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Summary. In this article, we aim to prove the characterization of dif-
ferentiation by means of partial differentiation for vector-valued functions on
n-dimensional real normed linear spaces (refer to [15] and [16]).
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The notation and terminology used in this paper have been introduced in the
following papers: [2], [7], [1], [3], [4], [5], [17], [11], [13], [6], [9], [14], [10], [8], [12],
and [18].

One can prove the following propositions:

(1) Let n, i be elements of N, q be an element of Rn, and p be a point of
EnT. If i ∈ Seg n and q = p, then |pi| ≤ |q|.

(2) For every real number x and for every element v1 of 〈E1, ‖ · ‖〉 such that
v1 = 〈x〉 holds ‖v1‖ = |x|.

(3) Let n be a non empty element of N, x be a point of 〈En, ‖ · ‖〉, and i be
an element of N. If 1 ≤ i ≤ n, then ‖(Proj(i, n))(x)‖ ≤ ‖x‖.
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(4) For every non empty element n of N and for every element x of 〈En, ‖ ·‖〉
and for every element i of N holds ‖(Proj(i, n))(x)‖ = |(proj(i, n))(x)|.

(5) Let n be a non empty element of N, x be an element of Rn, and i be an
element of N. If 1 ≤ i ≤ n, then |(proj(i, n))(x)| ≤ |x|.

(6) Let m, n be non empty elements of N, s be a point of the real norm
space of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉, and i

be an element of N. Suppose 1 ≤ i ≤ n. Then Proj(i, n) is a bounded
linear operator from 〈En, ‖ · ‖〉 into 〈E1, ‖ · ‖〉 and (BdLinOpsNorm(〈En, ‖ ·
‖〉, 〈E1, ‖ · ‖〉))(Proj(i, n)) ≤ 1.

(7) Let m, n be non empty elements of N, s be a point of the real norm
space of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉, and i be
an element of N. Suppose 1 ≤ i ≤ n. Then

(i) Proj(i, n)·s is a point of the real norm space of bounded linear operators
from 〈Em, ‖ · ‖〉 into 〈E1, ‖ · ‖〉, and

(ii) (BdLinOpsNorm(〈Em, ‖ · ‖〉, 〈E1, ‖ · ‖〉))(Proj(i, n) · s) ≤
(BdLinOpsNorm(〈En, ‖·‖〉, 〈E1, ‖·‖〉))(Proj(i, n))·(BdLinOpsNorm(〈Em, ‖·
‖〉, 〈En, ‖ · ‖〉))(s).

(8) For every non empty element n of N and for every element i of N holds
Proj(i, n) is homogeneous.

(9) Let n be a non empty element of N, x be an element of Rn, r be a
real number, and i be an element of N. Then (proj(i, n))(r · x) = r ·
(proj(i, n))(x).

(10) Let n be a non empty element of N, x, y be elements of Rn, and i be an
element of N. Then (proj(i, n))(x+ y) = (proj(i, n))(x) + (proj(i, n))(y).

(11) Let n be a non empty element of N, x, y be points of 〈En, ‖·‖〉, and i be an
element of N. Then (Proj(i, n))(x− y) = (Proj(i, n))(x)− (Proj(i, n))(y).

(12) Let n be a non empty element of N, x, y be elements of Rn, and i be an
element of N. Then (proj(i, n))(x− y) = (proj(i, n))(x)− (proj(i, n))(y).

(13) Let m, n be non empty elements of N, s be a point of the real norm
space of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉, i be an
element of N, and s1 be a point of the real norm space of bounded linear
operators from 〈Em, ‖·‖〉 into 〈E1, ‖·‖〉. If s1 = Proj(i, n) ·s and 1 ≤ i ≤ n,
then ‖s1‖ ≤ ‖s‖.

(14) Letm, n be non empty elements of N, s, t be points of the real norm space
of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉, s1, t1 be points
of the real norm space of bounded linear operators from 〈Em, ‖ · ‖〉 into
〈E1, ‖·‖〉, and i be an element of N. If s1 = Proj(i, n)·s and t1 = Proj(i, n)·t
and 1 ≤ i ≤ n, then ‖s1 − t1‖ ≤ ‖s− t‖.

(15) Let K be a real number, n be an element of N, and s be an element
of Rn. Suppose that for every element i of N such that 1 ≤ i ≤ n holds
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|s(i)| ≤ K. Then |s| ≤ n ·K.
(16) Let K be a real number, n be a non empty element of N, and s be an

element of 〈En, ‖ · ‖〉. Suppose that for every element i of N such that
1 ≤ i ≤ n holds ‖(Proj(i, n))(s)‖ ≤ K. Then ‖s‖ ≤ n ·K.

(17) Let K be a real number, n be a non empty element of N, and s be an
element of Rn. Suppose that for every element i of N such that 1 ≤ i ≤ n
holds |(proj(i, n))(s)| ≤ K. Then |s| ≤ n ·K.

(18) Let m, n be non empty elements of N, s be a point of the real norm
space of bounded linear operators from 〈Em, ‖·‖〉 into 〈En, ‖·‖〉, and K be
a real number. Suppose that for every element i of N and for every point
s1 of the real norm space of bounded linear operators from 〈Em, ‖ · ‖〉 into
〈E1, ‖ · ‖〉 such that s1 = Proj(i, n) · s and 1 ≤ i ≤ n holds ‖s1‖ ≤ K. Then
‖s‖ ≤ n ·K.

(19) Let m, n be non empty elements of N, s, t be points of the real norm
space of bounded linear operators from 〈Em, ‖·‖〉 into 〈En, ‖·‖〉, and K be
a real number. Suppose that for every element i of N and for all points s1,
t1 of the real norm space of bounded linear operators from 〈Em, ‖ · ‖〉 into
〈E1, ‖ · ‖〉 such that s1 = Proj(i, n) · s and t1 = Proj(i, n) · t and 1 ≤ i ≤ n
holds ‖s1 − t1‖ ≤ K. Then ‖s− t‖ ≤ n ·K.

(20) Let m, n be non empty elements of N, f be a partial function from
〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, X be a subset of 〈Em, ‖ · ‖〉, and i be an element
of N. Suppose 1 ≤ i ≤ m and X is open. Then the following statements
are equivalent

(i) f is partially differentiable on X w.r.t. i and f�iX is continuous on X,
(ii) for every element j of N such that 1 ≤ j ≤ n holds Proj(j, n) · f is

partially differentiable on X w.r.t. i and Proj(j, n) · f�iX is continuous on
X.

(21) Let m, n be non empty elements of N, f be a partial function from
〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and X be a subset of 〈Em, ‖ · ‖〉. Suppose X is
open. Then f is differentiable on X and f ′�X is continuous on X if and
only if for every element j of N such that 1 ≤ j ≤ n holds Proj(j, n) · f is
differentiable on X and (Proj(j, n) · f)′�X is continuous on X.

(22) Let m, n be non empty elements of N, f be a partial function from
〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and X be a subset of 〈Em, ‖ · ‖〉. Suppose X is
open. Then for every element i of N such that 1 ≤ i ≤ m holds f is
partially differentiable on X w.r.t. i and f�iX is continuous on X if and
only if f is differentiable on X and f ′�X is continuous on X.
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