Linear Transformations of Euclidean Topological Spaces. Part II

Karol Pąk
Institute of Informatics
University of Białystok
Poland

Summary. We prove a number of theorems concerning various notions used in the theory of continuity of barycentric coordinates.

MML identifier: MATRTOP2, version: 7.11.07 4.156.1112

The papers [2], [9], [4], [5], [6], [14], [10], [25], [13], [16], [3], [7], [12], [1], [24], [15], [21], [23], [19], [17], [8], [11], [22], [20], and [18] provide the terminology and notation for this paper.

1. Correspondence Between Euclidean Topological Space and Vector Space over \mathbb{R}_F

For simplicity, we follow the rules: X denotes a set, n, m, k denote natural numbers, K denotes a field, f denotes an n-element real-valued finite sequence, and M denotes a matrix over \mathbb{R}_F of dimension $n \times m$.

One can prove the following propositions:

(1) X is a linear combination of the n-dimension vector space over \mathbb{R}_F if and only if X is a linear combination of \mathcal{E}_T^n.

(2) Let L_2 be a linear combination of the n-dimension vector space over \mathbb{R}_F and L_1 be a linear combination of \mathcal{E}_T^n. If $L_1 = L_2$, then the support of L_1 = the support of L_2.

(3) Let F be a finite sequence of elements of \mathcal{E}_T^n, f_1 be a function from \mathcal{E}_T^n into \mathbb{R}, F_1 be a finite sequence of elements of the n-dimension vector space over \mathbb{R}_F, and f_2 be a function from the n-dimension vector space over \mathbb{R}_F into \mathbb{R}_F. If $f_1 = f_2$ and $F = F_1$, then $f_1 F = f_2 F_1$.
Let F be a finite sequence of elements of E^n_1 and F_1 be a finite sequence of elements of the n-dimension vector space over \mathbb{R}_F. If $F_1 = F$, then $\sum F = \sum F_1$.

Let L_2 be a linear combination of the n-dimension vector space over \mathbb{R}_F and L_1 be a linear combination of E^n_1. If $L_1 = L_2$, then $\sum L_1 = \sum L_2$.

Let A_2 be a subset of the n-dimension vector space over \mathbb{R}_F and A_1 be a subset of E^n_1. If $A_2 = A_1$, then $\Omega_{\text{Lin}(A_1)} = \Omega_{\text{Lin}(A_2)}$.

Let A_2 be a subset of the n-dimension vector space over \mathbb{R}_F and A_1 be a subset of E^n_1. Suppose $A_2 = A_1$. Then A_2 is linearly independent if and only if A_1 is linearly independent.

Let V be a vector space over K, W be a subspace of V, and L be a linear combination of V. Then $L \mid$ the carrier of W is a linear combination of W.

Let V be a vector space over K, A be a linearly independent subset of V, and L_3, L_4 be linear combinations of V. Suppose the support of $L_3 \subseteq A$ and the support of $L_4 \subseteq A$ and $\sum L_3 = \sum L_4$. Then $L_3 = L_4$.

Let V be a real linear space, W be a subspace of V, and L be a linear combination of V. Then $L \mid$ the carrier of W is a linear combination of W.

Let U be a subspace of the n-dimension vector space over \mathbb{R}_F and W be a subspace of E^n_1. Suppose $\Omega_U = \Omega_W$. Then X is a linear combination of U if and only if X is a linear combination of W.

Let U be a subspace of the n-dimension vector space over \mathbb{R}_F, W be a subspace of E^n_1, L_5 be a linear combination of U, and L_6 be a linear combination of W. If $L_5 = L_6$, then the support of $L_5 = \text{the support of } L_6$ and $\sum L_5 = \sum L_6$.

Let us consider m, K and let A be a subset of the m-dimension vector space over K. Note that $\text{Lin}(A)$ is finite dimensional.

2. Correspondence Between the Mx2Tran Operator and Decomposition of a Vector in Basis

The following propositions are true:

If $\text{rk}(M) = n$, then M is an ordered basis of $\text{Lin}(\text{lines}(M))$.

Let V, W be vector spaces over K, T be a linear transformation from V to W, A be a subset of V, and L be a linear combination of A. If $T \upharpoonright A$ is one-to-one, then $T(\sum L) = \sum(T^{\upharpoonright L})$.

Let S be a subset of $\text{Seg} n$. Suppose $M \mid S$ is one-to-one and $\text{rng}(M \mid S) = \text{lines}(M)$. Then there exists a linear combination L of $\text{lines}(M)$ such that $\sum L = (\text{Mx2Tran}(M))(f)$ and for every k such that $k \in S$ holds $L(\text{Line}(M, k)) = \text{Seq}(f \mid M^{-1}((\{\text{Line}(M, k)\})))$.
Suppose M is without repeated line. Then there exists a linear combination L of lines (M) such that $\sum L = (\text{Mx2Tran } M) (f)$ and for every k such that $k \in \text{dom } f$ holds $L(\text{Line}(M, k)) = f(k)$.

For every ordered basis B of $\text{Lin(lines}(M))$ such that $B = M$ and for every element M_1 of $\text{Lin(lines}(M))$ such that $M_1 = (\text{Mx2Tran } M) (f)$ holds $M_1 \rightarrow B = f$.

$rng \text{Mx2Tran } M = \Omega_{\text{Lin(lines}(M))}$.

Let F be a one-to-one finite sequence of elements of \mathcal{E}^n_T. Suppose $\text{rng } F$ is linearly independent. Then there exists a square matrix M over \mathbb{R}_F of dimension n such that M is invertible and $M \upharpoonright \text{len } F = F$.

Let B be an ordered basis of the n-dimension vector space over \mathbb{R}_F. If $B = \text{MX2FinS}(I_{\mathbb{R}_F}^{n \times n})$, then $f \in \text{Lin(rng}(B \upharpoonright k))$ iff $f = (f \upharpoonright k) \land ((n -'k) \rightarrow 0)$.

Let F be a one-to-one finite sequence of elements of \mathcal{E}^n_T. Suppose $\text{rng } F$ is linearly independent. Let B be an ordered basis of the n-dimension vector space over \mathbb{R}_F. Suppose $B = \text{MX2FinS}(I_{\mathbb{R}_F}^{n \times n})$. Let M be a square matrix over \mathbb{R}_F of dimension n. If M is invertible and $M \upharpoonright \text{len } F = F$, then $(\text{Mx2Tran } M) ^{\circ} (\Omega_{\text{Lin(rng}(B \upharpoonright \text{len } F)}) = \Omega_{\text{Lin(rng } F)}$.

Let A, B be linearly independent subsets of \mathcal{E}^n_T. Suppose $\overline{A} = \overline{B}$. Then there exists a square matrix M over \mathbb{R}_F of dimension n such that M is invertible and $(\text{Mx2Tran } M) ^{\circ} (\Omega_{\text{Lin}(A)}) = \Omega_{\text{Lin} (B)}$.

3. Preservation of Linear and Affine Independence of Vectors by the Mx2Tran Operator

The following propositions are true:

For every linearly independent subset A of \mathcal{E}^n_T such that $\text{rk}(M) = n$ holds

$(\text{Mx2Tran } M) ^{\circ} A$ is linearly independent.

For every affinely independent subset A of \mathcal{E}^n_T such that $\text{rk}(M) = n$ holds

$(\text{Mx2Tran } M) ^{\circ} A$ is affinely independent.

Let A be an affinely independent subset of \mathcal{E}^n_T. Suppose $\text{rk}(M) = n$. Let v be an element of \mathcal{E}^n_T. If $v \in \text{Affin } A$, then $(\text{Mx2Tran } M) (v) \in \text{Affin}(\text{(Mx2Tran } M) ^{\circ} A)$ and for every f holds $(v \rightarrow A)(f) = (\text{Mx2Tran } M) (v) \rightarrow (\text{Mx2Tran } M) ^{\circ} A)((\text{Mx2Tran } M) (f))$.

For every linearly independent subset A of \mathcal{E}^n_T such that $\text{rk}(M) = n$ holds

$(\text{Mx2Tran } M) ^{-1} (A)$ is linearly independent.

For every affinely independent subset A of \mathcal{E}^n_T such that $\text{rk}(M) = n$ holds

$(\text{Mx2Tran } M) ^{-1} (A)$ is affinely independent.
REFERENCES

Received October 26, 2010