty.

Let f be a function yielding function and let g be a function. The functor
[f, g] yielding a function is defined as follows:

(Def. 7) dom[f, g] = dom f ∩ dom g and for every set x such that x ∈ dom[f, g]
holds [f, g](x) = f(x)(g(x)).

Let f be a function yielding function and let g be an empty function. One
can check that [f, g] is empty.

Let X be a finite sequence-membered set. Observe that every function which
is X-valued is also function yielding.

Let E, D be non empty sets, let p be a D-valued finite sequence, and let h
be a function from D into E. Note that h · p is len p-element.

Let X, Y be non empty sets, let f be a function from X into Y , and let p
be an X-valued finite sequence. One can verify that f · p is finite sequence-like.

Let E, D be non empty sets, let n be a natural number, let p be an n-element
D-valued finite sequence, and let h be a function from D into E. Observe that
h · p is n-element.

We now state the proposition

(1) For every 0-termal string t0 of S holds t0 = 〈S-firstChar(t0)〉.
Let us consider S, let U be a non empty set, let u be an element of U , and

let I be an (S,U)-interpreter-like function. The functor (I, u) -TermEval yields
a function from N into UAllTermsOf S and is defined as follows:

(Def. 8) (I, u) -TermEval(0) = AllTermsOf S 7−→ u and for every m1 holds
(I, u) -TermEval(m1 + 1) = [I · S-firstChar, [((I, u) -TermEval(m1) qua
function), S-subTerms]].

Let us consider S, U , let I be an (S,U)-interpreter-like function, and let t
be an element of AllTermsOf S. The functor I-TermEval t yields an element of
U and is defined as follows:

(Def. 9) For every element u1 of U and for every m1 such that t ∈
S-termsOfMaxDepth(m1) holds I-TermEval t = (I, u1) -TermEval(m1 +
1)(t).

Let us consider S, U and let I be an (S,U)-interpreter-like function. The
functor I-TermEval yielding a function from AllTermsOf S into U is defined by:

(Def. 10) For every element t of AllTermsOf S holds I-TermEval(t) =
I-TermEval t.

Let us consider S, U and let I be an (S,U)-interpreter-like function. The
functor I === yielding a function is defined as follows:

(Def. 11) I ==== I+·(TheEqSymbOf S 7−→. U -deltaInterpreter).

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/8/15 8:51 AM

182 marco b. caminati

Let us consider S, U , let I be an (S,U)-interpreter-like function, and let x
be a set. We say that x is I-extension if and only if:

(Def. 12) x = I === .

Let us consider S, U and let I be an (S,U)-interpreter-like function. Note
that I === is I-extension and every set which is I-extension is also function-
like. Observe that there exists a function which is I-extension. Observe that
I === is (S,U)-interpreter-like.

Let f be an I-extension function, and let s be an of-atomic-formula element
of S. Then f(s) is an interpreter of s and U .

Let p1 be a 0-w.f.f. string of S. The functor I-AtomicEval p1 is defined as
follows:

(Def. 13) I-AtomicEval p1 = (I === (S-firstChar(p1)))(I-TermEval · SubTerms p1).

Let us consider S, U , let I be an (S,U)-interpreter-like function, and let p1 be
a 0-w.f.f. string of S. Then I-AtomicEval p1 is an element of Boolean. Note that
I� OwnSymbolsOf S is (U∗→̇(U ∪ Boolean))-valued and I� OwnSymbolsOf S is
(S,U)-interpreter-like.

Let us consider S, U and let I be an (S,U)-interpreter-like function. Observe
that I� OwnSymbolsOf S is total.

Let us consider S, U . The functor U -InterpretersOf S is defined by:

(Def. 14) U -InterpretersOf S = {f ∈ (U∗→̇(U ∪ Boolean))OwnSymbolsOf S : f is
(S,U)-interpreter-like}.

Let us consider S, U . Then U -InterpretersOf S is a subset of (U∗→̇(U ∪
Boolean))OwnSymbolsOf S . Observe that U -InterpretersOf S is non empty. One
can verify that every element of U -InterpretersOf S is (S,U)-interpreter-like.
The functor S-TruthEvalU yields a function from

(U -InterpretersOf S)×AtomicFormulasOf S into Boolean and is defined by:

(Def. 15) For every element I of U -InterpretersOf S and for every element p1 of
AtomicFormulasOf S holds (S-TruthEvalU)(I, p1) = I-AtomicEval p1.

Let us consider S, U , let I be an element of U -InterpretersOf S, let f be
a partial function from (U -InterpretersOf S) × ((AllSymbolsOf S)∗ \ {∅}) to
Boolean, and let p1 be an element of (AllSymbolsOf S)∗ \ {∅}. The functor
f -ExFunctor(I, p1) yielding an element of Boolean is defined as follows:

(Def. 16) f -ExFunctor(I, p1) =



true, if there exists an element u of U and
there exists a literal element v of S such
that p1(1) = v and
f((v, u) ReassignIn I, (p1)�1) = true,

false, otherwise.

Let us consider S, U and let g be an element of (U -InterpretersOf S) ×
((AllSymbolsOf S)∗ \ {∅})→̇Boolean . The functor ExIterator g yields a partial
function from (U -InterpretersOf S)× ((AllSymbolsOf S)∗ \ {∅}) to Boolean and

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/8/15 8:51 AM

first order languages: further syntax and . . . 183

is defined by the conditions (Def. 17).

(Def. 17)(i) For every element x of U -InterpretersOf S and for every element y
of (AllSymbolsOf S)∗ \ {∅} holds 〈〈x, y〉〉 ∈ dom ExIterator g iff there exists
a literal element v of S and there exists a string w of S such that 〈〈x,
w〉〉 ∈ dom g and y = 〈v〉 a w, and

(ii) for every element x of U -InterpretersOf S and for every element y

of (AllSymbolsOf S)∗ \ {∅} such that 〈〈x, y〉〉 ∈ dom ExIterator g holds
(ExIterator g)(x, y) = g-ExFunctor(x, y).

Let us consider S, U , let f be a partial function from (U -InterpretersOf S)×
((AllSymbolsOf S)∗\{∅}) to Boolean, let I be an element of U -InterpretersOf S,
and let p1 be an element of (AllSymbolsOf S)∗ \ {∅}.

The functor f -NorFunctor(I, p1) yielding an element of Boolean is defined
by:

(Def. 18) f -NorFunctor(I, p1) =



true, if there exist elements w1, w2 of
(AllSymbolsOf S)∗ \ {∅} such that
〈〈I, w1〉〉 ∈ dom f and f(I, w1) = false
and f(I, w2) = false and
p1 = 〈TheNorSymbOf S〉 a w1

a w2,

false, otherwise.

Let us consider S, U and let g be an element of (U -InterpretersOf S) ×
((AllSymbolsOf S)∗ \ {∅})→̇Boolean . The functor NorIterator g yielding a par-
tial function from (U -InterpretersOf S)× ((AllSymbolsOf S)∗ \ {∅}) to Boolean
is defined by the conditions (Def. 19).

(Def. 19)(i) For every element x of U -InterpretersOf S and for every element
y of (AllSymbolsOf S)∗ \ {∅} holds 〈〈x, y〉〉 ∈ dom NorIterator g iff the-
re exist elements p3, p4 of (AllSymbolsOf S)∗ \ {∅} such that y =
〈TheNorSymbOf S〉 a p3

a p4 and 〈〈x, p3〉〉, 〈〈x, p4〉〉 ∈ dom g, and
(ii) for every element x of U -InterpretersOf S and for every element y

of (AllSymbolsOf S)∗ \ {∅} such that 〈〈x, y〉〉 ∈ dom NorIterator g holds
(NorIterator g)(x, y) = g-NorFunctor(x, y).

Let us consider S, U . The functor (S,U) -TruthEval yields a function from N
into (U -InterpretersOf S)× ((AllSymbolsOf S)∗ \ {∅})→̇Boolean and is defined
as follows:

(Def. 20) (S,U) -TruthEval(0) = S-TruthEvalU and for every m1 holds
(S,U) -TruthEval(m1+1) = ExIterator(S,U) -TruthEval(m1)+·NorIterator
(S,U) -TruthEval(m1)+·(S,U) -TruthEval(m1).

Next we state the proposition

(2) For every (S,U)-interpreter-like function I holds I� OwnSymbolsOf S ∈
U -InterpretersOf S.

Let S be a language, letm be a natural number, and let U be a non empty set.

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/8/15 8:51 AM

184 marco b. caminati

The functor (S,U) -TruthEvalm yielding an element of (U -InterpretersOf S)×
((AllSymbolsOf S)∗ \ {∅})→̇Boolean is defined as follows:

(Def. 21) For every m1 such that m = m1 holds (S,U) -TruthEvalm =
(S,U) -TruthEval(m1).

Let us consider S, U , m and let I be an element of U -InterpretersOf S. The
functor (I,m) -TruthEval yields an element of

((AllSymbolsOf S)∗ \ {∅})→̇Boolean and is defined by:

(Def. 22) (I,m) -TruthEval = (curry((S,U) -TruthEvalm))(I).

Let us consider S, m. The functor S-formulasOfMaxDepthm yielding a sub-
set of (AllSymbolsOf S)∗ \ {∅} is defined as follows:

(Def. 23) For every non empty set U and for every element I of U -InterpretersOf S
and for every element m1 of N such that m = m1 holds
S-formulasOfMaxDepthm = dom((I,m1) -TruthEval).

Let us consider S, m, w. We say that w is m-w.f.f. if and only if:

(Def. 24) w ∈ S-formulasOfMaxDepthm.

Let us consider S, w. We say that w is w.f.f. if and only if:

(Def. 25) There exists m such that w is m-w.f.f..

Let us consider S. Note that every string of S which is 0-w.f.f. is also 0-w.f.f.
and every string of S which is 0-w.f.f. is also 0-w.f.f.. Let us consider m. One can
check that every string of S which is m-w.f.f. is also w.f.f.. Let us consider n.
One can check that every string of S which is m+ 0 ·n-w.f.f. is also m+n-w.f.f..

Let us consider S, m. Observe that there exists a string of S which is m-
w.f.f.. Note that S-formulasOfMaxDepthm is non empty. One can verify that
there exists a string of S which is w.f.f..

Let us consider S, U , let I be an element of U -InterpretersOf S, and let w
be a w.f.f. string of S. The functor I-TruthEvalw yields an element of Boolean
and is defined as follows:

(Def. 26) For every natural number m such that w is m-w.f.f. holds
I-TruthEvalw = (I,m) -TruthEval(w).

Let us consider S. The functor AllFormulasOf S is defined by:

(Def. 27) AllFormulasOf S = {w;w ranges over strings of S:
∨
m w is m-w.f.f.}.

Let us consider S. One can check that AllFormulasOf S is non empty.
For simplicity, we follow the rules: u, u1, u2 are elements of U , t is a termal

string of S, I is an (S,U)-interpreter-like function, l, l1, l2 are literal elements
of S, m2, n1 are non zero natural numbers, p0 is a 0-w.f.f. string of S, and p5,
p1, p3, p4 are w.f.f. strings of S.

The following propositions are true:

(3) (I, u) -TermEval(m + 1)(t) = I(S-firstChar(t))((I, u) -TermEval(m) ·
SubTerms t) and if t is 0-termal, then (I, u) -TermEval(m + 1)(t) =
I(S-firstChar(t))(∅).

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/8/15 8:51 AM

first order languages: further syntax and . . . 185

(4) For every m-termal string t of S holds (I, u1) -TermEval(m + 1)(t) =
(I, u2) -TermEval(m+ 1 + n)(t).

(5) curry((S,U) -TruthEvalm) is a function from U -InterpretersOf S into
((AllSymbolsOf S)∗ \ {∅})→̇Boolean .

(6) x ∈ X ∪ Y ∪ Z iff x ∈ X or x ∈ Y or x ∈ Z.
(7) S-formulasOfMaxDepth 0 = AtomicFormulasOf S.

Let us consider S, m. Then S-formulasOfMaxDepthm can be characterized
by the condition:

(Def. 28) For every non empty set U and for every element I of U -InterpretersOf S
holds S-formulasOfMaxDepthm = dom((I,m) -TruthEval).

Next we state the proposition

(8) (S,U) -TruthEvalm ∈ Boolean(U-InterpretersOf S)×(S-formulasOfMaxDepthm)

and
(S,U) -TruthEval(m) ∈ Boolean(U-InterpretersOf S)×(S-formulasOfMaxDepthm) .

Let us consider S, m. The functor m-ExFormulasOf S is defined by:

(Def. 29) m-ExFormulasOf S = {〈v〉ap1 : v ranges over elements of LettersOf S, p1

ranges over elements of S-formulasOfMaxDepthm}.
The functor m-NorFormulasOf S is defined as follows:

(Def. 30) m-NorFormulasOf S = {〈TheNorSymbOf S〉 a p3
a p4 : p3 ranges

over elements of S-formulasOfMaxDepthm, p4 ranges over elements of
S-formulasOfMaxDepthm}.

Let us consider S and let w1, w2 be strings of S. Then w1
a w2 is a string of

S.
Let us consider S, s. Then 〈s〉 is a string of S.
One can prove the following two propositions:

(9) S-formulasOfMaxDepth(m+ 1) =
(m-ExFormulasOf S)∪(m-NorFormulasOf S)∪(S-formulasOfMaxDepthm).

(10) AtomicFormulasOf S is S-prefix.

Let us consider S. Note that AtomicFormulasOf S is S-prefix. Observe that
S-formulasOfMaxDepth 0 is S-prefix.

Let us consider p1. The functor Depth p1 yielding a natural number is defined
by:

(Def. 31) p1 is Depth p1-w.f.f. and for every n such that p1 is n-w.f.f. holds
Depth p1 ≤ n.

Let us consider S, m and let p3, p4 be m-w.f.f. strings of S. Note that
〈TheNorSymbOf S〉 a p3

a p4 is m+ 1-w.f.f..
Let us consider S, p3, p4. Observe that 〈TheNorSymbOf S〉a p3

a p4 is w.f.f..
Let us consider S, m, let p1 be an m-w.f.f. string of S, and let v be a literal

element of S. Note that 〈v〉 a p1 is m+ 1-w.f.f..

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/8/15 8:51 AM

186 marco b. caminati

Let us consider S, l, p1. Note that 〈l〉 a p1 is w.f.f..
Let us consider S, w and let s be a non relational element of S. One can

check that 〈s〉 a w is non 0-w.f.f..
Let us consider S, w1, w2 and let s be a non relational element of S. Observe

that 〈s〉 a w1
a w2 is non 0-w.f.f..

Let us consider S. Observe that TheNorSymbOf S is non relational.
Let us consider S, w. Observe that 〈TheNorSymbOf S〉 a w is non 0-w.f.f..
Let us consider S, l, w. Note that 〈l〉 a w is non 0-w.f.f..
Let us consider S, w. We say that w is exal if and only if:

(Def. 32) S-firstChar(w) is literal.

Let us consider S, w, l. One can verify that 〈l〉 a w is exal.
Let us consider S, m2. Observe that there exists an m2-w.f.f. string of S

which is exal.
Let us consider S. Note that every string of S which is exal is also non

0-w.f.f..
Let us consider S, m2. One can check that there exists an exal m2-w.f.f.

string of S which is non 0-w.f.f..
Let us consider S. One can verify that there exists an exal w.f.f. string of S

which is non 0-w.f.f..
Let us consider S and let p1 be a non 0-w.f.f. w.f.f. string of S. Note that

Depth p1 is non zero.
Let us consider S and let w be a non 0-w.f.f. w.f.f. string of S. Observe that

S-firstChar(w) is non relational.
Let us consider S, m. Observe that S-formulasOfMaxDepthm is S-prefix.

Then AllFormulasOf S is a subset of (AllSymbolsOf S)∗\{∅}. Observe that every
element of AllFormulasOf S is w.f.f.. Note that AllFormulasOf S is S-prefix.

We now state three propositions:

(11) dom NorIterator((S,U) -TruthEvalm) =
(U -InterpretersOf S)× (m-NorFormulasOf S).

(12) dom ExIterator((S,U) -TruthEvalm) =
(U -InterpretersOf S)× (m-ExFormulasOf S).

(13) U -deltaInterpreter−1({1}) = {〈u, u〉 : u ranges over elements of U}.
Let us consider S. Then TheEqSymbOf S is an element of S.
Let us consider S. One can verify that ar TheEqSymbOf S + 2 is zero and

|ar TheEqSymbOf S| − 2 is zero.
We now state two propositions:

(14) Let p1 be a 0-w.f.f. string of S and I be an (S,U)-interpreter-like func-
tion. Then

(i) if S-firstChar(p1) 6= TheEqSymbOf S, then I-AtomicEval p1 =
I(S-firstChar(p1))(I-TermEval ·SubTerms p1), and

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/8/15 8:51 AM

first order languages: further syntax and . . . 187

(ii) if S-firstChar(p1) = TheEqSymbOf S, then I-AtomicEval p1 =
U -deltaInterpreter(I-TermEval · SubTerms p1).

(15) Let I be an (S,U)-interpreter-like function and p1 be a 0-w.f.f. string
of S. If S-firstChar(p1) = TheEqSymbOf S, then I-AtomicEval p1 = 1 iff
I-TermEval((SubTerms p1)(1)) = I-TermEval((SubTerms p1)(2)).

Let us consider S, m. One can check that m-ExFormulasOf S is non empty.
Note that m-NorFormulasOf S is non empty. Then m-NorFormulasOf S is a
subset of (AllSymbolsOf S)∗ \ {∅}.

Let us consider S and let w be an exal string of S. One can verify that
S-firstChar(w) is literal.

Let us consider S, m. Observe that every element of m-NorFormulasOf S is
non exal. Then m-ExFormulasOf S is a subset of (AllSymbolsOf S)∗ \ {∅}.

Let us consider S, m. One can check that every element of
m-ExFormulasOf S is exal.

Let us consider S. One can check that there exists an element of S which is
non literal.

Let us consider S, w and let s be a non literal element of S. Note that 〈s〉aw
is non exal.

Let us consider S, w1, w2 and let s be a non literal element of S. Observe
that 〈s〉 a w1

a w2 is non exal.
Let us consider S. Note that TheNorSymbOf S is non literal.
Next we state the proposition

(16) p1 ∈ AllFormulasOf S.

Let us consider S, m, w. We introduce w is m-non-w.f.f. as an antonym of
w is m-w.f.f..

Let us consider m, S. One can verify that every string of S which is non
m-w.f.f. is also m-non-w.f.f..

Let us consider S, p3, p4. Observe that 〈TheNorSymbOf S〉 a p3
a p4 is

max(Depth p3,Depth p4)-non-w.f.f..
Let us consider S, p1, l. Note that 〈l〉 a p1 is Depth p1-non-w.f.f..
Let us consider S, p1, l. One can check that 〈l〉 a p1 is 1 + Depth p1-w.f.f..
Let us consider S, U . Observe that every element of U -InterpretersOf S is

OwnSymbolsOf S-defined.
Let us consider S, U . Note that there exists an element of U -InterpretersOf S

which is OwnSymbolsOf S-defined.
Let us consider S, U . Note that every OwnSymbolsOf S-defined element of

U -InterpretersOf S is total.
Let us consider S, U , let I be an element of U -InterpretersOf S, let x be a

literal element of S, and let u be an element of U . Then (x, u) ReassignIn I is
an element of U -InterpretersOf S.

In the sequel I denotes an element of U -InterpretersOf S.

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/8/15 8:51 AM

188 marco b. caminati

Let us consider S, w. The functor xnotw yields a string of S and is defined
as follows:

(Def. 33) xnotw = 〈TheNorSymbOf S〉 a w a w.
Let us consider S, m and let p1 be an m-w.f.f. string of S. Observe that

xnot p1 is m+ 1-w.f.f..
Let us consider S, p1. Note that xnot p1 is w.f.f..
Let us consider S. One can verify that TheEqSymbOf S is non own.
Let us consider S, X. We say that X is S-mincover if and only if:

(Def. 34) For every p1 holds p1 ∈ X iff xnot p1 /∈ X.
One can prove the following propositions:

(17) Depth(〈TheNorSymbOf S〉a p3
a p4) = 1+max(Depth p3,Depth p4) and

Depth(〈l〉 a p3) = Depth p3 + 1.

(18) If Depth p1 = m + 1, then p1 is exal iff p1 ∈ m-ExFormulasOf S and p1

is non exal iff p1 ∈ m-NorFormulasOf S.

(19) I-TruthEval〈l〉 a p1 = true iff there exists u such that
((l, u) ReassignIn I)-TruthEval p1 = 1 and I-TruthEval〈TheNorSymbOf S〉a
p3
a p4 = true iff I-TruthEval p3 = false and I-TruthEval p4 = false.

In the sequel I denotes an (S,U)-interpreter-like function.
One can prove the following two propositions:

(20) (I, u) -TermEval(m+ 1)�S-termsOfMaxDepth(m) =
I-TermEval �S-termsOfMaxDepth(m).

(21) I-TermEval(t) = I(S-firstChar(t))(I-TermEval · SubTerms t).

Let us consider S, p1. The functor SubWffsOf p1 is defined as follows:

(Def. 35)(i) There exist p3, p such that p is AllSymbolsOf S-valued and
SubWffsOf p1 = 〈〈p3, p〉〉 and p1 = 〈S-firstChar(p1)〉 a p3

a p if p1 is non
0-w.f.f.,

(ii) SubWffsOf p1 = 〈〈p1, ∅〉〉, otherwise.

Let us consider S, p1. The functor head p1 yields a w.f.f. string of S and is
defined as follows:

(Def. 36) head p1 = (SubWffsOf p1)1.

The functor tail p1 yields an element of (AllSymbolsOf S)∗ and is defined by:

(Def. 37) tail p1 = (SubWffsOf p1)2.

Let us consider S, m. One can verify that (S-formulasOfMaxDepthm) \
AllFormulasOf S is empty.

Let us consider S. Observe that AtomicFormulasOf S \ AllFormulasOf S is
empty.

We now state two propositions:

(22) Depth(〈l〉 a p3) > Depth p3 and Depth(〈TheNorSymbOf S〉 a p3
a p4) >

Depth p3 and Depth(〈TheNorSymbOf S〉 a p3
a p4) > Depth p4.

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/8/15 8:51 AM

first order languages: further syntax and . . . 189

(23) If p1 is not 0-w.f.f., then p1 = 〈x〉 a p4
a p2 iff x = S-firstChar(p1) and

p4 = head p1 and p2 = tail p1.

Let us consider S, m2. Observe that there exists a non 0-w.f.f. m2-w.f.f.
string of S which is non exal.

Let us consider S and let p1 be an exal w.f.f. string of S. One can verify that
tail p1 is empty.

Let us consider S and let p1 be a non exal non 0-w.f.f. w.f.f. string of S.
Then tail p1 is a w.f.f. string of S.

Let us consider S and let p1 be a non exal non 0-w.f.f. w.f.f. string of S. One
can check that tail p1 is w.f.f..

Let us consider S and let p1 be a non 0-w.f.f. non exal w.f.f. string of S. One
can verify that S-firstChar(p1)−. TheNorSymbOf S is empty.

Let us consider m, S and let p1 be an m + 1-w.f.f. string of S. Note that
head p1 is m-w.f.f..

Let us consider m, S and let p1 be an m+1-w.f.f. non exal non 0-w.f.f. string
of S. Observe that tail p1 is m-w.f.f..

One can prove the following proposition

(24) For every element I of U -InterpretersOf S holds (I,m) -TruthEval ∈
BooleanS-formulasOfMaxDepthm .

Let us consider S. One can check that there exists an of-atomic-formula
element of S which is non literal.

One can prove the following proposition

(25) If l2 /∈ rng p, then ((l2, u) ReassignIn I)-TermEval(p) = I-TermEval(p).

Let us consider X, S, s. We say that s is X-occurring if and only if:

(Def. 38) s ∈ SymbolsOf(((AllSymbolsOf S)∗ \ {∅}) ∩X).

Let us consider S, s and let us consider X. We say that X is s-containing if
and only if:

(Def. 39) s ∈ SymbolsOf((AllSymbolsOf S)∗ \ {∅} ∩X).

Let us consider X, S, s. We introduce s is X-absent as an antonym of s is
X-occurring.

Let us consider S, s, X. We introduce X is s-free as an antonym of X is
s-containing.

Let X be a finite set and let us consider S. Observe that there exists a literal
element of S which is X-absent.

Let us consider S, t. Note that rng t ∩ LettersOf S is non empty.
Let us consider S, p1. One can verify that rng p1∩LettersOf S is non empty.
Let us consider B, S and let A be a subset of B. Note that every element of

S which is A-occurring is also B-occurring.
Let us consider A, B, S. Observe that every element of S which is AnullB-

absent is also A ∩B-absent.

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/8/15 8:51 AM

190 marco b. caminati

Let F be a finite set and let us consider A, S. Note that every F -absent
element of S which is A-absent is also A ∪ F -absent.

Let us consider S, U and let I be an (S,U)-interpreter-like function. One
can check that OwnSymbolsOf S \ dom I is empty.

One can prove the following proposition

(26) There exists u such that u = I(l)(∅) and (l, u) ReassignIn I = I.

Let us consider S, X. We say that X is S-covering if and only if:

(Def. 40) For every p1 holds p1 ∈ X or xnot p1 ∈ X.
Let us consider S. One can check that every set which is S-mincover is also

S-covering.
Let us consider U , let p1 be a non 0-w.f.f. non exal w.f.f. string of S, and let

I be an element of U -InterpretersOf S.
One can verify that (I-TruthEval p1)−. ((I-TruthEval head p1) ′nor′

(I-TruthEval tail p1)) is empty.
The functor ExFormulasOf S yielding a subset of (AllSymbolsOf S)∗ \{∅} is

defined by:

(Def. 41) ExFormulasOf S = {p1; p1 ranges over strings of S: p1 is w.f.f. ∧ p1 is
exal}.

Let us consider S. Note that ExFormulasOf S is non empty.
Let us consider S. One can check that every element of ExFormulasOf S is

exal and w.f.f..
Let us consider S. Note that every element of ExFormulasOf S is w.f.f..
Let us consider S. Observe that every element of ExFormulasOf S is exal.
Let us consider S. Observe that ExFormulasOf S\AllFormulasOf S is empty.
Let us consider U , S1 and let S2 be an S1-extending language. Note that

every function which is (S2, U)-interpreter-like is also (S1, U)-interpreter-like.
Let us consider U , S1, let S2 be an S1-extending language, and let I be an

(S2, U)-interpreter-like function. Observe that I� OwnSymbolsOf S1 is (S1, U)-
interpreter-like.

Let us consider U , S1, let S2 be an S1-extending language, let I1 be an
element of U -InterpretersOf S1, and let I2 be an (S2, U)-interpreter-like function.
Note that I2+·I1 is (S2, U)-interpreter-like.

Let us consider U , S, let I be an element of U -InterpretersOf S, and let us
consider X. We say that X is I-satisfied if and only if:

(Def. 42) For every p1 such that p1 ∈ X holds I-TruthEval p1 = 1.

Let us consider S, U , X and let I be an element of U -InterpretersOf S. We
say that I satisfies X if and only if:

(Def. 43) X is I-satisfied.

Let us consider U , S, let e be an empty set, and let I be an element of
U -InterpretersOf S. Observe that enull I is I-satisfied.

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/8/15 8:51 AM

first order languages: further syntax and . . . 191

Let us consider X, U , S and let I be an element of U -InterpretersOf S.
Observe that there exists a subset of X which is I-satisfied.

Let us consider U , S and let I be an element of U -InterpretersOf S. One can
check that there exists a set which is I-satisfied.

Let us consider U , S, let I be an element of U -InterpretersOf S, and let X
be an I-satisfied set. One can check that every subset of X is I-satisfied.

Let us consider U , S, let I be an element of U -InterpretersOf S, and let X,
Y be I-satisfied sets. One can verify that X ∪ Y is I-satisfied.

Let us consider U , S, let I be an element of U -InterpretersOf S, and let X
be an I-satisfied set. Observe that I nullX satisfies X .

Let us consider S, X. We say that X is S-correct if and only if the condition
(Def. 44) is satisfied.

(Def. 44) Let U be a non empty set, I be an element of U -InterpretersOf S, x be
an I-satisfied set, and given p1. If 〈〈x, p1〉〉 ∈ X, then I-TruthEval p1 = 1.

Let us consider S. Note that ∅ nullS is S-correct.
Let us consider S, X. Observe that there exists a subset of X which is

S-correct.
Next we state two propositions:

(27) For every element I of U -InterpretersOf S holds I-TruthEval p1 = 1 iff
{p1} is I-satisfied.

(28) s is {w}-occurring iff s ∈ rngw.

Let us consider U , S, let us consider p3, p4, and let I be an element of
U -InterpretersOf S. Observe that (I-TruthEval〈TheNorSymbOf S〉 a p3

a p4)−.

((I-TruthEval p3) ′nor′ (I-TruthEval p4)) is empty.
Let us consider S, p1, U and let I be an element of U -InterpretersOf S. Note

that (I-TruthEval xnot p1)−. ¬(I-TruthEval p1) is empty.
Let us consider X, S, p1. We say that p1 is X-implied if and only if:

(Def. 45) For every non empty set U and for every element I of U -InterpretersOf S
such that X is I-satisfied holds I-TruthEval p1 = 1.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537–

541, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[5] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213–225, 1992.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[7] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/8/15 8:51 AM

192 marco b. caminati

[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[11] Czesław Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[12] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[13] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[14] Marco B. Caminati. Preliminaries to classical first order model theory. Formalized Ma-
thematics, 19(3):155–167, 2011, doi: 10.2478/v10037-011-0025-2.

[15] Marco B. Caminati. Definition of first order language with arbitrary alphabet. Syntax
of terms, atomic formulas and their subterms. Formalized Mathematics, 19(3):169–178,
2011, doi: 10.2478/v10037-011-0026-1.

[16] M.B. Caminati. Basic first-order model theory in Mizar. Journal of Formalized Reasoning,
3(1):49–77, 2010.

[17] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[18] H.D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical logic. Springer, 1994.
[19] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275–278, 1992.

[20] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the
set of real numbers. Formalized Mathematics, 3(2):279–288, 1992.

[21] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes.
Formalized Mathematics, 1(5):829–832, 1990.

[22] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329–334, 1990.

[23] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115–122, 1990.

[24] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97–105, 1990.

[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[26] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737,

1990.
[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received December 29, 2010

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/8/15 8:51 AM

