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Summary. This article is the continuation of [31]. We define the set of Lp

integrable functions – the set of all partial functions whose absolute value raised
to the p-th power is integrable. We show that Lp integrable functions form the
Lp space. We also prove Minkowski’s inequality, Hölder’s inequality and that Lp

space is Banach space ([15], [27]).
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The notation and terminology used in this paper have been introduced in the
following papers: [7], [8], [9], [10], [4], [1], [31], [6], [19], [20], [13], [28], [14], [2],
[24], [3], [11], [25], [22], [21], [16], [32], [29], [23], [18], [17], [26], [30], [5], and [12].

1. Preliminaries on Powers of Numbers and Operations on Real
Sequences

For simplicity, we follow the rules: X denotes a non empty set, x denotes
an element of X, S denotes a σ-field of subsets of X, M denotes a σ-measure
on S, f , g, f1, g1 denote partial functions from X to R, and a, b, c denote real
numbers.

The following propositions are true:

(1) For all positive real numbers m, n such that 1m + 1
n = 1 holds m > 1.
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(2) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-
measure on S, A be an element of S, and f be a partial function from X

to R. Suppose A = dom f and f is measurable on A and f is non-negative.
Then

∫
f dM ∈ R if and only if f is integrable on M .

Let r be a real number. We say that r is great or equal to 1 if and only if:

(Def. 1) 1 ≤ r.
Let us note that every real number which is great or equal to 1 is also

positive.
One can verify that there exists a real number which is great or equal to 1.
In the sequel k denotes a positive real number.
We now state several propositions:

(3) For all real numbers a, b, p such that 0 < p and 0 ≤ a < b holds ap < bp.

(4) If a ≥ 0 and b > 0, then ab ≥ 0.

(5) If a ≥ 0 and b ≥ 0 and c > 0, then (a · b)c = ac · bc.
(6) For all real numbers a, b and for every f such that f is non-negative and

a > 0 and b > 0 holds (fa)b = fa·b.

(7) For all real numbers a, b and for every f such that f is non-negative and
a > 0 and b > 0 holds fa f b = fa+b.

(8) f1 = f.

(9) Let s1, s2 be sequences of real numbers and k be a positive real number.
Suppose that for every element n of N holds s1(n) = s2(n)k and s2(n) ≥ 0.
Then s1 is convergent if and only if s2 is convergent.

(10) Let s3 be a sequence of real numbers and n, m be elements of
N. If m ≤ n, then |(

∑κ
α=0(s3)(α))κ∈N(n) − (

∑κ
α=0(s3)(α))κ∈N(m)| ≤

(
∑κ
α=0|s3|(α))κ∈N(n)−(

∑κ
α=0|s3|(α))κ∈N(m) and |(

∑κ
α=0(s3)(α))κ∈N(n)−

(
∑κ
α=0(s3)(α))κ∈N(m)| ≤ (

∑κ
α=0|s3|(α))κ∈N(n).

(11) Let s3, s2 be sequences of real numbers and k be a positive real number.
Suppose s3 is convergent and for every element n of N holds s2(n) =
|lim s3 − s3(n)|k. Then s2 is convergent and lim s2 = 0.

2. Real Linear Space of Lp Integrable Functions

Next we state two propositions:

(12) For every positive real number k and for every non empty set X holds
(X 7−→ 0)k = X 7−→ 0.

(13) For every partial function f from X to R and for every set D holds
|f�D| = |f |�D.

Let us consider X and let f be a partial function from X to R. Observe that
|f | is non-negative.
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One can prove the following two propositions:

(14) For every partial function f from X to R such that f is non-negative
holds |f | = f.

(15) If X = dom f and for every x such that x ∈ dom f holds 0 = f(x), then
f is integrable on M and

∫
f dM = 0.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-
measure on S, and let k be a positive real number. The functor Lp functions(M,k)
yielding a non empty subset of PFunctRLSX is defined by the condition (Def. 2).

(Def. 2) Lp functions(M,k) = {f ; f ranges over partial functions from X to R:∨
E1 : element of S (M(E1c) = 0 ∧ dom f = E1 ∧ f is measurable on

E1 ∧ |f |k is integrable on M)}.
Next we state a number of propositions:

(16) For all real numbers a, b, k such that k > 0 holds |a+ b|k ≤ (|a|+ |b|)k
and (|a|+ |b|)k ≤ (2 ·max(|a|, |b|))k and |a+ b|k ≤ (2 ·max(|a|, |b|))k.

(17) For all real numbers a, b, k such that a ≥ 0 and b ≥ 0 and k > 0 holds
(max(a, b))k ≤ ak + bk.

(18) For every partial function f from X to R and for all real numbers a, b
such that b > 0 holds |a|b |f |b = |a f |b.

(19) Let f be a partial function from X to R and a, b be real numbers. If
a > 0 and b > 0, then ab |f |b = (a |f |)b.

(20) For every partial function f from X to R and for every real number k
and for every set E holds (f�E)k = fk�E.

(21) For all real numbers a, b, k such that k > 0 holds |a+b|k ≤ 2k ·(|a|k+|b|k).
(22) Let k be a positive real number and f , g be partial functions from X to

R. Suppose f , g ∈ Lp functions(M,k). Then |f |k is integrable on M and
|g|k is integrable on M and |f |k + |g|k is integrable on M .

(23) X 7−→ 0 is a partial function from X to R and X 7−→ 0 ∈
Lp functions(M,k).

(24) Let k be a real number. Suppose k > 0. Let f , g be partial functions
from X to R and x be an element of X. If x ∈ dom f ∩ dom g, then
|f + g|k(x) ≤ (2k (|f |k + |g|k))(x).

(25) If f , g ∈ Lp functions(M,k), then f + g ∈ Lp functions(M,k).

(26) If f ∈ Lp functions(M,k), then a f ∈ Lp functions(M,k).

(27) If f , g ∈ Lp functions(M,k), then f − g ∈ Lp functions(M,k).

(28) If f ∈ Lp functions(M,k), then |f | ∈ Lp functions(M,k).

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-
measure on S, and let k be a positive real number. Note that Lp functions(M,k)
is multiplicatively-closed and add closed.
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Let X be a non empty set, let S be a σ-field of subsets of X, let M be
a σ-measure on S, and let k be a positive real number. One can check that
〈Lp functions(M,k), 0PFunctRLSX(∈ Lp functions(M,k)), add |(Lp functions(M,k),
PFunctRLSX), ·Lp functions(M,k)〉 is Abelian, add-associative, and real linear space-
like.

Let X be a non empty set, let S be a σ-field of subsets of X, let M

be a σ-measure on S, and let k be a positive real number. The functor
RLSp LpFunct(M,k) yields a strict Abelian add-associative real linear space-
like non empty RLS structure and is defined by:

(Def. 3) RLSp LpFunct(M,k) = 〈Lp functions(M,k), 0PFunctRLSX(∈ Lp functions
(M,k)), add |(Lp functions(M,k),PFunctRLSX), ·Lp functions(M,k)〉.

3. Preliminaries on Real Normed Space of Lp Integrable Functions

In the sequel v, u are vectors of RLSp LpFunct(M,k).
We now state three propositions:

(29) (v) + (u) = v + u.

(30) a (u) = a · u.
(31) Suppose f = u. Then

(i) u+ (−1) · u = (X 7−→ 0)� dom f, and
(ii) there exist partial functions v, g from X to R such that v, g ∈

Lp functions(M,k) and v = u+ (−1) · u and g = X 7−→ 0 and v =M
a.e. g.

Let X be a non empty set, let S be a σ-field of subsets of X,
let M be a σ-measure on S, and let k be a positive real number.
The functor AlmostZeroLpFunctions(M,k) yielding a non empty subset of
RLSp LpFunct(M,k) is defined by:

(Def. 4) AlmostZeroLpFunctions(M,k) = {f ; f ranges over partial functions
from X to R: f ∈ Lp functions(M,k) ∧ f =M

a.e. X 7−→ 0}.
Let X be a non empty set, let S be a σ-field of subsets of X, let M be

a σ-measure on S, and let k be a positive real number. One can check that
AlmostZeroLpFunctions(M,k) is add closed and multiplicatively-closed.

Next we state the proposition

(32) 0RLSp LpFunct(M,k) = X 7−→ 0 and
0RLSp LpFunct(M,k) ∈ AlmostZeroLpFunctions(M,k).

Let X be a non empty set, let S be a σ-field of subsets of X, let M

be a σ-measure on S, and let k be a positive real number. The functor
RLSpAlmostZeroLpFunctions(M,k) yielding a non empty RLS structure is de-
fined by:

(Def. 5) RLSpAlmostZeroLpFunctions(M,k) = 〈AlmostZeroLpFunctions(M,k),
0RLSp LpFunct(M,k)(∈ AlmostZeroLpFunctions(M,k)), add |(AlmostZeroLp
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Functions(M,k),RLSp LpFunct(M,k)), ·AlmostZeroLpFunctions(M,k)〉.
Let X be a non empty set, let S be a σ-field of subsets of X, let M

be a σ-measure on S, and let k be a positive real number. Observe that
RLSp LpFunct(M,k) is strict, Abelian, add-associative, right zeroed, and re-
al linear space-like.

In the sequel v, u are vectors of RLSpAlmostZeroLpFunctions(M,k).
One can prove the following two propositions:

(33) (v) + (u) = v + u.

(34) a (u) = a · u.
Let X be a non empty set, let S be a σ-field of subsets of X, let M be

a σ-measure on S, let f be a partial function from X to R, and let k be
a positive real number. The functor a.e-eq-classLp(f,M, k) yields a subset of
Lp functions(M,k) and is defined as follows:

(Def. 6) a.e-eq-classLp(f,M, k) = {h;h ranges over partial functions from X to
R: h ∈ Lp functions(M,k) ∧ f =M

a.e. h}.
Next we state a number of propositions:

(35) If f ∈ Lp functions(M,k), then there exists an element E of S such that
M(Ec) = 0 and dom f = E and f is measurable on E.

(36) If g ∈ Lp functions(M,k) and g =M
a.e. f, then g ∈ a.e-eq-classLp(f,M, k).

(37) Suppose there exists an element E of S such that M(Ec) = 0 and E =
dom f and f is measurable on E and g ∈ a.e-eq-classLp(f,M, k). Then
g =M
a.e. f and f ∈ Lp functions(M,k).

(38) If f ∈ Lp functions(M,k), then f ∈ a.e-eq-classLp(f,M, k).

(39) Suppose there exists an element E of S such that M(Ec) = 0 and E =
dom g and g is measurable on E and a.e-eq-classLp(f,M, k) 6= ∅ and
a.e-eq-classLp(f,M, k) = a.e-eq-classLp(g,M, k). Then f =M

a.e. g.

(40) Suppose f ∈ Lp functions(M,k) and there exists an element E of S
such that M(Ec) = 0 and E = dom g and g is measurable on E and
a.e-eq-classLp(f,M, k) = a.e-eq-classLp(g,M, k). Then f =M

a.e. g.

(41) If f =M
a.e. g, then a.e-eq-classLp(f,M, k) = a.e-eq-classLp(g,M, k).

(42) If f =M
a.e. g, then a.e-eq-classLp(f,M, k) = a.e-eq-classLp(g,M, k).

(43) If f ∈ Lp functions(M,k) and g ∈ a.e-eq-classLp(f,M, k), then
a.e-eq-classLp(f,M, k) = a.e-eq-classLp(g,M, k).

(44) Suppose that there exists an element E of S such that M(Ec) = 0
and E = dom f and f is measurable on E and there exists an element
E of S such that M(Ec) = 0 and E = dom f1 and f1 is measurable
on E and there exists an element E of S such that M(Ec) = 0 and
E = dom g and g is measurable on E and there exists an element E
of S such that M(Ec) = 0 and E = dom g1 and g1 is measurable on
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E and a.e-eq-classLp(f,M, k) is non empty and a.e-eq-classLp(g,M, k)
is non empty and a.e-eq-classLp(f,M, k) = a.e-eq-classLp(f1,M, k) and
a.e-eq-classLp(g,M, k) = a.e-eq-classLp(g1,M, k). Then a.e-eq-classLp(f+
g,M, k) = a.e-eq-classLp(f1 + g1,M, k).

(45) If f , f1, g, g1 ∈ Lp functions(M,k) and a.e-eq-classLp(f,M, k) =
a.e-eq-classLp(f1,M, k) and a.e-eq-classLp(g,M, k) =
a.e-eq-classLp(g1,M, k), then a.e-eq-classLp(f + g,M, k) =
a.e-eq-classLp(f1 + g1,M, k).

(46) Suppose that
(i) there exists an element E of S such that M(Ec) = 0 and dom f = E

and f is measurable on E,
(ii) there exists an element E of S such that M(Ec) = 0 and dom g = E

and g is measurable on E,
(iii) a.e-eq-classLp(f,M, k) is non empty, and
(iv) a.e-eq-classLp(f,M, k) = a.e-eq-classLp(g,M, k).

Then a.e-eq-classLp(a f,M, k) = a.e-eq-classLp(a g,M, k).

(47) If f , g ∈ Lp functions(M,k) and a.e-eq-classLp(f,M, k) =
a.e-eq-classLp(g,M, k), then
a.e-eq-classLp(a f,M, k) = a.e-eq-classLp(a g,M, k).

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-
measure on S, and let k be a positive real number. The functor CosetSet(M,k)
yielding a non empty family of subsets of Lp functions(M,k) is defined by:

(Def. 7) CosetSet(M,k) = {a.e-eq-classLp(f,M, k); f ranges over partial func-
tions from X to R: f ∈ Lp functions(M,k)}.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-
measure on S, and let k be a positive real number. The functor addCoset(M,k)
yields a binary operation on CosetSet(M,k) and is defined by the condition
(Def. 8).

(Def. 8) Let A, B be elements of CosetSet(M,k) and a, b be partial func-
tions from X to R. If a ∈ A and b ∈ B, then (addCoset(M,k))(A,
B) = a.e-eq-classLp(a+ b,M, k).

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-
measure on S, and let k be a positive real number. The functor zeroCoset(M,k)
yields an element of CosetSet(M,k) and is defined as follows:

(Def. 9) zeroCoset(M,k) = a.e-eq-classLp(X 7−→ 0,M, k).

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-
measure on S, and let k be a positive real number. The functor lmultCoset(M,k)
yielding a function from R × CosetSet(M,k) into CosetSet(M,k) is defined by
the condition (Def. 10).
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(Def. 10) Let z be an element of R, A be an element of CosetSet(M,k), and f

be a partial function from X to R. If f ∈ A, then (lmultCoset(M,k))(z,
A) = a.e-eq-classLp(z f,M, k).

Let X be a non empty set, let S be a σ-field of subsets of X, let M

be a σ-measure on S, and let k be a positive real number. The functor
Pre-Lp -Space(M,k) yielding a strict RLS structure is defined by the conditions
(Def. 11).

(Def. 11)(i) The carrier of Pre-Lp -Space(M,k) = CosetSet(M,k),
(ii) the addition of Pre-Lp -Space(M,k) = addCoset(M,k),
(iii) 0Pre-Lp -Space(M,k) = zeroCoset(M,k), and
(iv) the external multiplication of Pre-Lp -Space(M,k) = lmultCoset(M,k).

Let X be a non empty set, let S be a σ-field of subsets of X, let M

be a σ-measure on S, and let k be a positive real number. Observe that
Pre-Lp -Space(M,k) is non empty.

Let X be a non empty set, let S be a σ-field of subsets of X, let M

be a σ-measure on S, and let k be a positive real number. Observe that
Pre-Lp -Space(M,k) is Abelian, add-associative, right zeroed, right complemen-
table, and real linear space-like.

4. Real Normed Space of Lp Integrable Functions

The following propositions are true:

(48) If f , g ∈ Lp functions(M,k) and f =M
a.e. g, then

∫
|f |k dM =

∫
|g|k dM.

(49) If f ∈ Lp functions(M,k), then
∫
|f |k dM ∈ R and 0 ≤

∫
|f |k dM.

(50) If there exists a vector x of Pre-Lp -Space(M,k) such that f , g ∈ x, then
f =M

a.e. g and f , g ∈ Lp functions(M,k).

(51) Let k be a positive real number. Then there exists a function N1 from
the carrier of Pre-Lp -Space(M,k) into R such that for every point x of
Pre-Lp -Space(M,k) holds there exists a partial function f from X to R
such that f ∈ x and there exists a real number r such that r =

∫
|f |k dM

and N1(x) = r
1
k .

In the sequel x denotes a point of Pre-Lp -Space(M,k).
We now state two propositions:

(52) If f ∈ x, then |f |k is integrable on M and f ∈ Lp functions(M,k).

(53) If f , g ∈ x, then f =M
a.e. g and

∫
|f |k dM =

∫
|g|k dM.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-
measure on S, and let k be a positive real number. The functor Lp -Norm(M,k)
yielding a function from the carrier of Pre-Lp -Space(M,k) into R is defined by
the condition (Def. 12).
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(Def. 12) Let x be a point of Pre-Lp -Space(M,k). Then there exists a partial
function f from X to R such that f ∈ x and there exists a real number r
such that r =

∫
|f |k dM and (Lp -Norm(M,k))(x) = r

1
k .

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-
measure on S, and let k be a positive real number. The functor Lp -Space(M,k)
yields a non empty normed structure and is defined by:

(Def. 13) Lp -Space(M,k) = 〈the carrier of Pre-Lp -Space(M,k), the zero of
Pre-Lp -Space(M,k), the addition of Pre-Lp -Space(M,k), the external
multiplication of Pre-Lp -Space(M,k), Lp -Norm(M,k)〉.

In the sequel x, y denote points of Lp -Space(M,k).
One can prove the following propositions:

(54)(i) There exists a partial function f from X to R such that f ∈
Lp functions(M,k) and x = a.e-eq-classLp(f,M, k), and

(ii) for every partial function f from X to R such that f ∈ x there exists
a real number r such that 0 ≤ r =

∫
|f |k dM and ‖x‖ = r

1
k .

(55) If f ∈ x and g ∈ y, then f + g ∈ x+ y and if f ∈ x, then a f ∈ a · x.
(56) If f ∈ x, then x = a.e-eq-classLp(f,M, k) and there exists a real number

r such that 0 ≤ r =
∫
|f |k dM and ‖x‖ = r

1
k .

(57) X 7−→ 0 ∈ the L1 functions of M .

(58) If f ∈ Lp functions(M,k) and
∫
|f |k dM = 0, then f =M

a.e. X 7−→ 0.

(59)
∫
|X 7−→ 0|k dM = 0.

(60) Let m, n be positive real numbers. Suppose 1
m + 1

n = 1 and f ∈
Lp functions(M,m) and g ∈ Lp functions(M,n). Then f g ∈ the L1 func-
tions of M and f g is integrable on M .

(61) Let m, n be positive real numbers. Suppose 1
m + 1

n = 1 and f ∈
Lp functions(M,m) and g ∈ Lp functions(M,n). Then there exists a re-
al number r1 such that r1 =

∫
|f |m dM and there exists a real number r2

such that r2 =
∫
|g|n dM and

∫
|f g|dM ≤ r1

1
m · r2

1
n .

(62) Let m be a positive real number and r1, r2, r3 be elements of R. Suppose
1 ≤ m and f , g ∈ Lp functions(M,m) and r1 =

∫
|f |m dM and r2 =∫

|g|m dM and r3 =
∫
|f + g|m dM. Then r3

1
m ≤ r1

1
m + r2

1
m .

Let k be a great or equal to 1 real number, let X be a non empty set,
let S be a σ-field of subsets of X, and let M be a σ-measure on S. Note that
Lp -Space(M,k) is reflexive, discernible, real normed space-like, real linear space-
like, Abelian, add-associative, right zeroed, and right complementable.
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5. Preliminaries on Completeness of Lp Space

The following propositions are true:

(63) Let S1 be a sequence of Lp -Space(M,k). Then there exists a sequence
F1 of partial functions from X into R such that for every element n of N
holds
F1(n) ∈ Lp functions(M,k) and F1(n) ∈ S1(n) and S1(n) =
a.e-eq-classLp(F1(n),M, k) and there exists a real number r such that
r =
∫
|F1(n)|k dM and ‖S1(n)‖ = r

1
k .

(64) Let S1 be a sequence of Lp -Space(M,k). Then there exists a sequence
F1 of partial functions from X into R with the same dom such that for
every element n of N holds
F1(n) ∈ Lp functions(M,k) and F1(n) ∈ S1(n) and S1(n) =
a.e-eq-classLp(F1(n),M, k) and there exists a real number r such that
0 ≤ r =

∫
|F1(n)|k dM and ‖S1(n)‖ = r

1
k .

(65) Let X be a real normed space, S1 be a sequence of X, and S0 be a
point of X. If ‖S1 − S0‖ is convergent and lim‖S1 − S0‖ = 0, then S1 is
convergent and limS1 = S0.

(66) Let X be a real normed space and S1 be a sequence of X. Suppose
S1 is Cauchy sequence by norm. Then there exists an increasing function
N from N into N such that for all elements i, j of N if j ≥ N(i), then
‖S1(j)− S1(N(i))‖ < 2−i.

(67) Let F be a sequence of partial functions from X into R. Suppose that
for every natural number m holds F (m) ∈ Lp functions(M,k). Let m be a
natural number. Then (

∑κ
α=0 F (α))κ∈N(m) ∈ Lp functions(M,k).

(68) Let F be a sequence of partial functions from X into R. Suppose that for
every natural number m holds F (m) is non-negative. Let m be a natural
number. Then (

∑κ
α=0 F (α))κ∈N(m) is non-negative.

(69) Let F be a sequence of partial functions from X into R, x be an element
of X, and n, m be natural numbers. Suppose F has the same dom and
x ∈ domF (0) and for every natural number k holds F (k) is non-negative
and n ≤ m. Then (

∑κ
α=0 F (α))κ∈N(n)(x) ≤ (

∑κ
α=0 F (α))κ∈N(m)(x).

(70) For every sequence F of partial functions from X into R such that F
has the same dom holds |F | has the same dom.

(71) Let k be a great or equal to 1 real number and S1 be a sequence of
Lp -Space(M,k). If S1 is Cauchy sequence by norm, then S1 is convergent.

Let us consider X, S, M and let k be a great or equal to 1 real number.
Observe that Lp -Space(M,k) is complete.
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6. Relations between L1 Space and Lp Space

One can prove the following propositions:

(72) Let X be a non empty set, S be a σ-field of subsets of X, and M be a
σ-measure on S. Then CosetSetM = CosetSet(M, 1).

(73) Let X be a non empty set, S be a σ-field of subsets of X, and M be a
σ-measure on S. Then addCosetM = addCoset(M, 1).

(74) Let X be a non empty set, S be a σ-field of subsets of X, and M be a
σ-measure on S. Then zeroCosetM = zeroCoset(M, 1).

(75) Let X be a non empty set, S be a σ-field of subsets of X, and M be a
σ-measure on S. Then lmultCosetM = lmultCoset(M, 1).

(76) Let X be a non empty set, S be a σ-field of subsets of X, and M be a
σ-measure on S. Then pre-L-SpaceM = Pre-Lp -Space(M, 1).

(77) Let X be a non empty set, S be a σ-field of subsets of X, and M be a
σ-measure on S. Then L1-Norm(M) = Lp -Norm(M, 1).

(78) Let X be a non empty set, S be a σ-field of subsets of X, and M be a
σ-measure on S. Then L1-Space(M) = Lp -Space(M, 1).
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