Normal Subgroup of Product of Groups

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Kenichi Arai
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In [6] it was formalized that the direct product of a family of groups gives a new group. In this article, we formalize that for all \(j \in I \), the group \(G = \prod_{i \in I} G_i \) has a normal subgroup isomorphic to \(G_j \). Moreover, we show some relations between a family of groups and its direct product.

MML identifier: GROUP_12, version: 7.11.07 4.156.1112

The papers [2], [4], [5], [3], [8], [9], [7], [10], [11], [6], [1], [13], and [12] provide the terminology and notation for this paper.

1. Normal Subgroup of Product of Groups

Let \(I \) be a non empty set, let \(F \) be a group-like multiplicative magma family of \(I \), and let \(i \) be an element of \(I \). Note that \(F(i) \) is group-like.

Let \(I \) be a non empty set, let \(F \) be an associative multiplicative magma family of \(I \), and let \(i \) be an element of \(I \). Observe that \(F(i) \) is associative.

Let \(I \) be a non empty set, let \(F \) be a commutative multiplicative magma family of \(I \), and let \(i \) be an element of \(I \). Note that \(F(i) \) is commutative.

In the sequel \(I \) is a non empty set, \(F \) is an associative group-like multiplicative magma family of \(I \), and \(i, j \) are elements of \(I \).

We now state the proposition

1. Let \(x \) be a function and \(g \) be an element of \(F(i) \). Then \(\text{dom}(x) = I \) and \(x(i) = g \) and for every element \(j \) of \(I \) such that \(j \neq i \) holds \(x(j) = 1_{F(j)} \) if and only if \(x = 1_{\prod F} \cdot (i, g) \).

Let \(I \) be a non empty set, let \(F \) be an associative group-like multiplicative magma family of \(I \), and let \(i \) be an element of \(I \). The functor \(\text{ProjSet}(F, i) \) yields a subset of \(\prod F \) and is defined by:
(Def. 1) For every set x holds $x \in \text{ProjSet}(F, i)$ iff there exists an element g of $F(i)$ such that $x = 1_{\prod F} \cdot (i, g)$.

Let I be a non empty set, let F be an associative group-like multiplicative magma family of I, and let i be an element of I. Observe that $\text{ProjSet}(F, i)$ is non empty.

Next we state several propositions:

(2) Let x_0 be a set. Then $x_0 \in \text{ProjSet}(F, i)$ if and only if there exists a function x and there exists an element g of $F(i)$ such that $x = x_0$ and $\text{dom } x = I$ and $x(i) = g$ and for every element j of I such that $j \neq i$ holds $x(j) = 1_{F(j)}$.

(3) Let g_1, g_2 be elements of $\prod F$ and z_1, z_2 be elements of $F(i)$. If $g_1 = 1_{\prod F} \cdot (i, z_1)$ and $g_2 = 1_{\prod F} \cdot (i, z_2)$, then $g_1 \cdot g_2 = 1_{\prod F} \cdot (i, z_1 \cdot z_2)$.

(4) For every element g_1 of $\prod F$ and for every element z_1 of $F(i)$ such that $g_1 = 1_{\prod F} \cdot (i, z_1)$ holds $g_1^{-1} = 1_{\prod F} \cdot (i, z_1^{-1})$.

(5) For all elements g_1, g_2 of $\prod F$ such that $g_1, g_2 \in \text{ProjSet}(F, i)$ holds $g_1 \cdot g_2 \in \text{ProjSet}(F, i)$.

(6) For every element g of $\prod F$ such that $g \in \text{ProjSet}(F, i)$ holds $g^{-1} \in \text{ProjSet}(F, i)$.

Let I be a non empty set, let F be an associative group-like multiplicative magma family of I, and let i be an element of I. The functor $\text{ProjGroup}(F, i)$ yields a strict subgroup of $\prod F$ and is defined as follows:

(Def. 2) The carrier of $\text{ProjGroup}(F, i) = \text{ProjSet}(F, i)$.

Let us consider I, F, i. The functor $1\text{ProdHom}(F, i)$ yielding a homomorphism from $F(i)$ to $\text{ProjGroup}(F, i)$ is defined as follows:

(Def. 3) For every element x of $F(i)$ holds $(1\text{ProdHom}(F, i))(x) = 1_{\prod F} \cdot (i, x)$.

Let us consider I, F, i. Note that $1\text{ProdHom}(F, i)$ is bijective.

Let us consider I, F, i. One can check that $\text{ProjGroup}(F, i)$ is normal.

One can prove the following proposition

(7) For all elements x, y of $\prod F$ such that $i \neq j$ and $x \in \text{ProjGroup}(F, i)$ and $y \in \text{ProjGroup}(F, j)$ holds $x \cdot y = y \cdot x$.

2. Product of Subgroups of a Group

In the sequel n denotes a non empty natural number.

One can prove the following propositions:

(8) Let F be an associative group-like multiplicative magma family of $\text{Seg} n$, J be a natural number, and G_1 be a group. Suppose $1 \leq J \leq n$ and $G_1 = F(J)$. Let x be an element of $\prod F$ and s be a finite sequence of elements of $\prod F$. Suppose $\text{len } s < J$ and for every element k of $\text{Seg} n$
such that $k \in \text{dom}\, s$ holds $s(k) \in \text{ProjGroup}(F, k)$ and $x = \prod s$. Then $x(J) = 1_{(G_1)}$.

(9) Let F be an associative group-like multiplicative magma family of Seg n, x be an element of $\prod F$, and s be a finite sequence of elements of $\prod F$. Suppose $\text{len}\, s = n$ and for every element k of Seg n holds $s(k) \in \text{ProjGroup}(F, k)$ and $x = \prod s$. Let i be a natural number. Suppose $1 \leq i \leq n$. Then there exists an element s_1 of $\prod F$ such that $s_1 = s(i)$ and $x(i) = s_1(i)$.

(10) Let F be an associative group-like multiplicative magma family of Seg n, x be an element of $\prod F$, and s, t be finite sequences of elements of $\prod F$. Suppose that

(i) $\text{len}\, s = n$,

(ii) for every element k of Seg n holds $s(k) \in \text{ProjGroup}(F, k)$,

(iii) $x = \prod s$,

(iv) $\text{len}\, t = n$,

(v) for every element k of Seg n holds $t(k) \in \text{ProjGroup}(F, k)$, and

(vi) $x = \prod t$.

Then $s = t$.

(11) Let F be an associative group-like multiplicative magma family of Seg n and x be an element of $\prod F$. Then there exists a finite sequence s of elements of $\prod F$ such that $\text{len}\, s = n$ and for every element k of Seg n holds $s(k) \in \text{ProjGroup}(F, k)$ and $x = \prod s$.

(12) Let G be a commutative group and F be an associative group-like multiplicative magma family of Seg n. Suppose that

(i) for every element i of Seg n holds $F(i)$ is a subgroup of G,

(ii) for every element x of G there exists a finite sequence s of elements of G such that $\text{len}\, s = n$ and for every element k of Seg n holds $s(k) \in F(k)$ and $x = \prod s$, and

(iii) for all finite sequences s, t of elements of G such that $\text{len}\, s = n$ and for every element k of Seg n holds $s(k) \in F(k)$ and $\text{len}\, t = n$ and for every element k of Seg n holds $t(k) \in F(k)$ and $\prod s = \prod t$ holds $s = t$.

Then there exists a homomorphism f from $\prod F$ to G such that

(iv) f is bijective, and

(v) for every element x of $\prod F$ there exists a finite sequence s of elements of G such that $\text{len}\, s = n$ and for every element k of Seg n holds $s(k) \in F(k)$ and $s = x$ and $f(x) = \prod s$.

(13) Let G, F be associative commutative group-like multiplicative magma families of Seg n. Suppose that for every element k of Seg n holds $F(k) = \text{ProjGroup}(G, k)$. Then there exists a homomorphism f from $\prod F$ to $\prod G$ such that

(i) f is bijective, and
(ii) for every element x of $\prod F$ there exists a finite sequence s of elements of $\prod G$ such that $\text{len } s = n$ and for every element k of Seg n holds $s(k) \in F(k)$ and $s = x$ and $f(x) = \prod s$.

References

Received July 2, 2010