A Model of Mizar Concepts - Unification

Grzegorz Bancerek ${ }^{1}$
Białystok Technical University
Poland
The University of Finance and Management
Białystok-Ełk, Poland

Summary. The aim of this paper is to develop a formal theory of Mizar linguistic concepts following the ideas from [6] and [7]. The theory presented is an abstraction from the existing implementation of the Mizar system and is devoted to the formalization of Mizar expressions. The concepts formalized here are: standarized constructor signature, arity-rich signatures, and the unification of Mizar expressions.

MML identifier: ABCMIZ_A, version: $\underline{7.11 .044 .130 .1076}$

The notation and terminology used in this paper are introduced in the following articles: [20], [21], [12], [22], [10], [14], [13], [17], [18], [15], [1], [8], [11], [2], [3], [4], [19], [16], [5], [9], and [7]. For simplicity the abbreviation $\mathfrak{M}=$ MaxConstrSign is introduced.

1. Preliminary

In this paper i, j denote natural numbers.
Next we state two propositions:
(1) For every pair set x holds $x=\left\langle x_{\mathbf{1}}, x_{\mathbf{2}}\right\rangle$.
(2) For every infinite set X there exist sets x_{1}, x_{2} such that $x_{1}, x_{2} \in X$ and $x_{1} \neq x_{2}$.
In this article we present several logical schemes. The scheme MinimalElement deals with a finite non empty set \mathcal{A} and a binary predicate \mathcal{P}, and states that:

[^0]There exists a set x such that $x \in \mathcal{A}$ and for every set y such that $y \in \mathcal{A}$ holds not $\mathcal{P}[y, x]$
provided the parameters have the following properties:

- For all sets x, y such that $x, y \in \mathcal{A}$ and $\mathcal{P}[x, y]$ holds not $\mathcal{P}[y, x]$, and
- For all sets x, y, z such that $x, y, z \in \mathcal{A}$ and $\mathcal{P}[x, y]$ and $\mathcal{P}[y, z]$ holds $\mathcal{P}[x, z]$.
The scheme Finite C deals with a finite set \mathcal{A} and a unary predicate \mathcal{P}, and states that: $\mathcal{P}[\mathcal{A}]$
provided the following condition is satisfied:
- For every subset A of \mathcal{A} such that for every set B such that $B \subset A$ holds $\mathcal{P}[B]$ holds $\mathcal{P}[A]$.
The scheme Numeration deals with a finite set \mathcal{A} and a binary predicate \mathcal{P}, and states that:

There exists an one-to-one finite sequence s such that $\operatorname{rng} s=\mathcal{A}$ and for all i, j such that $i, j \in \operatorname{dom} s$ and $\mathcal{P}[s(i), s(j)]$ holds $i<j$ provided the parameters satisfy the following conditions:

- For all sets x, y such that $x, y \in \mathcal{A}$ and $\mathcal{P}[x, y]$ holds not $\mathcal{P}[y, x]$, and
- For all sets x, y, z such that $x, y, z \in \mathcal{A}$ and $\mathcal{P}[x, y]$ and $\mathcal{P}[y, z]$ holds $\mathcal{P}[x, z]$.
One can prove the following two propositions:
(3) For every variable x holds $\operatorname{varcl} \operatorname{vars}(x)=\operatorname{vars}(x)$.
(4) Let \mathfrak{C} be an initialized constructor signature and e be an expression of \mathfrak{C}. Then e is compound if and only if it is not true that there exists an element x of Vars such that $e=x_{\mathfrak{C}}$.

2. Standardized Constructor Signature

Let us note that there exists a quasi-locus sequence which is empty.
Let \mathfrak{C} be a constructor signature. We say that \mathfrak{C} is standardized if and only if the condition (Def. 1) is satisfied.
(Def. 1) Let o be an operation symbol of \mathfrak{C}. Suppose o is constructor. Then $o \in$ Constructors and $o_{\mathbf{1}}=$ the result sort of o and $\operatorname{Card}\left(\left(o_{\mathbf{2}}\right)_{\mathbf{1}}\right)=$ len $\operatorname{Arity}(o)$.
The following proposition is true
(5) Let \mathfrak{C} be a constructor signature. Suppose \mathfrak{C} is standardized. Let o be an operation symbol of \mathfrak{C}. Then o is constructor if and only if $o \in$ Constructors.
Let us note that \mathfrak{M} is standardized.

Let us observe that there exists a constructor signature which is initialized, standardized, and strict.

Let \mathfrak{C} be an initialized standardized constructor signature and let c be a constructor operation symbol of \mathfrak{C}. The loci of c yielding a quasi-locus sequence is defined by:
(Def. 2) The loci of $c=\left(c_{\mathbf{2}}\right)_{\mathbf{1}}$.
Let \mathfrak{C} be a constructor signature. One can verify that there exists a subsignature of \mathfrak{C} which is constructor.

Let \mathfrak{C} be an initialized constructor signature. Note that there exists a constructor subsignature of \mathfrak{C} which is initialized.

Let \mathfrak{C} be a standardized constructor signature. One can verify that every constructor subsignature of \mathfrak{C} is standardized.

One can prove the following two propositions:
(6) Let S_{1}, S_{2} be standardized constructor signatures. Suppose the operation symbols of $S_{1}=$ the operation symbols of S_{2}. Then the many sorted signature of $S_{1}=$ the many sorted signature of S_{2}.
(7) For every constructor signature \mathfrak{C} holds \mathfrak{C} is standardized iff \mathfrak{C} is a subsignature of \mathfrak{M}.
Let \mathfrak{C} be an initialized constructor signature. Observe that there exists a quasi-term of \mathfrak{C} which is non compound.

Let us mention that every element of Vars is pair.
The following propositions are true:
(8) For every element x of Vars such that $\operatorname{vars}(x)$ is natural holds $\operatorname{vars}(x)=0$.
(9) Vars misses Constructors.
(10) For every element x of Vars holds $x \neq *$ and $x \neq$ non.
(11) For every standardized constructor signature \mathfrak{C} holds Vars misses the operation symbols of \mathfrak{C}.
(12) Let \mathfrak{C} be an initialized standardized constructor signature and e be an expression of \mathfrak{C}. Then
(i) there exists an element x of Vars such that $e=x_{\mathfrak{C}}$ and $e(\emptyset)=\langle x$, term \rangle, or
(ii) there exists an operation symbol o of \mathfrak{C} such that $e(\emptyset)=\langle o$, the carrier of $\mathfrak{C}\rangle$ but $o \in$ Constructors or $o=*$ or $o=$ non.
Let \mathfrak{C} be an initialized standardized constructor signature and let e be an expression of \mathfrak{C}. Note that $e(\emptyset)$ is pair.

The following propositions are true:
(13) Let \mathfrak{C} be an initialized constructor signature, e be an expression of \mathfrak{C}, and o be an operation symbol of \mathfrak{C}. Suppose $e(\emptyset)=\langle o$, the carrier of $\mathfrak{C}\rangle$. Then e is an expression of \mathfrak{C} from the result sort of o.
(14) Let \mathfrak{C} be an initialized standardized constructor signature and e be an expression of \mathfrak{C}. Then
(i) if $e(\emptyset)_{\mathbf{1}}=*$, then e is an expression of \mathfrak{C} from type $\mathfrak{C}_{\mathfrak{C}}$, and
(ii) if $e(\emptyset)_{\mathbf{1}}=$ non, then e is an expression of \mathfrak{C} from $\mathbf{a d j}_{\mathfrak{C}}$.
(15) Let \mathfrak{C} be an initialized standardized constructor signature and e be an expression of \mathfrak{C}. Then
(i) $e(\emptyset)_{\mathbf{1}} \in$ Vars and $e(\emptyset)_{\mathbf{2}}=$ term and e is a quasi-term of \mathfrak{C}, or
(ii) $e(\emptyset)_{\mathbf{2}}=$ the carrier of \mathfrak{C} but $e(\emptyset)_{\mathbf{1}} \in$ Constructors and $e(\emptyset)_{\mathbf{1}} \in$ the operation symbols of \mathfrak{C} or $e(\emptyset)_{\mathbf{1}}=*$ or $e(\emptyset)_{\mathbf{1}}=$ non.
(16) Let \mathfrak{C} be an initialized standardized constructor signature and e be an expression of \mathfrak{C}. If $e(\emptyset)_{\mathbf{1}} \in$ Constructors, then $e \in$ (the sorts of Free $\left._{C}(\operatorname{Vars} \mathfrak{C})\right)\left(\left(e(\emptyset)_{\mathbf{1}}\right)_{\mathbf{1}}\right)$.
(17) Let \mathfrak{C} be an initialized standardized constructor signature and e be an expression of \mathfrak{C}. Then $e(\emptyset)_{\mathbf{1}} \notin$ Vars if and only if $e(\emptyset)_{\mathbf{1}}$ is an operation symbol of \mathfrak{C}.
(18) Let \mathfrak{C} be an initialized standardized constructor signature and e be an expression of \mathfrak{C}. If $e(\emptyset)_{\mathbf{1}} \in$ Vars, then there exists an element x of Vars such that $x=e(\emptyset)_{\mathbf{1}}$ and $e=x_{\mathfrak{C}}$.
(19) Let \mathfrak{C} be an initialized standardized constructor signature and e be an expression of \mathfrak{C}. Suppose $e(\emptyset)_{\mathbf{1}}=*$. Then there exists an expression α of \mathfrak{C} from $\mathbf{a d j}_{\mathfrak{C}}$ and there exists an expression q of \mathfrak{C} from type $\mathfrak{C}_{\mathfrak{C}}$ such that $e=\langle *, 3\rangle$-tree (α, q).
(20) Let \mathfrak{C} be an initialized standardized constructor signature and e be an expression of \mathfrak{C}. If $e(\emptyset)_{\mathbf{1}}=$ non, then there exists an expression α of \mathfrak{C} from $\mathbf{a d j}_{\mathfrak{C}}$ such that $e=\langle$ non, 3\rangle-tree (α).
(21) Let \mathfrak{C} be an initialized standardized constructor signature and e be an expression of \mathfrak{C}. Suppose $e(\emptyset)_{\mathbf{1}} \in$ Constructors. Then there exists an operation symbol o of \mathfrak{C} such that $o=e(\emptyset)_{\mathbf{1}}$ and the result sort of $o=o_{\mathbf{1}}$ and e is an expression of \mathfrak{C} from the result sort of o.
(22) Let \mathfrak{C} be an initialized standardized constructor signature and τ be a quasi-term of \mathfrak{C}. Then τ is compound if and only if $\tau(\emptyset)_{\mathbf{1}} \in$ Constructors and $\left(\tau(\emptyset)_{1}\right)_{1}=$ term.
(23) Let \mathfrak{C} be an initialized standardized constructor signature and τ be an expression of \mathfrak{C}. Then τ is a non compound quasi-term of \mathfrak{C} if and only if $\tau(\emptyset)_{\mathbf{1}} \in$ Vars.
(24) Let \mathfrak{C} be an initialized standardized constructor signature and τ be an expression of \mathfrak{C}. Then τ is a quasi-term of \mathfrak{C} if and only if $\tau(\emptyset)_{\mathbf{1}} \in$ Constructors and $\left(\tau(\emptyset)_{1}\right)_{\mathbf{1}}=$ term or $\tau(\emptyset)_{\mathbf{1}} \in \operatorname{Vars}$.
(25) Let \mathfrak{C} be an initialized standardized constructor signature and α be an expression of \mathfrak{C}. Then α is a positive quasi-adjective of \mathfrak{C} if and only if
$\alpha(\emptyset)_{\mathbf{1}} \in$ Constructors and $\left(\alpha(\emptyset)_{1}\right)_{\mathbf{1}}=\mathbf{a d j}$.
(26) Let \mathfrak{C} be an initialized standardized constructor signature and α be a quasi-adjective of \mathfrak{C}. Then α is negative if and only if $\alpha(\emptyset)_{\mathbf{1}}=$ non.
(27) Let \mathfrak{C} be an initialized standardized constructor signature and τ be an expression of \mathfrak{C}. Then τ is a pure expression of \mathfrak{C} from type $\mathfrak{C}_{\mathfrak{C}}$ if and only if $\tau(\emptyset)_{\mathbf{1}} \in$ Constructors and $\left(\tau(\emptyset)_{1}\right)_{\mathbf{1}}=$ type.

3. Expressions

In the sequel i is a natural number, x is a variable, and ℓ is a quasi-locus sequence.

An expression is an expression of \mathfrak{M}. A valuation is a valuation of \mathfrak{M}. A quasiadjective is a quasi-adjective of \mathfrak{M}. The subset QuasiAdjs of Free $\mathfrak{M}(\operatorname{Vars} \mathfrak{M})$ is defined as follows:
(Def. 3) QuasiAdjs $=$ QuasiAdjs \mathfrak{M}.
A quasi-term is a quasi-term of \mathfrak{M}. The subset QuasiTerms of Free \mathfrak{M} (Vars \mathfrak{M}) is defined as follows:
(Def. 4) QuasiTerms = QuasiTerms \mathfrak{M}.
A quasi-type is a quasi-type of \mathfrak{M}. The functor QuasiTypes is defined as follows:
(Def. 5) QuasiTypes $=$ QuasiTypes \mathfrak{M}.
One can verify the following observations:

* QuasiAdjs is non empty,
* QuasiTerms is non empty, and
* QuasiTypes is non empty.

Modes is a non empty subset of Constructors. Then Attrs is a non empty subset of Constructors. Then Funcs is a non empty subset of Constructors.

In the sequel \mathfrak{C} denotes an initialized constructor signature.
The element set-constr of Modes is defined by:
(Def. 6) set-constr $=\langle$ type, $\langle\emptyset, 0\rangle\rangle$.
One can prove the following propositions:
(28) The kind of set-constr = type and the loci of set-constr $=\emptyset$ and the index of set-constr $=0$.
(29) Constructors $=\{\mathbf{t y p e}, \mathbf{a d j}$, term $\} \times($ QuasiLoci $\times \mathbb{N})$.
(30) $\langle\mathrm{rng} \ell, i\rangle \in \operatorname{Vars}$ and $\ell^{\wedge}\langle\langle\mathrm{rng} \ell, i\rangle\rangle$ is a quasi-locus sequence.
(31) There exists ℓ such that len $\ell=i$.
(32) For every finite subset X of Vars there exists ℓ such that $\operatorname{rng} \ell=\operatorname{varcl} X$.
(33) Let X, o be sets and p be a decorated tree yielding finite sequence. Given \mathfrak{C} such that $X=\bigcup\left(\right.$ the sorts of $\left.\operatorname{Free}_{\mathfrak{C}}(\operatorname{Vars} \mathfrak{C})\right)$. If o-tree $(p) \in X$, then p is a finite sequence of elements of X.

Let us consider \mathfrak{C} and let e be an expression of \mathfrak{C}. An expression of \mathfrak{C} is called a subexpression of e if:
(Def. 7) It $\in \operatorname{Subtrees}(e)$.
The functor constrs e is defined by:
(Def. 8) constrs $e=\pi_{1}(\operatorname{rng} e) \cap\{o: o$ ranges over constructor operation symbols of $\mathfrak{C}\}$.
The functor main-constr e is defined by:
(Def. 9) main-constr $e=\left\{\begin{array}{l}e(\emptyset)_{\mathbf{1}}, \text { if } e \text { is compound, } \\ \emptyset, \text { otherwise } .\end{array}\right.$
The functor args e yields a finite sequence of elements of Free $_{\mathfrak{C}}$ (Vars \mathfrak{C}) and is defined by:
(Def. 10) $e=e(\emptyset)$-tree $(\operatorname{args} e)$.
Next we state three propositions:
(34) For every \mathfrak{C} holds every expression e of \mathfrak{C} is a subexpression of e.
(35) main-constr $\left(x_{\mathfrak{C}}\right)=\emptyset$.
(36) Let c be a constructor operation symbol of \mathfrak{C} and p be a finite sequence of elements of QuasiTerms \mathfrak{C}. If len $p=$ len $\operatorname{Arity}(c)$, then main-constr $(c \vec{c}(p))=c$.
Let us consider \mathfrak{C} and let e be an expression of \mathfrak{C}. We say that e is constructor if and only if:
(Def. 11) e is compound and main-constr e is a constructor operation symbol of \mathfrak{C}.
Let us consider \mathfrak{C}. Observe that every expression of \mathfrak{C} which is constructor is also compound.

Let us consider \mathfrak{C}. Observe that there exists an expression of \mathfrak{C} which is constructor.

Let us consider \mathfrak{C} and let e be a constructor expression of \mathfrak{C}. One can verify that there exists a subexpression of e which is constructor.

Let S be a non void signature, let X be a non empty yielding many sorted set indexed by S, and let τ be an element of $\operatorname{Free}_{S}(X)$. Observe that $\operatorname{rng} \tau$ is relation-like.

One can prove the following proposition
(37) For every constructor expression e of \mathfrak{C} holds main-constr $e \in$ constrs e.

4. Arity

For simplicity, we follow the rules: α is a quasi-adjective, τ, τ_{1}, τ_{2} are quasiterms, ϑ is a quasi-type, and c is an element of Constructors.

Let \mathfrak{C} be a non void signature. We say that \mathfrak{C} is arity-rich if and only if the condition (Def. 12) is satisfied.
(Def. 12) Let n be a natural number and s be a sort symbol of \mathfrak{C}. Then $\{o ; o$ ranges over operation symbols of \mathfrak{C} : the result sort of $o=s \wedge$ len $\operatorname{Arity}(o)=n\}$ is infinite.

Let o be an operation symbol of \mathfrak{C}. We say that o is nullary if and only if:
(Def. 13) $\quad \operatorname{Arity}(o)=\emptyset$.
We say that o is unary if and only if:
(Def. 14) $\operatorname{len} \operatorname{Arity}(o)=1$.
We say that o is binary if and only if:
(Def. 15) len $\operatorname{Arity}(o)=2$.
The following proposition is true
(38) Let \mathfrak{C} be a non void signature and o be an operation symbol of \mathfrak{C}. Then
(i) if o is nullary, then o is not unary,
(ii) if o is nullary, then o is not binary, and
(iii) if o is unary, then o is not binary.

Let \mathfrak{C} be a constructor signature. Observe that non $_{\mathfrak{C}}$ is unary and $*_{\mathfrak{C}}$ is binary.

Let \mathfrak{C} be a constructor signature. Note that every operation symbol of \mathfrak{C} which is nullary is also constructor.

The following proposition is true
(39) Let \mathfrak{C} be a constructor signature. Then \mathfrak{C} is initialized if and only if there exists an operation symbol m of type $\mathfrak{C}_{\mathfrak{C}}$ and there exists an operation symbol α of $\mathbf{a d j}_{\mathfrak{c}}$ such that m is nullary and α is nullary.
Let \mathfrak{C} be an initialized constructor signature. One can verify that there exists an operation symbol of type $_{\mathfrak{C}}$ which is nullary and constructor and there exists an operation symbol of $\mathbf{a d j}_{\mathfrak{c}}$ which is nullary and constructor.

Let \mathfrak{C} be an initialized constructor signature. Observe that there exists an operation symbol of \mathfrak{C} which is nullary and constructor.

One can check that every non void signature which is arity-rich has also an operation for each sort and every constructor signature which is arity-rich is also initialized.

One can check that \mathfrak{M} is arity-rich.
Let us mention that there exists a constructor signature which is arity-rich and initialized.

Let \mathfrak{C} be an arity-rich constructor signature and let s be a sort symbol of \mathfrak{C}. One can verify the following observations:

* there exists an operation symbol of s which is nullary and constructor,
* there exists an operation symbol of s which is unary and constructor, and
* there exists an operation symbol of s which is binary and constructor.

Let \mathfrak{C} be an arity-rich constructor signature. One can check that there exists an operation symbol of \mathfrak{C} which is unary and constructor and there exists an operation symbol of \mathfrak{C} which is binary and constructor.

The following proposition is true
(40) Let o be a nullary operation symbol of \mathfrak{C}. Then 〈 o, the carrier of $\mathfrak{C}\rangle$-tree (\emptyset) is an expression of \mathfrak{C} from the result sort of o.
Let \mathfrak{C} be an initialized constructor signature and let m be a nullary constructor operation symbol of $\mathbf{t y p e} \mathbf{e}_{\mathfrak{C}}$. Then m_{t} is a pure expression of \mathfrak{C} from type $_{\mathfrak{C}}$.

Let c be an element of Constructors. The functor ${ }^{@} c$ yielding a constructor operation symbol of \mathfrak{M} is defined by:
(Def. 16) ${ }^{@} c=c$.
Let m be an element of Modes. Then ${ }^{@} m$ is a constructor operation symbol of type ${ }_{\mathfrak{M}}$.

Let us note that ${ }^{@}$ set-constr is nullary.
We now state the proposition
(41) $\quad \operatorname{Arity}\left({ }^{@}\right.$ set-constr $)=\emptyset$.

The quasi-type set-type is defined by:
(Def. 17) \quad set-type $=\emptyset_{\text {QuasiAdjs } \mathfrak{M}} *\left({ }^{@} \text { set-constr }\right)_{\mathrm{t}}$.
The following proposition is true
(42) adjs set-type $=\emptyset$ and the base of set-type $=\left({ }^{@} \text { set-constr }\right)_{t}$.

Let ℓ be a finite sequence of elements of Vars. The functor $\operatorname{args} \ell$ yields a finite sequence of elements of QuasiTerms \mathfrak{M} and is defined as follows:
(Def. 18) len args $\ell=\operatorname{len} \ell$ and for every i such that $i \in \operatorname{dom} \ell$ holds $(\operatorname{args} \ell)(i)=$ $\left(\ell_{i}\right)_{\mathfrak{M}}$.
Let us consider c. The base expression of c yields an expression and is defined as follows:
(Def. 19) The base expression of $\left.c=\left({ }^{@} c\right)\right)^{-}(\operatorname{args}($ the loci of $c))$.
Next we state several propositions:
(43) For every operation symbol o of \mathfrak{M} holds o is constructor iff $o \in$ Constructors.
(44) For every nullary operation symbol m of \mathfrak{M} holds main-constr $\left(m_{\mathrm{t}}\right)=m$.
(45) For every unary constructor operation symbol m of \mathfrak{M} and for every τ holds main-constr $(m(\tau))=m$.
(46) For every α holds main-constr $\left(\operatorname{non}_{\mathfrak{M}}(\alpha)\right)=$ non .
(47) For every binary constructor operation symbol m of \mathfrak{M} and for all τ_{1}, τ_{2} holds main-constr $\left(m\left(\tau_{1}, \tau_{2}\right)\right)=m$.
(48) For every expression q of \mathfrak{M} from type $_{\mathfrak{M}}$ and for every α holds $\operatorname{main}-\operatorname{constr}(* \mathfrak{M}(\alpha, q))=*$.

Let ϑ be a quasi-type. The functor constrs ϑ is defined by:
(Def. 20) $\operatorname{constrs} \vartheta=\operatorname{constrs}($ the base of $\vartheta) \cup \bigcup\{\operatorname{constrs} \alpha: \alpha \in \operatorname{adjs} \vartheta\}$.
The following two propositions are true:
(49) For every pure expression q of \mathfrak{M} from type $\mathfrak{M}_{\mathfrak{M}}$ and for every finite subset A of QuasiAdjs \mathfrak{M} holds constrs $(A * q)=$ constrs $q \cup \bigcup\{\operatorname{constrs} \alpha: \alpha \in A\}$.
(50) $\operatorname{constrs}(\alpha * \vartheta)=\operatorname{constrs} \alpha \cup \operatorname{constrs} \vartheta$.

5. Unification

Let \mathfrak{C} be an initialized constructor signature and let τ, p be expressions of \mathfrak{C}. We say that τ matches p if and only if:
(Def. 21) There exists a valuation f of \mathfrak{C} such that $\tau=p[f]$.
Let us note that the predicate τ matches p is reflexive.
The following proposition is true
(51) For all expressions $\tau_{1}, \tau_{2}, \tau_{3}$ of \mathfrak{C} such that τ_{1} matches τ_{2} and τ_{2} matches τ_{3} holds τ_{1} matches τ_{3}.
Let \mathfrak{C} be an initialized constructor signature and let A, B be subsets of QuasiAdjs \mathfrak{C}. We say that A matches B if and only if:
(Def. 22) There exists a valuation f of \mathfrak{C} such that $B[f] \subseteq A$.
Let us note that the predicate A matches B is reflexive.
The following proposition is true
(52) For all subsets A_{1}, A_{2}, A_{3} of QuasiAdjs \mathfrak{C} such that A_{1} matches A_{2} and A_{2} matches A_{3} holds A_{1} matches A_{3}.
Let \mathfrak{C} be an initialized constructor signature and let ϑ, P be quasi-types of
\mathfrak{C}. We say that ϑ matches P if and only if:
(Def. 23) There exists a valuation f of \mathfrak{C} such that $(\operatorname{adjs} P)[f] \subseteq \operatorname{adjs} \vartheta$ and (the base of $P)[f]=$ the base of ϑ.
Let us note that the predicate ϑ matches P is reflexive.
One can prove the following proposition
(53) For all quasi-types $\vartheta_{1}, \vartheta_{2}, \vartheta_{3}$ of \mathfrak{C} such that ϑ_{1} matches ϑ_{2} and ϑ_{2} matches ϑ_{3} holds ϑ_{1} matches ϑ_{3}.
Let \mathfrak{C} be an initialized constructor signature, let τ_{1}, τ_{2} be expressions of \mathfrak{C}, and let f be a valuation of \mathfrak{C}. We say that f unifies τ_{1} with τ_{2} if and only if:
(Def. 24) $\quad \tau_{1}[f]=\tau_{2}[f]$.
The following proposition is true
(54) Let τ_{1}, τ_{2} be expressions of \mathfrak{C} and f be a valuation of \mathfrak{C}. If f unifies τ_{1} with τ_{2}, then f unifies τ_{2} with τ_{1}.
Let \mathfrak{C} be an initialized constructor signature and let τ_{1}, τ_{2} be expressions of \mathfrak{C}. We say that τ_{1} and τ_{2} are unifiable if and only if:
(Def. 25) There exists a valuation f of \mathfrak{C} such that f unifies τ_{1} with τ_{2}.
Let us notice that the predicate τ_{1} and τ_{2} are unifiable is reflexive and symmetric.
Let \mathfrak{C} be an initialized constructor signature and let τ_{1}, τ_{2} be expressions of \mathfrak{C}. We say that τ_{1} and τ_{2} are weakly-unifiable if and only if:
(Def. 26) There exists an irrelevant one-to-one valuation g of \mathfrak{C} such that $\operatorname{Var} \tau_{2} \subseteq$ dom g and τ_{1} and $\tau_{2}[g]$ are unifiable.
Let us note that the predicate τ_{1} and τ_{2} are weakly-unifiable is reflexive.
We now state the proposition
(55) For all expressions τ_{1}, τ_{2} of \mathfrak{C} such that τ_{1} and τ_{2} are unifiable holds τ_{1} and τ_{2} are weakly-unifiable.
Let \mathfrak{C} be an initialized constructor signature and let τ, τ_{1}, τ_{2} be expressions of \mathfrak{C}. We say that τ is a unification of τ_{1} and τ_{2} if and only if:
(Def. 27) There exists a valuation f of \mathfrak{C} such that f unifies τ_{1} with τ_{2} and $\tau=$ $\tau_{1}[f]$.
We now state two propositions:
(56) For all expressions τ_{1}, τ_{2}, τ of \mathfrak{C} such that τ is a unification of τ_{1} and τ_{2} holds τ is a unification of τ_{2} and τ_{1}.
(57) For all expressions τ_{1}, τ_{2}, τ of \mathfrak{C} such that τ is a unification of τ_{1} and τ_{2} holds τ matches τ_{1} and τ matches τ_{2}.
Let \mathfrak{C} be an initialized constructor signature and let τ, τ_{1}, τ_{2} be expressions of \mathfrak{C}. We say that τ is a general-unification of τ_{1} and τ_{2} if and only if the conditions (Def. 28) are satisfied.
(Def. 28)(i) $\quad \tau$ is a unification of τ_{1} and τ_{2}, and
(ii) for every expression u of \mathfrak{C} such that u is a unification of τ_{1} and τ_{2} holds u matches τ.

6. Type Distribution

The following three propositions are true:
(58) Let n be a natural number and s be a sort symbol of \mathfrak{M}. Then there exists a constructor operation symbol m of s such that len $\operatorname{Arity}(m)=n$.
(59) Let given ℓ, s be a sort symbol of \mathfrak{M}, and m be a constructor operation symbol of s. If len $\operatorname{Arity}(m)=$ len ℓ, then $\operatorname{Var}\left(m^{\rightarrow}(\operatorname{args} \ell)\right)=\operatorname{rng} \ell$.
(60) Let X be a finite subset of Vars. Suppose varcl $X=X$. Let s be a sort symbol of \mathfrak{M}. Then there exists a constructor operation symbol m of s and there exists a finite sequence p of elements of QuasiTerms \mathfrak{M} such that len $p=\operatorname{len} \operatorname{Arity}(m)$ and $\operatorname{vars}\left(m^{\vec{~}}(p)\right)=X$.
Let d be a partial function from Vars to QuasiTypes. We say that d is even if and only if:
(Def. 29) For all x, ϑ such that $x \in \operatorname{dom} d$ and $\vartheta=d(x)$ holds $\operatorname{vars}(\vartheta)=\operatorname{vars}(x)$.
Let ℓ be a quasi-locus sequence. A partial function from Vars to QuasiTypes is said to be a type-distribution for ℓ if:
(Def. 30) domit $=\mathrm{rng} \ell$ and it is even.
We now state the proposition
(61) For every empty quasi-locus sequence ℓ holds \emptyset is a type-distribution for ℓ.

References

[1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[2] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547552, 1991.
[3] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.

4] Grzegorz Bancerek. Subtrees. Formalized Mathematics, 5(2):185-190, 1996.
[5] Grzegorz Bancerek. Institution of many sorted algebras. Part I: Signature reduct of an algebra. Formalized Mathematics, 6(2):279-287, 1997.
[6] Grzegorz Bancerek. On the structure of Mizar types. In Herman Geuvers and Fairouz Kamareddine, editors, Electronic Notes in Theoretical Computer Science, volume 85. Elsevier, 2003.
[7] Grzegorz Bancerek. Towards the construction of a model of Mizar concepts. Formalized Mathematics, 16(2):207-230, 2008, doi:10.2478/v10037-008-0027-x.
[8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[9] Grzegorz Bancerek and Artur Korniłowicz. Yet another construction of free algebra. Formalized Mathematics, 9(4):779-785, 2001.
[10] Grzegorz Bancerek and Yatsuka Nakamura. Full adder circuit. Part I. Formalized Mathematics, 5(3):367-380, 1996.
[11] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[12] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[13] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[14] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[16] Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1):6774, 1996.
[17] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[18] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[19] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received November 20, 2009

[^0]: ${ }^{1}$ Partially supported by BTU Grant W/WI/1/06 and UF\&M(B) Teaching Support

