First Order Languages: Further Syntax and Semantics ${ }^{1}$

Marco B. Caminati ${ }^{2}$
Mathematics Department "G.Castelnuovo"
Sapienza University of Rome
Piazzale Aldo Moro 5, 00185 Roma, Italy

Abstract

Summary. Third of a series of articles laying down the bases for classical first order model theory. Interpretation of a language in a universe set. Evaluation of a term in a universe. Truth evaluation of an atomic formula. Reassigning the value of a symbol in a given interpretation. Syntax and semantics of a non atomic formula are then defined concurrently (this point is explained in [16], 4.2.1). As a consequence, the evaluation of any w.f.f. string and the relation of logical implication are introduced. Depth of a formula. Definition of satisfaction and entailment (aka entailment or logical implication) relations, see [18] III.3.2 and III.4.1 respectively.

MML identifier: FOMODEL2, version: $\underline{7.11 .074 .160 .1126}$

The terminology and notation used in this paper have been introduced in the following papers: [7], [1], [23], [6], [8], [17], [14], [15], [22], [9], [10], [11], [2], [21], [26], [24], [5], [3], [4], [12], [27], [28], [19], [20], [25], and [13].

For simplicity, we follow the rules: m, n denote natural numbers, m_{1} denotes an element of $\mathbb{N}, A, B, X, Y, Z, x, y$ denote sets, S, S_{1}, S_{2} denote languages, s denotes an element of S, w, w_{1}, w_{2} denote strings of S, U denotes a non empty set, f, g denote functions, and p, p_{2} denote finite sequences.

Let us consider S. Then TheNorSymbOf S is an element of S.
Let U be a non empty set. The functor U-deltaInterpreter yielding a function from U^{2} into Boolean is defined by:
(Def. 1) U-deltaInterpreter $=\chi_{\text {(the concatenation of } U)^{\circ}\left(\mathrm{id}_{U^{1}}\right), U^{2}}$.

[^0]Let X be a set. Then id_{X} is an equivalence relation of X.
Let S be a language, let U be a non empty set, and let s be an of-atomicformula element of S. Interpreter of s and U is defined as follows:
(Def. 2)(i) It is a function from $U^{|\mathrm{ar} s|}$ into Boolean if s is relational,
(ii) it is a function from $U^{|\operatorname{ar} s|}$ into U, otherwise.

Let us consider S, U and let s be an of-atomic-formula element of S. We see that the interpreter of s and U is a function from $U^{|a r s|}$ into $U \cup$ Boolean.

Let us consider S, U and let s be a termal element of S. One can verify that every interpreter of s and U is U-valued.

Let S be a language. Note that every element of S which is literal is also own.

Let us consider S, U. A function is called an interpreter of S and U if:
(Def. 3) For every own element s of S holds it (s) is an interpreter of s and U.
Let us consider S, U, f. We say that f is (S, U)-interpreter-like if and only if:
(Def. 4) $\quad f$ is an interpreter of S and U and function yielding.
Let us consider S and let U be a non empty set. One can verify that every function which is (S, U)-interpreter-like is also function yielding.

Let us consider S, U and let s be an own element of S. Observe that every interpreter of s and U is non empty.

Let S be a language and let U be a non empty set. Note that there exists a function which is (S, U)-interpreter-like.

Let us consider S, U, let I be an (S, U)-interpreter-like function, and let s be an own element of S. Then $I(s)$ is an interpreter of s and U.

Let S be a language, let U be a non empty set, let I be an (S, U)-interpreterlike function, let x be an own element of S, and let f be an interpreter of x and U. One can check that $I+\cdot(x \longmapsto f)$ is (S, U)-interpreter-like.

Let us consider f, x, y. The functor (x, y) ReassignIn f yields a function and is defined by:
(Def. 5) $\quad(x, y)$ ReassignIn $f=f+\cdot(x \longmapsto(\emptyset \longmapsto y))$.
Let S be a language, let U be a non empty set, let I be an (S, U)-interpreterlike function, let x be a literal element of S, and let u be an element of U. One can verify that (x, u) ReassignIn I is (S, U)-interpreter-like.

Let S be a language. One can check that AllSymbolsOf S is non empty.
Let Y be a set and let X, Z be non empty sets. Observe that every function from X into Z^{Y} is function yielding.

Let X, Y, Z be non empty sets. One can verify that there exists a function from X into Z^{Y} which is function yielding.

Let f be a function yielding function and let g be a function. The functor $[g, f]$ yields a function and is defined by:
(Def. 6) $\quad \operatorname{dom}[g, f]=\operatorname{dom} f$ and for every x such that $x \in \operatorname{dom} f$ holds $[g, f](x)=$ $g \cdot f(x)$.
Let f be an empty function and let g be a function. One can verify that $[g, f]$ is empty.

Let f be a function yielding function and let g be a function. The functor $[f, g]$ yielding a function is defined as follows:
(Def. 7) $\quad \operatorname{dom}[f, g]=\operatorname{dom} f \cap \operatorname{dom} g$ and for every set x such that $x \in \operatorname{dom}[f, g]$ holds $[f, g](x)=f(x)(g(x))$.
Let f be a function yielding function and let g be an empty function. One can check that $[f, g]$ is empty.

Let X be a finite sequence-membered set. Observe that every function which is X-valued is also function yielding.

Let E, D be non empty sets, let p be a D-valued finite sequence, and let h be a function from D into E. Note that $h \cdot p$ is len p-element.

Let X, Y be non empty sets, let f be a function from X into Y, and let p be an X-valued finite sequence. One can verify that $f \cdot p$ is finite sequence-like.

Let E, D be non empty sets, let n be a natural number, let p be an n-element D-valued finite sequence, and let h be a function from D into E. Observe that $h \cdot p$ is n-element.

We now state the proposition
(1) For every 0-termal string t_{0} of S holds $t_{0}=\left\langle S\right.$-firstChar $\left.\left(t_{0}\right)\right\rangle$.

Let us consider S, let U be a non empty set, let u be an element of U, and let I be an (S, U)-interpreter-like function. The functor (I, u)-TermEval yields a function from \mathbb{N} into $U^{\text {AllTermsOf } S}$ and is defined as follows:
(Def. 8) (I,u)-TermEval(0) $=$ AllTermsOf $S \longmapsto u$ and for every m_{1} holds $(I, u)-\operatorname{TermEval}\left(m_{1}+1\right)=\left[I \cdot S\right.$-firstChar, $\left[\left((I, u)-\operatorname{TermEval}\left(m_{1}\right)\right.\right.$ qua function), S-subTerms]].
Let us consider S, U, let I be an (S, U)-interpreter-like function, and let t be an element of AllTermsOf S. The functor I-TermEval t yields an element of U and is defined as follows:
(Def. 9) For every element u_{1} of U and for every m_{1} such that $t \in$ S-termsOfMaxDepth $\left(m_{1}\right)$ holds I-TermEval $t=\left(I, u_{1}\right)$-TermEval $\left(m_{1}+\right.$ $1)(t)$.
Let us consider S, U and let I be an (S, U)-interpreter-like function. The functor I-TermEval yielding a function from AllTermsOf S into U is defined by:
(Def. 10) For every element t of AllTermsOf S holds I-TermEval $(t)=$ I-TermEval t.

Let us consider S, U and let I be an (S, U)-interpreter-like function. The functor $I===$ yielding a function is defined as follows:
(Def. 11) $\quad I====I+\cdot($ TheEqSymbOf $S \longmapsto U$-deltaInterpreter).

Let us consider S, U, let I be an (S, U)-interpreter-like function, and let x be a set. We say that x is I-extension if and only if:
(Def. 12) $\quad x=I===$.
Let us consider S, U and let I be an (S, U)-interpreter-like function. Note that $I===$ is I-extension and every set which is I-extension is also functionlike. Observe that there exists a function which is I-extension. Observe that $I===$ is (S, U)-interpreter-like.

Let f be an I-extension function, and let s be an of-atomic-formula element of S. Then $f(s)$ is an interpreter of s and U.

Let p_{1} be a 0 -w.f.f. string of S. The functor I-AtomicEval p_{1} is defined as follows:
(Def. 13) I-AtomicEval $p_{1}=\left(I===\left(S\right.\right.$-firstChar $\left.\left.\left(p_{1}\right)\right)\right)\left(I\right.$-TermEval $\left.\cdot \operatorname{SubTerms} p_{1}\right)$.
Let us consider S, U, let I be an (S, U)-interpreter-like function, and let p_{1} be a 0 -w.f.f. string of S. Then I-AtomicEval p_{1} is an element of Boolean. Note that $I \upharpoonright$ OwnSymbolsOf S is $\left(U^{*} \dot{\rightarrow}(U \cup\right.$ Boolean $\left.)\right)$-valued and $I \upharpoonright$ OwnSymbolsOf S is (S, U)-interpreter-like.

Let us consider S, U and let I be an (S, U)-interpreter-like function. Observe that $I \upharpoonright$ OwnSymbolsOf S is total.

Let us consider S, U. The functor U-InterpretersOf S is defined by:
(Def. 14) U-InterpretersOf $S=\left\{f \in\left(U^{*} \dot{\rightarrow}(U \cup \text { Boolean })\right)^{\text {OwnSymbolsOf } S: ~} f\right.$ is (S, U)-interpreter-like $\}$.
Let us consider S, U. Then U-InterpretersOf S is a subset of $\left(U^{*} \rightarrow(U \cup\right.$ Boolean) $)^{\text {OwnSymbolsOf } S}$. Observe that U-InterpretersOf S is non empty. One can verify that every element of U-InterpretersOf S is (S, U)-interpreter-like. The functor S-TruthEval U yields a function from
(U-InterpretersOf $S) \times$ AtomicFormulasOf S into Boolean and is defined by:
(Def. 15) For every element I of U-InterpretersOf S and for every element p_{1} of AtomicFormulasOf S holds $(S$-TruthEval $U)\left(I, p_{1}\right)=I$-AtomicEval p_{1}.
Let us consider S, U, let I be an element of U-InterpretersOf S, let f be a partial function from (U-InterpretersOf $S) \times\left((\text { AllSymbolsOf } S)^{*} \backslash\{\emptyset\}\right)$ to Boolean, and let p_{1} be an element of (AllSymbolsOf $\left.S\right)^{*} \backslash\{\emptyset\}$. The functor f-ExFunctor $\left(I, p_{1}\right)$ yielding an element of Boolean is defined as follows:
(Def. 16)

$$
f \text {-ExFunctor }\left(I, p_{1}\right)=\left\{\begin{aligned}
& \text { true, }, \text { if there exists an element } u \text { of } U \text { and } \\
& \text { there exists a literal element } v \text { of } S \text { such } \\
& \text { that } p_{1}(1)=v \text { and } \\
& f\left((v, u) \text { ReassignIn } I,\left(p_{1}\right)_{\llcorner 1}\right)=\text { true }, \\
& \text { false, otherwise. }
\end{aligned}\right.
$$

Let us consider S, U and let g be an element of $(U$-InterpretersOf $S) \times$ $\left((\text { AllSymbolsOf } S)^{*} \backslash\{\emptyset\}\right) \rightarrow$ Boolean. The functor ExIterator g yields a partial function from $(U$-InterpretersOf $S) \times\left((\text { AllSymbolsOf } S)^{*} \backslash\{\emptyset\}\right)$ to Boolean and
is defined by the conditions (Def. 17).
(Def. 17)(i) For every element x of U-InterpretersOf S and for every element y of (AllSymbolsOf $S)^{*} \backslash\{\emptyset\}$ holds $\langle x, y\rangle \in$ dom ExIterator g iff there exists a literal element v of S and there exists a string w of S such that $\langle x$, $w\rangle \in \operatorname{dom} g$ and $y=\langle v\rangle^{\wedge} w$, and
(ii) for every element x of U-InterpretersOf S and for every element y of (AllSymbolsOf $S)^{*} \backslash\{\emptyset\}$ such that $\langle x, y\rangle \in$ dom ExIterator g holds $($ ExIterator $g)(x, y)=g$-ExFunctor (x, y).
Let us consider S, U, let f be a partial function from (U-InterpretersOf $S) \times$ ((AllSymbolsOf $\left.S)^{*} \backslash\{\emptyset\}\right)$ to Boolean, let I be an element of U-InterpretersOf S, and let p_{1} be an element of (AllSymbolsOf $\left.S\right)^{*} \backslash\{\emptyset\}$.

The functor f - $\operatorname{NorFunctor}\left(I, p_{1}\right)$ yielding an element of Boolean is defined by:

$$
\text { (Def. 18) } f \text {-NorFunctor }\left(I, p_{1}\right)=\left\{\begin{aligned}
& \text { true, }, \text { if there exist elements } w_{1}, w_{2} \text { of } \\
&(\text { AllSymbolsOf } S)^{*} \backslash\{\emptyset\} \text { such that } \\
&\left\langle I, w_{1}\right\rangle \in \operatorname{dom} f \text { and } f\left(I, w_{1}\right)=\text { false } \\
& \text { and } f\left(I, w_{2}\right)=\text { false and } \\
& p_{1}=\langle\text { TheNorSymbOf } S\rangle \frown w_{1} \frown w_{2}, \\
& \text { false, otherwise. }
\end{aligned}\right.
$$

Let us consider S, U and let g be an element of $(U$-InterpretersOf $S) \times$ $\left((\text { AllSymbolsOf } S)^{*} \backslash\{\emptyset\}\right) \dot{\rightarrow}$ Boolean. The functor NorIterator g yielding a partial function from $(U$-InterpretersOf $S) \times\left((\text { AllSymbolsOf } S)^{*} \backslash\{\emptyset\}\right)$ to Boolean is defined by the conditions (Def. 19).
(Def. 19)(i) For every element x of U-InterpretersOf S and for every element y of (AllSymbolsOf $S)^{*} \backslash\{\emptyset\}$ holds $\langle x, y\rangle \in$ dom NorIterator g iff there exist elements p_{3}, p_{4} of (AllSymbolsOf $\left.S\right)^{*} \backslash\{\emptyset\}$ such that $y=$ \langle TheNorSymbOf $S\rangle{ }^{\wedge} p_{3} \frown p_{4}$ and $\left\langle x, p_{3}\right\rangle,\left\langle x, p_{4}\right\rangle \in \operatorname{dom} g$, and
(ii) for every element x of U-InterpretersOf S and for every element y of (AllSymbolsOf $S)^{*} \backslash\{\emptyset\}$ such that $\langle x, y\rangle \in$ dom NorIterator g holds $($ NorIterator $g)(x, y)=g$-NorFunctor (x, y).
Let us consider S, U. The functor (S, U)-TruthEval yields a function from \mathbb{N} into $(U$-InterpretersOf $S) \times\left((\text { AllSymbolsOf } S)^{*} \backslash\{\emptyset\}\right) \dot{\rightarrow}$ Boolean and is defined as follows:
(Def. 20) (S, U)-TruthEval(0) $=S$-TruthEval U and for every m_{1} holds $(S, U)-\operatorname{TruthEval}\left(m_{1}+1\right)=\operatorname{ExIterator}(S, U)-\operatorname{TruthEval}\left(m_{1}\right)+$. NorIterator $(S, U)-\operatorname{TruthEval}\left(m_{1}\right)+\cdot(S, U)-\operatorname{TruthEval}\left(m_{1}\right)$.
Next we state the proposition
(2) For every (S, U)-interpreter-like function I holds $I \upharpoonright$ OwnSymbolsOf $S \in$ U-InterpretersOf S.
Let S be a language, let m be a natural number, and let U be a non empty set.

The functor (S, U)-TruthEval m yielding an element of $(U$-InterpretersOf $S) \times$ $\left((\text { AllSymbolsOf } S)^{*} \backslash\{\emptyset\}\right) \dot{\rightarrow}$ Boolean is defined as follows:
(Def. 21) For every m_{1} such that $m=m_{1}$ holds (S, U)-TruthEval $m=$ (S, U)-TruthEval $\left(m_{1}\right)$.
Let us consider S, U, m and let I be an element of U-InterpretersOf S. The functor (I, m)-TruthEval yields an element of
$\left((\text { AllSymbolsOf } S)^{*} \backslash\{\emptyset\}\right) \dot{\rightarrow}$ Boolean and is defined by:
$($ Def. 22) $\quad(I, m)-$ TruthEval $=(\operatorname{curry}((S, U)-$ TruthEval $m))(I)$.
Let us consider S, m. The functor S-formulasOfMaxDepth m yielding a subset of (AllSymbolsOf $S)^{*} \backslash\{\emptyset\}$ is defined as follows:
(Def. 23) For every non empty set U and for every element I of U-InterpretersOf S and for every element m_{1} of \mathbb{N} such that $m=m_{1}$ holds S-formulasOfMaxDepth $m=\operatorname{dom}\left(\left(I, m_{1}\right)\right.$-TruthEval).
Let us consider S, m, w. We say that w is m-w.f.f. if and only if:
(Def. 24) $w \in S$-formulasOfMaxDepth m.
Let us consider S, w. We say that w is w.f.f. if and only if:
(Def. 25) There exists m such that w is m-w.f.f..
Let us consider S. Note that every string of S which is 0 -w.f.f. is also 0 -w.f.f. and every string of S which is 0 -w.f.f. is also 0 -w.f.f.. Let us consider m. One can check that every string of S which is m-w.f.f. is also w.f.f.. Let us consider n. One can check that every string of S which is $m+0 \cdot n$-w.f.f. is also $m+n$-w.f.f..

Let us consider S, m. Observe that there exists a string of S which is m w.f.f.. Note that S-formulasOfMaxDepth m is non empty. One can verify that there exists a string of S which is w.f.f..

Let us consider S, U, let I be an element of U-InterpretersOf S, and let w be a w.f.f. string of S. The functor I-TruthEval w yields an element of Boolean and is defined as follows:
(Def. 26) For every natural number m such that w is m-w.f.f. holds $I-\operatorname{TruthEval} w=(I, m)-\operatorname{TruthEval}(w)$.
Let us consider S. The functor AllFormulasOf S is defined by:
(Def. 27) AllFormulasOf $S=\left\{w ; w\right.$ ranges over strings of $S: \bigvee_{m} w$ is m-w.f.f. $\}$.
Let us consider S. One can check that AllFormulasOf S is non empty.
For simplicity, we follow the rules: u, u_{1}, u_{2} are elements of U, t is a termal string of S, I is an (S, U)-interpreter-like function, l, l_{1}, l_{2} are literal elements of S, m_{2}, n_{1} are non zero natural numbers, p_{0} is a 0 -w.f.f. string of S, and p_{5}, p_{1}, p_{3}, p_{4} are w.f.f. strings of S.

The following propositions are true:
(3) $(I, u)-\operatorname{TermEval}(m+1)(t)=I(S$ - $\operatorname{firstChar}(t))((I, u)-\operatorname{TermEval}(m)$. SubTerms t) and if t is 0 -termal, then $(I, u)-\operatorname{TermEval}(m+1)(t)=$ $I(S$-firstChar $(t))(\emptyset)$.
(4) For every m-termal string t of S holds $\left(I, u_{1}\right)$ - $\operatorname{TermEval}(m+1)(t)=$ $\left(I, u_{2}\right)-\operatorname{TermEval}(m+1+n)(t)$.
(5) curry $((S, U)$-TruthEval $m)$ is a function from U-InterpretersOf S into $\left((\text { AllSymbolsOf } S)^{*} \backslash\{\emptyset\}\right) \rightarrow$ Boolean .
(6) $x \in X \cup Y \cup Z$ iff $x \in X$ or $x \in Y$ or $x \in Z$.
(7) S-formulasOfMaxDepth $0=$ AtomicFormulasOf S.

Let us consider S, m. Then S-formulasOfMaxDepth m can be characterized by the condition:
(Def. 28) For every non empty set U and for every element I of U-InterpretersOf S holds S-formulasOfMaxDepth $m=\operatorname{dom}((I, m)$-TruthEval).
Next we state the proposition
(8) (S, U)-TruthEval $m \in$ Boolean ${ }^{(U \text {-InterpretersOf } S) \times(S \text {-formulasOfMaxDepth } m)}$ and
(S, U)-TruthEval $(m) \in$ Boolean $^{(U-\text { InterpretersOf } S) \times(S \text {-formulasOfMaxDepth } m)}$.
Let us consider S, m. The functor m-ExFormulasOf S is defined by:
(Def. 29) m-ExFormulasOf $S=\left\{\langle v\rangle ` p_{1}: v\right.$ ranges over elements of LettersOf S, p_{1} ranges over elements of S-formulasOfMaxDepth $m\}$.
The functor m-NorFormulasOf S is defined as follows:
(Def. 30) m-NorFormulasOf $S=\left\{\langle\right.$ TheNorSymbOf $S\rangle{ }^{\wedge} p_{3}{ }^{\wedge} p_{4}: p_{3}$ ranges over elements of S-formulasOfMaxDepth m, p_{4} ranges over elements of S-formulasOfMaxDepth $m\}$.
Let us consider S and let w_{1}, w_{2} be strings of S. Then $w_{1}{ }^{\wedge} w_{2}$ is a string of S.

Let us consider S, s. Then $\langle s\rangle$ is a string of S.
One can prove the following two propositions:
(9) S-formulasOfMaxDepth $(m+1)=$ (m-ExFormulasOf $S) \cup(m$-NorFormulasOf $S) \cup(S$-formulasOfMaxDepth $m)$.
(10) AtomicFormulasOf S is S-prefix.

Let us consider S. Note that AtomicFormulasOf S is S-prefix. Observe that S-formulasOfMaxDepth 0 is S-prefix.

Let us consider p_{1}. The functor Depth p_{1} yielding a natural number is defined by:
(Def. 31) p_{1} is Depth p_{1}-w.f.f. and for every n such that p_{1} is n-w.f.f. holds Depth $p_{1} \leq n$.
Let us consider S, m and let p_{3}, p_{4} be m-w.f.f. strings of S. Note that \langle TheNorSymbOf $S\rangle{ }^{\wedge} p_{3} \wedge p_{4}$ is $m+1$-w.f.f..

Let us consider S, p_{3}, p_{4}. Observe that \langle TheNorSymbOf $S\rangle \wedge p_{3}{ }^{\wedge} p_{4}$ is w.f.f..
Let us consider S, m, let p_{1} be an m-w.f.f. string of S, and let v be a literal element of S. Note that $\langle v\rangle \wedge p_{1}$ is $m+1$-w.f.f.

Let us consider S, l, p_{1}. Note that $\langle l\rangle{ }^{\wedge} p_{1}$ is w.f.f..
Let us consider S, w and let s be a non relational element of S. One can check that $\langle s\rangle^{\wedge} w$ is non 0 -w.f.f..

Let us consider S, w_{1}, w_{2} and let s be a non relational element of S. Observe that $\langle s\rangle^{\wedge} w_{1}{ }^{\wedge} w_{2}$ is non 0 -w.f.f..

Let us consider S. Observe that TheNorSymbOf S is non relational.
Let us consider S, w. Observe that $\langle\text { TheNorSymbOf } S\rangle^{\wedge} w$ is non 0-w.f.f..
Let us consider S, l, w. Note that $\langle l\rangle \wedge w$ is non 0 -w.f.f..
Let us consider S, w. We say that w is exal if and only if:
(Def. 32) S-firstChar (w) is literal.
Let us consider S, w, l. One can verify that $\langle l\rangle^{\wedge} w$ is exal.
Let us consider S, m_{2}. Observe that there exists an m_{2}-w.f.f. string of S which is exal.

Let us consider S. Note that every string of S which is exal is also non 0-w.f.f..

Let us consider S, m_{2}. One can check that there exists an exal m_{2}-w.f.f. string of S which is non 0-w.f.f..

Let us consider S. One can verify that there exists an exal w.f.f. string of S which is non 0 -w.f.f..

Let us consider S and let p_{1} be a non 0 -w.f.f. w.f.f. string of S. Note that Depth p_{1} is non zero.

Let us consider S and let w be a non 0 -w.f.f. w.f.f. string of S. Observe that S-firstChar (w) is non relational.

Let us consider S, m. Observe that S-formulasOfMaxDepth m is S-prefix. Then AllFormulasOf S is a subset of (AllSymbolsOf $S)^{*} \backslash\{\emptyset\}$. Observe that every element of AllFormulasOf S is w.f.f.. Note that AllFormulasOf S is S-prefix.

We now state three propositions:
(11) dom NorIterator $((S, U)$-TruthEval $m)=$
$(U$-InterpretersOf $S) \times(m$-NorFormulasOf $S)$.
(12) dom ExIterator $((S, U)$-TruthEval $m)=$
(U-InterpretersOf $S) \times(m$-ExFormulasOf $S)$.
(13) U-deltaInterpreter ${ }^{-1}(\{1\})=\{\langle u, u\rangle: u$ ranges over elements of $U\}$.

Let us consider S. Then TheEqSymbOf S is an element of S.
Let us consider S. One can verify that ar TheEqSymbOf $S+2$ is zero and \mid ar TheEqSymbOf $S \mid-2$ is zero.

We now state two propositions:
(14) Let p_{1} be a 0 -w.f.f. string of S and I be an (S, U)-interpreter-like function. Then
(i) if S-firstChar $\left(p_{1}\right) \neq$ TheEqSymbOf S, then I-AtomicEval $p_{1}=$ $I\left(S\right.$-firstChar $\left.\left(p_{1}\right)\right)\left(I\right.$-TermEval $\left.\cdot \operatorname{SubTerms} p_{1}\right)$, and
(ii) if S-firstChar $\left(p_{1}\right)=$ TheEqSymbOf S, then I-AtomicEval $p_{1}=$ U-deltaInterpreter (I-TermEval $\cdot \operatorname{SubTerms} p_{1}$).
(15) Let I be an (S, U)-interpreter-like function and p_{1} be a 0 -w.f.f. string of S. If S-firstChar $\left(p_{1}\right)=$ TheEqSymbOf S, then I-AtomicEval $p_{1}=1$ iff I-TermEval((SubTerms $\left.\left.p_{1}\right)(1)\right)=I$-TermEval $\left(\left(\operatorname{SubTerms} p_{1}\right)(2)\right)$.
Let us consider S, m. One can check that m-ExFormulasOf S is non empty. Note that m-NorFormulasOf S is non empty. Then m-NorFormulasOf S is a subset of (AllSymbolsOf $S)^{*} \backslash\{\emptyset\}$.

Let us consider S and let w be an exal string of S. One can verify that S-firstChar (w) is literal.

Let us consider S, m. Observe that every element of m-NorFormulasOf S is non exal. Then m-ExFormulasOf S is a subset of (AllSymbolsOf $S)^{*} \backslash\{\emptyset\}$.

Let us consider S, m. One can check that every element of m-ExFormulasOf S is exal.

Let us consider S. One can check that there exists an element of S which is non literal.

Let us consider S, w and let s be a non literal element of S. Note that $\langle s\rangle^{\wedge} w$ is non exal.

Let us consider S, w_{1}, w_{2} and let s be a non literal element of S. Observe that $\langle s\rangle \frown w_{1} \frown w_{2}$ is non exal.

Let us consider S. Note that TheNorSymbOf S is non literal.
Next we state the proposition
(16) $p_{1} \in$ AllFormulasOf S.

Let us consider S, m, w. We introduce w is m-non-w.f.f. as an antonym of w is m-w.f.f..

Let us consider m, S. One can verify that every string of S which is non m-w.f.f. is also m-non-w.f.f..

Let us consider S, p_{3}, p_{4}. Observe that \langle TheNorSymbOf $S\rangle{ }^{\wedge} p_{3}{ }^{\wedge} p_{4}$ is $\max \left(\operatorname{Depth} p_{3}\right.$, Depth $\left.p_{4}\right)$-non-w.f.f..

Let us consider S, p_{1}, l. Note that $\langle l\rangle p_{1}$ is Depth p_{1}-non-w.f.f..
Let us consider S, p_{1}, l. One can check that $\langle l\rangle{ }^{\wedge} p_{1}$ is $1+$ Depth p_{1}-w.f.f..
Let us consider S, U. Observe that every element of U-InterpretersOf S is OwnSymbolsOf S-defined.

Let us consider S, U. Note that there exists an element of U-InterpretersOf S which is OwnSymbolsOf S-defined.

Let us consider S, U. Note that every OwnSymbolsOf S-defined element of U-InterpretersOf S is total.

Let us consider S, U, let I be an element of U-InterpretersOf S, let x be a literal element of S, and let u be an element of U. Then (x, u) ReassignIn I is an element of U-InterpretersOf S.

In the sequel I denotes an element of U-InterpretersOf S.

Let us consider S, w. The functor xnot w yields a string of S and is defined as follows:
(Def. 33) \quad xnot $w=\langle$ TheNorSymbOf $S\rangle{ }^{\wedge} w^{\wedge} w$.
Let us consider S, m and let p_{1} be an m-w.f.f. string of S. Observe that xnot p_{1} is $m+1$-w.f.f..

Let us consider S, p_{1}. Note that xnot p_{1} is w.f.f..
Let us consider S. One can verify that TheEqSymbOf S is non own.
Let us consider S, X. We say that X is S-mincover if and only if:
(Def. 34) For every p_{1} holds $p_{1} \in X$ iff xnot $p_{1} \notin X$.
One can prove the following propositions:
(17) Depth $\left(\langle\right.$ TheNorSymbOf $\left.S\rangle \wedge p_{3}{ }^{\wedge} p_{4}\right)=1+\max \left(\operatorname{Depth} p_{3}\right.$, Depth $\left.p_{4}\right)$ and $\operatorname{Depth}\left(\langle l\rangle \frown p_{3}\right)=\operatorname{Depth} p_{3}+1$.
(18) If Depth $p_{1}=m+1$, then p_{1} is exal iff $p_{1} \in m$-ExFormulasOf S and p_{1} is non exal iff $p_{1} \in m$-NorFormulasOf S.
(19) $\quad I$-TruthEval $\langle l\rangle{ }^{\wedge} p_{1}=$ true iff there exists u such that $((l, u)$ ReassignIn $I)$-TruthEval $p_{1}=1$ and I-TruthEval〈TheNorSymbOf $\left.S\right\rangle^{\wedge}$ $p_{3} \curvearrowleft p_{4}=$ true iff I-TruthEval $p_{3}=$ false and I-TruthEval $p_{4}=$ false .
In the sequel I denotes an (S, U)-interpreter-like function.
One can prove the following two propositions:
(20) $(I, u)-T e r m E v a l(m+1) \upharpoonright S$-termsOfMaxDepth $(m)=$ I-TermEval $\lceil S$-termsOfMaxDepth (m).
(21) $\quad I$-TermEval $(t)=I(S$-firstChar $(t))(I$-TermEval $\cdot \operatorname{SubTerms} t)$.

Let us consider S, p_{1}. The functor SubWffsOf p_{1} is defined as follows:
(Def. 35)(i) There exist p_{3}, p such that p is AllSymbolsOf S-valued and SubWffsOf $p_{1}=\left\langle p_{3}, p\right\rangle$ and $p_{1}=\left\langle S \text { - } \operatorname{firstChar}\left(p_{1}\right)\right\rangle^{\wedge} p_{3}{ }^{\wedge} p$ if p_{1} is non 0-w.f.f.,
(ii) SubWffsOf $p_{1}=\left\langle p_{1}, \emptyset\right\rangle$, otherwise.

Let us consider S, p_{1}. The functor head p_{1} yields a w.f.f. string of S and is defined as follows:
(Def. 36) head $p_{1}=\left(\text { SubWffsOf } p_{1}\right)_{1}$.
The functor tail p_{1} yields an element of (AllSymbolsOf $\left.S\right)^{*}$ and is defined by:
(Def. 37) tail $p_{1}=\left(\text { SubWffsOf } p_{1}\right)_{\mathbf{2}}$.
Let us consider S, m. One can verify that (S-formulasOfMaxDepth m) \} AllFormulasOf S is empty.

Let us consider S. Observe that AtomicFormulasOf $S \backslash$ AllFormulasOf S is empty.

We now state two propositions:
(22) $\operatorname{Depth}\left(\langle l\rangle{ }^{\wedge} p_{3}\right)>\operatorname{Depth} p_{3}$ and $\operatorname{Depth}\left(\langle\right.$ TheNorSymbOf $\left.S\rangle \frown p_{3}{ }^{\wedge} p_{4}\right)>$ Depth p_{3} and Depth $\left(\langle\right.$ TheNorSymbOf $\left.S\rangle{ }^{\wedge} p_{3}{ }^{\wedge} p_{4}\right)>\operatorname{Depth} p_{4}$.
(23) If p_{1} is not 0-w.f.f., then $p_{1}=\langle x\rangle^{\wedge} p_{4}{ }^{\wedge} p_{2}$ iff $x=S$-firstChar $\left(p_{1}\right)$ and $p_{4}=$ head p_{1} and $p_{2}=$ tail p_{1}.
Let us consider S, m_{2}. Observe that there exists a non 0-w.f.f. m_{2}-w.f.f. string of S which is non exal.

Let us consider S and let p_{1} be an exal w.f.f. string of S. One can verify that tail p_{1} is empty.

Let us consider S and let p_{1} be a non exal non 0 -w.f.f. w.f.f. string of S. Then tail p_{1} is a w.f.f. string of S.

Let us consider S and let p_{1} be a non exal non 0 -w.f.f. w.f.f. string of S. One can check that tail p_{1} is w.f.f..

Let us consider S and let p_{1} be a non 0 -w.f.f. non exal w.f.f. string of S. One can verify that S-firstChar $\left(p_{1}\right) \div$ TheNorSymbOf S is empty.

Let us consider m, S and let p_{1} be an $m+1$-w.f.f. string of S. Note that head p_{1} is m-w.f.f..

Let us consider m, S and let p_{1} be an $m+1$-w.f.f. non exal non 0 -w.f.f. string of S. Observe that tail p_{1} is m-w.f.f..

One can prove the following proposition
(24) For every element I of U-InterpretersOf S holds (I, m)-TruthEval \in Boolean ${ }^{S \text {-formulasOfMaxDepth } m}$.

Let us consider S. One can check that there exists an of-atomic-formula element of S which is non literal.

One can prove the following proposition
(25) If $l_{2} \notin \operatorname{rng} p$, then $\left(\left(l_{2}, u\right)\right.$ ReassignIn $\left.I\right)-\operatorname{TermEval}(p)=I-\operatorname{TermEval}(p)$.

Let us consider X, S, s. We say that s is X-occurring if and only if:
(Def. 38) $s \in \operatorname{SymbolsOf}\left(\left((\text { AllSymbolsOf } S)^{*} \backslash\{\emptyset\}\right) \cap X\right)$.
Let us consider S, s and let us consider X. We say that X is s-containing if and only if:
(Def. 39) $s \in \operatorname{SymbolsOf}\left((\text { AllSymbolsOf } S)^{*} \backslash\{\emptyset\} \cap X\right)$.
Let us consider X, S, s. We introduce s is X-absent as antonym of s is X-occurring.

Let us consider S, s, X. We introduce X is s-free as an antonym of X is s-containing.

Let X be a finite set and let us consider S. Observe that there exists a literal element of S which is X-absent.

Let us consider S, t. Note that rng $t \cap$ LettersOf S is non empty.
Let us consider S, p_{1}. One can verify that rng $p_{1} \cap$ LettersOf S is non empty.
Let us consider B, S and let A be a subset of B. Note that every element of S which is A-occurring is also B-occurring.

Let us consider A, B, S. Observe that every element of S which is A null B absent is also $A \cap B$-absent.

Let F be a finite set and let us consider A, S. Note that every F-absent element of S which is A-absent is also $A \cup F$-absent.

Let us consider S, U and let I be an (S, U)-interpreter-like function. One can check that OwnSymbolsOf $S \backslash$ dom I is empty.

One can prove the following proposition
(26) There exists u such that $u=I(l)(\emptyset)$ and (l, u) ReassignIn $I=I$.

Let us consider S, X. We say that X is S-covering if and only if:
(Def. 40) For every p_{1} holds $p_{1} \in X$ or xnot $p_{1} \in X$.
Let us consider S. One can check that every set which is S-mincover is also S-covering.

Let us consider U, let p_{1} be a non 0 -w.f.f. non exal w.f.f. string of S, and let I be an element of U-InterpretersOf S.

One can verify that $\left(I-\operatorname{TruthEval} p_{1}\right) \subset\left(\left(I-\operatorname{TruthEval} \text { head } p_{1}\right)^{\prime}\right.$ nor'
$\left(I\right.$-TruthEval tail $\left.\left.p_{1}\right)\right)$ is empty.
The functor ExFormulasOf S yielding a subset of (AllSymbolsOf $S)^{*} \backslash\{\emptyset\}$ is defined by:
(Def. 41) ExFormulasOf $S=\left\{p_{1} ; p_{1}\right.$ ranges over strings of $S: p_{1}$ is w.f.f. $\wedge p_{1}$ is exal $\}$.
Let us consider S. Note that ExFormulasOf S is non empty.
Let us consider S. One can check that every element of ExFormulasOf S is exal and w.f.f..

Let us consider S. Note that every element of ExFormulasOf S is w.f.f..
Let us consider S. Observe that every element of ExFormulasOf S is exal.
Let us consider S. Observe that ExFormulasOf $S \backslash$ AllFormulasOf S is empty.
Let us consider U, S_{1} and let S_{2} be an S_{1}-extending language. Note that every function which is $\left(S_{2}, U\right)$-interpreter-like is also $\left(S_{1}, U\right)$-interpreter-like.

Let us consider U, S_{1}, let S_{2} be an S_{1}-extending language, and let I be an $\left(S_{2}, U\right)$-interpreter-like function. Observe that $I \upharpoonright$ OwnSymbolsOf S_{1} is $\left(S_{1}, U\right)$ -interpreter-like.

Let us consider U, S_{1}, let S_{2} be an S_{1}-extending language, let I_{1} be an element of U-InterpretersOf S_{1}, and let I_{2} be an $\left(S_{2}, U\right)$-interpreter-like function. Note that $I_{2}+I_{1}$ is $\left(S_{2}, U\right)$-interpreter-like.

Let us consider U, S, let I be an element of U-InterpretersOf S, and let us consider X. We say that X is I-satisfied if and only if:
(Def. 42) For every p_{1} such that $p_{1} \in X$ holds I-TruthEval $p_{1}=1$.
Let us consider S, U, X and let I be an element of U-InterpretersOf S. We say that I satisfies X if and only if:
(Def. 43) $\quad X$ is I-satisfied.
Let us consider U, S, let e be an empty set, and let I be an element of U-InterpretersOf S. Observe that e null I is I-satisfied.

Let us consider X, U, S and let I be an element of U-InterpretersOf S. Observe that there exists a subset of X which is I-satisfied.

Let us consider U, S and let I be an element of U-InterpretersOf S. One can check that there exists a set which is I-satisfied.

Let us consider U, S, let I be an element of U-InterpretersOf S, and let X be an I-satisfied set. One can check that every subset of X is I-satisfied.

Let us consider U, S, let I be an element of U-InterpretersOf S, and let X, Y be I-satisfied sets. One can verify that $X \cup Y$ is I-satisfied.

Let us consider U, S, let I be an element of U-InterpretersOf S, and let X be an I-satisfied set. Observe that I null X satisfies X.

Let us consider S, X. We say that X is S-correct if and only if the condition (Def. 44) is satisfied.
(Def. 44) Let U be a non empty set, I be an element of U-InterpretersOf S, x be an I-satisfied set, and given p_{1}. If $\left\langle x, p_{1}\right\rangle \in X$, then I-TruthEval $p_{1}=1$.
Let us consider S. Note that \emptyset null S is S-correct.
Let us consider S, X. Observe that there exists a subset of X which is S-correct.

Next we state two propositions:
(27) For every element I of U-InterpretersOf S holds I-TruthEval $p_{1}=1$ iff $\left\{p_{1}\right\}$ is I-satisfied.
(28) s is $\{w\}$-occurring iff $s \in \operatorname{rng} w$.

Let us consider U, S, let us consider p_{3}, p_{4}, and let I be an element of U-InterpretersOf S. Observe that (I-TruthEval〈TheNorSymbOf $\left.S\rangle \frown p_{3} \frown p_{4}\right) \doteq$ $\left(\left(I \text {-TruthEval } p_{3}\right)^{\prime}\right.$ nor $^{\prime}\left(I\right.$-TruthEval $\left.\left.p_{4}\right)\right)$ is empty.
Let us consider S, p_{1}, U and let I be an element of U-InterpretersOf S. Note that $\left(I\right.$-TruthEval xnot $\left.p_{1}\right) \doteq \neg\left(I\right.$-TruthEval $\left.p_{1}\right)$ is empty.

Let us consider X, S, p_{1}. We say that p_{1} is X-implied if and only if:
(Def. 45) For every non empty set U and for every element I of U-InterpretersOf S such that X is I-satisfied holds I-TruthEval $p_{1}=1$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537541, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[7] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55$65,1990$.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[11] Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[12] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[13] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[14] Marco B. Caminati. Preliminaries to classical first order model theory. Formalized Mathematics, 19(3):155-167, 2011, doi: 10.2478/v10037-011-0025-2.
[15] Marco B. Caminati. Definition of first order language with arbitrary alphabet. Syntax of terms, atomic formulas and their subterms. Formalized Mathematics, 19(3):169-178, 2011, doi: 10.2478/v10037-011-0026-1.
[16] M.B. Caminati. Basic first-order model theory in Mizar. Journal of Formalized Reasoning, 3(1):49-77, 2010.
[17] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[18] H.D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical logic. Springer, 1994.
[19] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[20] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. Formalized Mathematics, 3(2):279-288, 1992.
[21] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[22] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[23] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[24] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[26] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.
[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received December 29, 2010

[^0]: ${ }^{1}$ The author wrote this paper as part of his PhD thesis research.
 ${ }^{2}$ I would like to thank Marco Pedicini for his encouragement and support.

