The Geometric Interior in Real Linear Spaces

Karol Pąk
Institute of Informatics
University of Białystok
Poland

Summary. We introduce the notions of the geometric interior and the centre of mass for subsets of real linear spaces. We prove a number of theorems concerning these notions which are used in the theory of abstract simplicial complexes.

MML identifier: RLAFFIN2, version: $\underline{7.11 .074 .156 .1112}$

The papers [1], [6], [11], [2], [5], [3], [4], [13], [7], [16], [10], [14], [12], [8], [9], and [15] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: x denotes a set, r, s denote real numbers, n denotes a natural number, V denotes a real linear space, v, u, w, p denote vectors of V, A, B denote subsets of V, A_{1} denotes a finite subset of V, I denotes an affinely independent subset of V, I_{1} denotes a finite affinely independent subset of V, F denotes a family of subsets of V, and L_{1}, L_{2} denote linear combinations of V.

Next we state four propositions:
(1) Let L be a linear combination of A. Suppose L is convex and $v \neq \sum L$ and $L(v) \neq 0$. Then there exists p such that $p \in \operatorname{conv} A \backslash\{v\}$ and $\sum L=$ $L(v) \cdot v+(1-L(v)) \cdot p$ and $\frac{1}{L(v)} \cdot \sum L+\left(1-\frac{1}{L(v)}\right) \cdot p=v$.
(2) Let $p_{1}, p_{2}, w_{1}, w_{2}$ be elements of V. Suppose that $v, u \in \operatorname{conv} I$ and $u \notin \operatorname{conv} I \backslash\left\{p_{1}\right\}$ and $u \notin \operatorname{conv} I \backslash\left\{p_{2}\right\}$ and $w_{1} \in \operatorname{conv} I \backslash\left\{p_{1}\right\}$ and
$w_{2} \in \operatorname{conv} I \backslash\left\{p_{2}\right\}$ and $r \cdot u+(1-r) \cdot w_{1}=v$ and $s \cdot u+(1-s) \cdot w_{2}=v$ and $r<1$ and $s<1$. Then $w_{1}=w_{2}$ and $r=s$.
(3) Let L be a linear combination of A_{1}. Suppose $A_{1} \subseteq \operatorname{conv} I_{1}$ and sum $L=$ 1. Then
(i) $\sum L \in \operatorname{Affin} I_{1}$, and
(ii) for every element x of V there exists a finite sequence F of elements of \mathbb{R} and there exists a finite sequence G of elements of V such that $\left(\sum L \rightarrow I_{1}\right)(x)=\sum F$ and len $G=\operatorname{len} F$ and G is one-to-one and $\operatorname{rng} G=$ the support of L and for every n such that $n \in \operatorname{dom} F$ holds $F(n)=$ $L(G(n)) \cdot\left(G(n) \rightarrow I_{1}\right)(x)$.
(4) For every subset A_{2} of V such that A_{2} is affine and conv $A \cap \operatorname{conv} B \subseteq A_{2}$ and conv $A \backslash\{v\} \subseteq A_{2}$ and $v \notin A_{2}$ holds conv $A \backslash\{v\} \cap \operatorname{conv} B=\operatorname{conv} A \cap$ conv B.

2. The Geometric Interior

Let V be a non empty RLS structure and let A be a subset of V. The functor Int A yields a subset of V and is defined by:
(Def. 1) $x \in \operatorname{Int} A$ iff $x \in \operatorname{conv} A$ and it is not true that there exists a subset B of V such that $B \subset A$ and $x \in \operatorname{conv} B$.
Let V be a non empty RLS structure and let A be an empty subset of V. Observe that $\operatorname{Int} A$ is empty.

We now state a number of propositions:
(5) For every non empty RLS structure V and for every subset A of V holds $\operatorname{Int} A \subseteq \operatorname{conv} A$.
(6) Let V be a real linear space-like non empty RLS structure and A be a subset of V. Then $\operatorname{Int} A=A$ if and only if A is trivial.
(7) If $A \subset B$, then conv A misses $\operatorname{Int} B$.
(8) $\operatorname{conv} A=\bigcup\{\operatorname{Int} B: B \subseteq A\}$.
(9) $\operatorname{conv} A=\operatorname{Int} A \cup \bigcup\{$ conv $A \backslash\{v\}: v \in A\}$.
(10) If $x \in \operatorname{Int} A$, then there exists a linear combination L of A such that L is convex and $x=\sum L$.
(11) For every linear combination L of A such that L is convex and $\sum L \in$ Int A holds the support of $L=A$.
(12) For every linear combination L of I such that L is convex and the support of $L=I$ holds $\sum L \in \operatorname{Int} I$.
(13) If $\operatorname{Int} A$ is non empty, then A is finite.
(14) If $v \in I$ and $u \in \operatorname{Int} I$ and $p \in \operatorname{conv} I \backslash\{v\}$ and $r \cdot v+(1-r) \cdot p=u$, then $p \in \operatorname{Int}(I \backslash\{v\})$.

3. The Center of Mass

Let us consider V. The center of mass of V yielding a function from $2_{+}^{\text {the carrier of } V}$ into the carrier of V is defined by the conditions (Def. 2).
(Def. 2)(i) For every non empty finite subset A of V holds (the center of mass of $V)(A)=\frac{1}{\bar{A}} \cdot \sum A$, and
(ii) for every A such that A is infinite holds (the center of mass of $V)(A)=$ 0_{V}.
One can prove the following propositions:
(15) There exists a linear combination L of A_{1} such that $\sum L=r \cdot \sum A_{1}$ and $\operatorname{sum} L=r \cdot \overline{\overline{A_{1}}}$ and $L=0_{\mathrm{LC}_{V}}+\cdot\left(A_{1} \longmapsto r\right)$.
(16) If A_{1} is non empty, then (the center of mass of $\left.V\right)\left(A_{1}\right) \in \operatorname{conv} A_{1}$.
(17) If $\cup F$ is finite, then (the center of mass of $V)^{\circ} F \subseteq \operatorname{conv} \bigcup F$.
(18) If $v \in I_{1}$, then $\left((\right.$ the center of mass of $\left.V)\left(I_{1}\right) \rightarrow I_{1}\right)(v)=\frac{1}{\overline{I_{1}}}$.
(19) (The center of mass of $V)\left(I_{1}\right) \in I_{1}$ iff $\overline{\overline{I_{1}}}=1$.
(20) If I_{1} is non empty, then (the center of mass of $\left.V\right)\left(I_{1}\right) \in \operatorname{Int} I_{1}$.
(21) If $A \subseteq I_{1}$ and (the center of mass of $\left.V\right)\left(I_{1}\right) \in$ Affin A, then $I_{1}=A$.
(22) If $v \in A_{1}$ and $A_{1} \backslash\{v\}$ is non empty, then (the center of mass of $\left.V\right)\left(A_{1}\right)=$ $\left(1-\frac{1}{\overline{A_{1}}}\right) \cdot(\text { the center of mass of } V)_{A_{1} \backslash\{v\}}+\frac{1}{\overline{A_{1}}} \cdot v$.
(23) If conv $A \subseteq \operatorname{conv} I_{1}$ and I_{1} is non empty and conv A misses $\operatorname{Int} I_{1}$, then there exists a subset B of V such that $B \subset I_{1}$ and conv $A \subseteq$ conv B.
(24) If $\sum L_{1} \neq \sum L_{2}$ and $\operatorname{sum} L_{1}=\operatorname{sum} L_{2}$, then there exists v such that $L_{1}(v)>L_{2}(v)$.
(25) Let p be a real number. Suppose $\left(r \cdot L_{1}+(1-r) \cdot L_{2}\right)(v) \leq p \leq\left(s \cdot L_{1}+\right.$ $\left.(1-s) \cdot L_{2}\right)(v)$. Then there exists a real number r_{1} such that $\left(r_{1} \cdot L_{1}+(1-\right.$ $\left.\left.r_{1}\right) \cdot L_{2}\right)(v)=p$ and if $r \leq s$, then $r \leq r_{1} \leq s$ and if $s \leq r$, then $s \leq r_{1} \leq r$.
(26) If $v, u \in \operatorname{conv} A$ and $v \neq u$, then there exist p, w, r such that $p \in A$ and $w \in \operatorname{conv} A \backslash\{p\}$ and $0 \leq r<1$ and $r \cdot u+(1-r) \cdot w=v$.
(27) $A \cup\{v\}$ is affinely independent iff A is affinely independent but $v \in A$ or $v \notin$ Affin A.
(28) If $A_{1} \subseteq I$ and $v \in A_{1}$, then $(I \backslash\{v\}) \cup\left\{(\right.$ the center of mass of $\left.V)\left(A_{1}\right)\right\}$ is an affinely independent subset of V.
(29) Let F be a \subseteq-linear family of subsets of V. Suppose $\cup F$ is finite and affinely independent. Then (the center of mass of $V)^{\circ} F$ is an affinely independent subset of V.
(30) Let F be a \subseteq-linear family of subsets of V. Suppose $\cup F$ is affinely independent and finite. Then $\operatorname{Int}\left((\text { the center of mass of } V)^{\circ} F\right) \subseteq \operatorname{Int} \bigcup F$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[6] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[9] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[10] Karol Pąk. Affine independence in vector spaces. Formalized Mathematics, 18(1):87-93, 2010, doi: 10.2478/v10037-010-0012-z.
[11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[12] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.
[13] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.
[14] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received February 9, 2010

