A Model of Mizar Concepts – Unification

Grzegorz Bancerek
Białystok Technical University
Poland
The University of Finance and Management
Białystok–Ełk, Poland

Summary. The aim of this paper is to develop a formal theory of Mizar linguistic concepts following the ideas from [6] and [7]. The theory presented is an abstraction from the existing implementation of the Mizar system and is devoted to the formalization of Mizar expressions. The concepts formalized here are: standarized constructor signature, arity-rich signatures, and the unification of Mizar expressions.

MML identifier: ABCMIZ.A, version: 7.11.04 4.130.1076

The notation and terminology used in this paper are introduced in the following articles: [20], [21], [12], [22], [10], [14], [13], [17], [18], [15], [1], [8], [11], [2], [3], [4], [19], [16], [5], [9], and [7]. For simplicity the abbreviation \(\mathfrak{M} = \text{MaxConstrSign} \) is introduced.

1. Preliminary

In this paper \(i, j \) denote natural numbers.
Next we state two propositions:
(1) For every pair set \(x \) holds \(x = \langle x_1, x_2 \rangle \).
(2) For every infinite set \(X \) there exist sets \(x_1, x_2 \) such that \(x_1, x_2 \in X \) and \(x_1 \neq x_2 \).

In this article we present several logical schemes. The scheme MinimalElement deals with a finite non empty set \(A \) and a binary predicate \(\mathcal{P} \), and states that:

\(^{1}\text{Partially supported by BTU Grant W/WI/1/06 and UF&M(B) Teaching Support} \)
There exists a set \(x \) such that \(x \in A \) and for every set \(y \) such that \(y \in A \) holds not \(P[y, x] \) provided the parameters have the following properties:
- For all sets \(x, y \) such that \(x, y \in A \) and \(P[x, y] \) holds not \(P[y, x] \),
- For all sets \(x, y, z \) such that \(x, y, z \in A \) and \(P[x, y] \) and \(P[y, z] \) holds \(P[x, z] \).

The scheme \(\text{FiniteC} \) deals with a finite set \(A \) and a unary predicate \(P \), and states that:

\[P[A] \]

provided the following condition is satisfied:
- For every subset \(A \) of \(A \) such that for every set \(B \) such that \(B \subset A \) holds \(P[B] \) holds \(P[A] \).

The scheme \(\text{Numeration} \) deals with a finite set \(A \) and a binary predicate \(P \), and states that:

There exists an one-to-one finite sequence \(s \) such that \(\text{rng} s = A \)
and for all \(i, j \) such that \(i, j \in \text{dom} s \) and \(P[s(i), s(j)] \) holds \(i < j \)

provided the parameters satisfy the following conditions:
- For all sets \(x, y \) such that \(x, y \in A \) and \(P[x, y] \) holds not \(P[y, x] \),
- For all sets \(x, y, z \) such that \(x, y, z \in A \) and \(P[x, y] \) and \(P[y, z] \) holds \(P[x, z] \).

One can prove the following two propositions:

1. For every variable \(x \) holds \(\text{varcl} \ vars(x) = vars(x) \).
2. Let \(C \) be an initialized constructor signature and \(e \) be an expression of \(C \). Then \(e \) is compound if and only if it is not true that there exists an element \(x \) of Vars such that \(e = x_C \).

2. Standardized Constructor Signature

Let us note that there exists a quasi-locus sequence which is empty.

Let \(C \) be a constructor signature. We say that \(C \) is standardized if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let \(o \) be an operation symbol of \(C \). Suppose \(o \) is constructor. Then \(o \in \text{Constructors} \) and \(o_1 = \text{the result sort of } o \) and \(\text{Card}((o_2)_1) = \text{len} \text{Arity}(o) \).

The following proposition is true

(5) Let \(C \) be a constructor signature. Suppose \(C \) is standardized. Let \(o \) be an operation symbol of \(C \). Then \(o \) is constructor if and only if \(o \in \text{Constructors} \).

Let us note that \(\mathfrak{M} \) is standardized.
Let us observe that there exists a constructor signature which is initialized, standardized, and strict.

Let \(C \) be an initialized standardized constructor signature and let \(c \) be a constructor operation symbol of \(C \). The loci of \(c \) yielding a quasi-locus sequence is defined by:

(Def. 2) The loci of \(c = (c_2)_1 \).

Let \(C \) be a constructor signature. One can verify that there exists a subsignature of \(C \) which is constructor.

Let \(C \) be an initialized constructor signature. Note that there exists a constructor subsignature of \(C \) which is initialized.

Let \(C \) be a standardized constructor signature. One can verify that every constructor subsignature of \(C \) is standardized.

One can prove the following two propositions:

(6) Let \(S_1, S_2 \) be standardized constructor signatures. Suppose the operation symbols of \(S_1 = \) the operation symbols of \(S_2 \). Then the many sorted signature of \(S_1 = \) the many sorted signature of \(S_2 \).

(7) For every constructor signature \(C \) holds \(C \) is standardized iff \(C \) is a subsignature of \(\mathcal{M} \).

Let \(C \) be an initialized constructor signature. Observe that there exists a quasi-term of \(C \) which is non compound.

Let us mention that every element of \(\text{Vars} \) is pair.

The following propositions are true:

(8) For every element \(x \) of \(\text{Vars} \) such that \(\vars(x) \) is natural holds \(\vars(x) = 0 \).

(9) \(\text{Vars} \) misses Constructors.

(10) For every element \(x \) of \(\text{Vars} \) holds \(x \neq * \) and \(x \neq \text{non} \).

(11) For every standardized constructor signature \(C \) holds \(\text{Vars} \) misses the operation symbols of \(C \).

(12) Let \(C \) be an initialized standardized constructor signature and \(e \) be an expression of \(C \). Then

(i) there exists an element \(x \) of \(\text{Vars} \) such that \(e = x_C \) and \(e(\emptyset) = \langle x, \text{term} \rangle \), or

(ii) there exists an operation symbol \(o \) of \(C \) such that \(e(\emptyset) = \langle o, \text{the carrier of } C \rangle \) but \(o \in \text{Constructors} \) or \(o = * \) or \(o = \text{non} \).

Let \(C \) be an initialized standardized constructor signature and let \(e \) be an expression of \(C \). Note that \(e(\emptyset) \) is pair.

The following propositions are true:

(13) Let \(C \) be an initialized constructor signature, \(e \) be an expression of \(C \), and \(o \) be an operation symbol of \(C \). Suppose \(e(\emptyset) = \langle o, \text{the carrier of } C \rangle \). Then \(e \) is an expression of \(C \) from the result sort of \(o \).
(14) Let \mathcal{C} be an initialized standardized constructor signature and e be an expression of \mathcal{C}. Then
(i) if $e(\emptyset)_1 = \ast$, then e is an expression of \mathcal{C} from $\text{type}_{\mathcal{C}}$, and
(ii) if $e(\emptyset)_1 = \text{non}$, then e is an expression of \mathcal{C} from $\text{adj}_{\mathcal{C}}$.

(15) Let \mathcal{C} be an initialized standardized constructor signature and e be an expression of \mathcal{C}. Then
(i) $e(\emptyset)_1 \in \text{Vars}$ and $e(\emptyset)_2 = \text{term}$ and e is a quasi-term of \mathcal{C}, or
(ii) $e(\emptyset)_2$ is the carrier of \mathcal{C} but $e(\emptyset)_1 \in \text{Constructors}$ and $e(\emptyset)_1 \in$ the operation symbols of \mathcal{C} or $e(\emptyset)_1 = \ast$ or $e(\emptyset)_1 = \text{non}$.

(16) Let \mathcal{C} be an initialized standardized constructor signature and e be an expression of \mathcal{C}. If $e(\emptyset)_1 \in \text{Constructors}$, then $e \in$ (the sorts of \text{Free}_{\mathcal{C}}(\text{Vars} \mathcal{C}))((e(\emptyset)_1)_1)$.

(17) Let \mathcal{C} be an initialized standardized constructor signature and e be an expression of \mathcal{C}. Then $e(\emptyset)_1 \notin \text{Vars}$ if and only if $e(\emptyset)_1$ is an operation symbol of \mathcal{C}.

(18) Let \mathcal{C} be an initialized standardized constructor signature and e be an expression of \mathcal{C}. If $e(\emptyset)_1 \in \text{Vars}$, then there exists an element x of Vars such that $x = e(\emptyset)_1$ and $e = x_{\mathcal{C}}$.

(19) Let \mathcal{C} be an initialized standardized constructor signature and e be an expression of \mathcal{C}. Suppose $e(\emptyset)_1 = \ast$. Then there exists an expression α of \mathcal{C} from $\text{adj}_{\mathcal{C}}$ and there exists an expression q of \mathcal{C} from $\text{type}_{\mathcal{C}}$ such that $e = \langle \ast, 3 \rangle \text{-tree}(\alpha, q)$.

(20) Let \mathcal{C} be an initialized standardized constructor signature and e be an expression of \mathcal{C}. If $e(\emptyset)_1 = \text{non}$, then there exists an expression α of \mathcal{C} from $\text{adj}_{\mathcal{C}}$ such that $e = \langle \text{non}, 3 \rangle \text{-tree}(\alpha)$.

(21) Let \mathcal{C} be an initialized standardized constructor signature and e be an expression of \mathcal{C}. Suppose $e(\emptyset)_1 \in \text{Constructors}$. Then there exists an operation symbol o of \mathcal{C} such that $o = e(\emptyset)_1$ and the result sort of $o = o_1$ and e is an expression of \mathcal{C} from the result sort of o.

(22) Let \mathcal{C} be an initialized standardized constructor signature and τ be a quasi-term of \mathcal{C}. Then τ is compound if and only if $\tau(\emptyset)_1 \in \text{Constructors}$ and $(\tau(\emptyset)_1)_1 = \text{term}$.

(23) Let \mathcal{C} be an initialized standardized constructor signature and τ be an expression of \mathcal{C}. Then τ is a non compound quasi-term of \mathcal{C} if and only if $\tau(\emptyset)_1 \in \text{Vars}$.

(24) Let \mathcal{C} be an initialized standardized constructor signature and τ be an expression of \mathcal{C}. Then τ is a quasi-term of \mathcal{C} if and only if $\tau(\emptyset)_1 \in \text{Constructors}$ and $(\tau(\emptyset)_1)_1 = \text{term}$ or $\tau(\emptyset)_1 \in \text{Vars}$.

(25) Let \mathcal{C} be an initialized standardized constructor signature and α be an expression of \mathcal{C}. Then α is a positive quasi-adjective of \mathcal{C} if and only if
$\alpha(\emptyset)_{1} \in \text{Constructors}$ and $(\alpha(\emptyset)_{1})_{1} = \text{adj}$.

(26) Let C be an initialized standardized constructor signature and α be a quasi-adjective of C. Then α is negative if and only if $\alpha(\emptyset)_{1} = \text{non}$.

(27) Let C be an initialized standardized constructor signature and τ be an expression of C. Then τ is a pure expression of C from type_{C} if and only if $\tau(\emptyset)_{1} \in \text{Constructors}$ and $(\tau(\emptyset)_{1})_{1} = \text{type}$.

3. Expressions

In the sequel i is a natural number, x is a variable, and ℓ is a quasi-locus sequence.

An expression is an expression of M. A valuation is a valuation of M. A quasi-adjective is a quasi-adjective of M. The subset QuasiAdjs of $\text{Free}_{M}(\text{Vars} M)$ is defined as follows:

(Def. 3) QuasiAdjs = QuasiAdjs M.

A quasi-term is a quasi-term of M. The subset QuasiTerms of $\text{Free}_{M}(\text{Vars} M)$ is defined as follows:

(Def. 4) QuasiTerms = QuasiTerms M.

A quasi-type is a quasi-type of M. The functor QuasiTypes is defined as follows:

(Def. 5) QuasiTypes = QuasiTypes M.

One can verify the following observations:

* QuasiAdjs is non empty,
* QuasiTerms is non empty, and
* QuasiTypes is non empty.

Modes is a non empty subset of Constructors. Then Attrs is a non empty subset of Constructors. Then Funcs is a non empty subset of Constructors.

In the sequel C denotes an initialized constructor signature.

The element set-constr of Modes is defined by:

(Def. 6) set-constr = \{type, (\emptyset, 0)\}.

One can prove the following propositions:

(28) The kind of set-constr = type and the loci of set-constr = \emptyset and the index of set-constr = 0.

(29) Constructors = \{type, adj, term\} \times (QuasiLoci \times N).

(30) $(\text{rng } \ell, i) \in \text{Vars}$ and $\ell \subset \langle(\text{rng } \ell, i)\rangle$ is a quasi-locus sequence.

(31) There exists ℓ such that len $\ell = i$.

(32) For every finite subset X of Vars there exists ℓ such that $\text{rng } \ell = \text{varcl } X$.

(33) Let X, o be sets and p be a decorated tree yielding finite sequence. Given C such that $X = \bigcup (\text{the sorts of } \text{Free}_{C}(\text{Vars } C))$. If $o\text{-tree}(p) \in X$, then p is a finite sequence of elements of X.

Let us consider \mathcal{C} and let e be an expression of \mathcal{C}. An expression of \mathcal{C} is called a subexpression of e if:

(Def. 7) \quad \text{It } \in \text{Subtrees}(e).

The functor $\text{constrs} e$ is defined by:

(Def. 8) \quad \text{constrs} e = \pi_1(\text{rng} e) \cap \{ o : o \text{ ranges over constructor operation symbols of } \mathcal{C} \}.

The functor $\text{main-constr} e$ is defined by:

(Def. 9) \quad \text{main-constr} e = \begin{cases} e(\emptyset)_1, & \text{if } e \text{ is compound}, \\ \emptyset, & \text{otherwise}. \end{cases}

The functor $\text{args} e$ yields a finite sequence of elements of $\text{Free}_e(\text{Vars} \mathcal{C})$ and is defined by:

(Def. 10) \quad e = e(\emptyset)-\text{tree}(\text{args} e).

Next we state three propositions:

(34) For every \mathcal{C} holds every expression e of \mathcal{C} is a subexpression of e.

(35) $\text{main-constr}(x_\mathcal{C}) = \emptyset$.

(36) Let c be a constructor operation symbol of \mathcal{C} and p be a finite sequence of elements of $\text{QuasiTerms} \mathcal{C}$. If $\text{len} p = \text{len} \text{Arity}(c)$, then $\text{main-constr}(c^\uparrow(p)) = c$.

Let us consider \mathcal{C} and let e be an expression of \mathcal{C}. We say that e is constructor if and only if:

(Def. 11) \quad e \text{ is compound and } \text{main-constr} e \text{ is a constructor operation symbol of } \mathcal{C}.

Let us consider \mathcal{C}. Observe that every expression of \mathcal{C} which is constructor is also compound.

Let us consider \mathcal{C}. Observe that there exists an expression of \mathcal{C} which is constructor.

Let us consider \mathcal{C} and let e be a constructor expression of \mathcal{C}. One can verify that there exists a subexpression of e which is constructor.

Let S be a non void signature, let X be a non empty yielding many sorted set indexed by S, and let τ be an element of $\text{Free}_S(X)$. Observe that $\text{rng} \tau$ is relation-like.

One can prove the following proposition

(37) For every constructor expression e of \mathcal{C} holds $\text{main-constr} e \in \text{constrs} e$.

4. Arity

For simplicity, we follow the rules: α is a quasi-adjective, τ, τ_1, τ_2 are quasi-terms, ϑ is a quasi-type, and c is an element of Constructors.

Let \mathcal{C} be a non void signature. We say that \mathcal{C} is arity-rich if and only if the condition (Def. 12) is satisfied.
(Def. 12) Let \(n \) be a natural number and \(s \) be a sort symbol of \(\mathcal{C} \). Then \(\{ o; o \text{ ranges over operation symbols of } \mathcal{C}; \text{ the result sort of } o = s \land \text{len Arity}(o) = n \} \) is infinite.

Let \(o \) be an operation symbol of \(\mathcal{C} \). We say that \(o \) is nullary if and only if:

(Def. 13) \(\text{Arity}(o) = \emptyset \).

We say that \(o \) is unary if and only if:

(Def. 14) \(\text{len Arity}(o) = 1 \).

We say that \(o \) is binary if and only if:

(Def. 15) \(\text{len Arity}(o) = 2 \).

The following proposition is true

(38) Let \(\mathcal{C} \) be a non void signature and \(o \) be an operation symbol of \(\mathcal{C} \). Then

(i) if \(o \) is nullary, then \(o \) is not unary,
(ii) if \(o \) is nullary, then \(o \) is not binary, and
(iii) if \(o \) is unary, then \(o \) is not binary.

Let \(\mathcal{C} \) be a constructor signature. Observe that \(\text{non}_{\mathcal{C}} \) is unary and \(\ast_{\mathcal{C}} \) is binary.

Let \(\mathcal{C} \) be a constructor signature. Note that every operation symbol of \(\mathcal{C} \) which is nullary is also constructor.

The following proposition is true

(39) Let \(\mathcal{C} \) be a constructor signature. Then \(\mathcal{C} \) is initialized if and only if there exists an operation symbol \(m \) of \(\text{type}_{\mathcal{C}} \) and there exists an operation symbol \(\alpha \) of \(\text{adj}_{\mathcal{C}} \) such that \(m \) is nullary and \(\alpha \) is nullary.

Let \(\mathcal{C} \) be an initialized constructor signature. One can verify that there exists an operation symbol of \(\text{type}_{\mathcal{C}} \) which is nullary and constructor and there exists an operation symbol of \(\text{adj}_{\mathcal{C}} \) which is nullary and constructor.

Let \(\mathcal{C} \) be an initialized constructor signature. Observe that there exists an operation symbol of \(\mathcal{C} \) which is nullary and constructor.

One can check that every non void signature which is arity-rich has also an operation for each sort and every constructor signature which is arity-rich is also initialized.

One can check that \(\mathcal{M} \) is arity-rich.

Let us mention that there exists a constructor signature which is arity-rich and initialized.

Let \(\mathcal{C} \) be an arity-rich constructor signature and let \(s \) be a sort symbol of \(\mathcal{C} \).

One can verify the following observations:

- there exists an operation symbol of \(s \) which is nullary and constructor,
- there exists an operation symbol of \(s \) which is unary and constructor, and
- there exists an operation symbol of \(s \) which is binary and constructor.
Let \mathcal{C} be an arity-rich constructor signature. One can check that there exists an operation symbol of \mathcal{C} which is unary and constructor and there exists an operation symbol of \mathcal{C} which is binary and constructor.

The following proposition is true

(40) Let o be a nullary operation symbol of \mathcal{C}. Then $(o,\text{the carrier of }\mathcal{C})$-tree($\emptyset$) is an expression of \mathcal{C} from the result sort of o.

Let \mathcal{C} be an initialized constructor signature and let m be a nullary constructor operation symbol of $\text{type}_{\mathcal{C}}$. Then $m_\mathcal{C}$ is a pure expression of \mathcal{C} from $\text{type}_{\mathcal{C}}$.

Let c be an element of Constructors. The functor ^cc yielding a constructor operation symbol of \mathfrak{M} is defined by:

(Def. 16) $^c\text{c} = c$.

Let m be an element of Modes. Then ^mc is a constructor operation symbol of $\text{type}_{\mathfrak{M}}$.

Let us note that $^\text{set-constr}\text{c}$ is nullary.

We now state the proposition

(41) $\text{Arity}(^\text{set-constr}\text{c}) = \emptyset$.

The quasi-type set-type is defined by:

(Def. 17) set-type = $\emptyset_{\text{QuasiAdjs}\mathfrak{M}} * (^\text{set-constr}\text{c})_\mathfrak{M}$.

The following proposition is true

(42) $\text{adjs set-type} = \emptyset$ and the base of set-type = $(^\text{set-constr}\text{c})_\mathfrak{M}$.

Let ℓ be a finite sequence of elements of Vars. The functor $\text{args }\ell$ yields a finite sequence of elements of quasiTerms \mathfrak{M} and is defined as follows:

(Def. 18) $\text{len args }\ell = \text{len }\ell$ and for every i such that $i \in \text{dom }\ell$ holds $(\text{args }\ell)(i) = (\ell_i)_\mathfrak{M}$.

Let us consider c. The base expression of c yields an expression and is defined as follows:

(Def. 19) The base expression of $c = (^c\text{c})^{\text{args (the loci of }c)}$.

Next we state several propositions:

(43) For every operation symbol o of \mathfrak{M} holds o is constructor iff $o \in \text{Constructors}$.

(44) For every nullary operation symbol m of \mathfrak{M} holds $\text{main-constr}(m_\mathfrak{M}) = m$.

(45) For every unary constructor operation symbol m of \mathfrak{M} and for every τ holds $\text{main-constr}(m(\tau)) = m$.

(46) For every α holds $\text{main-constr}(\text{non}_{\mathfrak{M}}(\alpha)) = \text{non}$.

(47) For every binary constructor operation symbol m of \mathfrak{M} and for all τ_1, τ_2 holds $\text{main-constr}(m(\tau_1, \tau_2)) = m$.

(48) For every expression q of \mathfrak{M} from $\text{type}_{\mathfrak{M}}$ and for every α holds $\text{main-constr}(*_{\mathfrak{M}}(\alpha, q)) = *$.
Let \(\vartheta \) be a quasi-type. The functor \(\text{constrs} \vartheta \) is defined by:

(Def. 20) \(\text{constrs} \vartheta = \text{constrs} (\text{the base of } \vartheta) \cup \bigcup \{ \text{constrs} \alpha : \alpha \in \text{adjs} \vartheta \} \).

The following two propositions are true:

(49) For every pure expression \(q \) of \(\mathfrak{M} \) from type \(\text{type}_M \) and for every finite subset \(A \) of QuasiAdjs \(\mathfrak{M} \) holds \(\text{constrs}(A \ast q) = \text{constrs} q \cup \bigcup \{ \text{constrs} \alpha : \alpha \in A \} \).

(50) \(\text{constrs}(\alpha \ast \vartheta) = \text{constrs} \alpha \cup \text{constrs} \vartheta \).

5. Unification

Let \(C \) be an initialized constructor signature and let \(\tau, p \) be expressions of \(C \). We say that \(\tau \) matches \(p \) if and only if:

(Def. 21) There exists a valuation \(f \) of \(C \) such that \(\tau = p[f] \).

Let us note that the predicate \(\tau \) matches \(p \) is reflexive.

The following proposition is true

(51) For all expressions \(\tau_1, \tau_2, \tau_3 \) of \(C \) such that \(\tau_1 \) matches \(\tau_2 \) and \(\tau_2 \) matches \(\tau_3 \) holds \(\tau_1 \) matches \(\tau_3 \).

Let \(C \) be an initialized constructor signature and let \(A, B \) be subsets of QuasiAdjs \(C \). We say that \(A \) matches \(B \) if and only if:

(Def. 22) There exists a valuation \(f \) of \(C \) such that \(B[f] \subseteq A \).

Let us note that the predicate \(A \) matches \(B \) is reflexive.

The following proposition is true

(52) For all subsets \(A_1, A_2, A_3 \) of QuasiAdjs \(C \) such that \(A_1 \) matches \(A_2 \) and \(A_2 \) matches \(A_3 \) holds \(A_1 \) matches \(A_3 \).

Let \(C \) be an initialized constructor signature and let \(\vartheta, P \) be quasi-types of \(C \). We say that \(\vartheta \) matches \(P \) if and only if:

(Def. 23) There exists a valuation \(f \) of \(C \) such that \((\text{adjs} P)[f] \subseteq \text{adjs} \vartheta \) and (the base of \(P \))[\(f \) = the base of \(\vartheta \).

Let us note that the predicate \(\vartheta \) matches \(P \) is reflexive.

One can prove the following proposition

(53) For all quasi-types \(\vartheta_1, \vartheta_2, \vartheta_3 \) of \(C \) such that \(\vartheta_1 \) matches \(\vartheta_2 \) and \(\vartheta_2 \) matches \(\vartheta_3 \) holds \(\vartheta_1 \) matches \(\vartheta_3 \).

Let \(C \) be an initialized constructor signature, let \(\tau_1, \tau_2 \) be expressions of \(C \), and let \(f \) be a valuation of \(C \). We say that \(f \) unifies \(\tau_1 \) with \(\tau_2 \) if and only if:

(Def. 24) \(\tau_1[f] = \tau_2[f] \).

The following proposition is true

(54) Let \(\tau_1, \tau_2 \) be expressions of \(C \) and \(f \) be a valuation of \(C \). If \(f \) unifies \(\tau_1 \) with \(\tau_2 \), then \(f \) unifies \(\tau_2 \) with \(\tau_1 \).

Let \(C \) be an initialized constructor signature and let \(\tau_1, \tau_2 \) be expressions of \(C \). We say that \(\tau_1 \) and \(\tau_2 \) are unifiable if and only if:
(Def. 25) There exists a valuation \(f \) of \(\mathcal{C} \) such that \(f \) unifies \(\tau_1 \) with \(\tau_2 \).

Let us notice that the predicate \(\tau_1 \) and \(\tau_2 \) are unifiable is reflexive and symmetric.

Let \(\mathcal{C} \) be an initialized constructor signature and let \(\tau_1, \tau_2 \) be expressions of \(\mathcal{C} \). We say that \(\tau_1 \) and \(\tau_2 \) are weakly-unifiable if and only if:

(Def. 26) There exists an irrelevant one-to-one valuation \(g \) of \(\mathcal{C} \) such that \(\text{Var} \tau_2 \subseteq \text{dom} g \) and \(\tau_1 \) and \(\tau_2[g] \) are unifiable.

Let us note that the predicate \(\tau_1 \) and \(\tau_2 \) are weakly-unifiable is reflexive.

We now state the proposition

(55) For all expressions \(\tau_1, \tau_2 \) of \(\mathcal{C} \) such that \(\tau_1 \) and \(\tau_2 \) are unifiable holds \(\tau_1 \) and \(\tau_2 \) are weakly-unifiable.

Let \(\mathcal{C} \) be an initialized constructor signature and let \(\tau, \tau_1, \tau_2 \) be expressions of \(\mathcal{C} \). We say that \(\tau \) is a unification of \(\tau_1 \) and \(\tau_2 \) if and only if:

(Def. 27) There exists a valuation \(f \) of \(\mathcal{C} \) such that \(f \) unifies \(\tau_1 \) with \(\tau_2 \) and \(\tau = \tau_1[f] \).

We now state two propositions:

(56) For all expressions \(\tau_1, \tau_2, \tau \) of \(\mathcal{C} \) such that \(\tau \) is a unification of \(\tau_1 \) and \(\tau_2 \) holds \(\tau \) is a unification of \(\tau_2 \) and \(\tau_1 \).

(57) For all expressions \(\tau_1, \tau_2, \tau \) of \(\mathcal{C} \) such that \(\tau \) is a unification of \(\tau_1 \) and \(\tau_2 \) holds \(\tau \) matches \(\tau_1 \) and \(\tau \) matches \(\tau_2 \).

Let \(\mathcal{C} \) be an initialized constructor signature and let \(\tau, \tau_1, \tau_2 \) be expressions of \(\mathcal{C} \). We say that \(\tau \) is a general-unification of \(\tau_1 \) and \(\tau_2 \) if and only if the conditions (Def. 28) are satisfied.

(Def. 28)(i) \(\tau \) is a unification of \(\tau_1 \) and \(\tau_2 \), and

(ii) for every expression \(u \) of \(\mathcal{C} \) such that \(u \) is a unification of \(\tau_1 \) and \(\tau_2 \) holds \(u \) matches \(\tau \).

6. Type Distribution

The following three propositions are true:

(58) Let \(n \) be a natural number and \(s \) be a sort symbol of \(\mathcal{M} \). Then there exists a constructor operation symbol \(m \) of \(s \) such that \(\text{len Arity}(m) = n \).

(59) Let given \(\ell, s \) be a sort symbol of \(\mathcal{M} \), and \(m \) be a constructor operation symbol of \(s \). If \(\text{len Arity}(m) = \text{len} \ell \) then \(\text{Var}(m'(\text{args} \ell)) = \text{rng} \ell \).

(60) Let \(X \) be a finite subset of Vars. Suppose \(\text{varcl} X = X \). Let \(s \) be a sort symbol of \(\mathcal{M} \). Then there exists a constructor operation symbol \(m \) of \(s \) and there exists a finite sequence \(p \) of elements of QuasiTerms \(\mathcal{M} \) such that \(\text{len} p = \text{len Arity}(m) \) and \(\text{vars}(m'(p)) = X \).

Let \(d \) be a partial function from Vars to QuasiTypes. We say that \(d \) is even if and only if:
(Def. 29) For all x, ϑ such that $x \in \text{dom } d$ and $\vartheta = d(x)$ holds $\text{vars}(\vartheta) = \text{vars}(x)$.

Let ℓ be a quasi-locus sequence. A partial function from Vars to QuasiTypes is said to be a type-distribution for ℓ if:

(Def. 30) $\text{dom it} = \text{rng } \ell$ and it is even.

We now state the proposition

(61) For every empty quasi-locus sequence ℓ holds \emptyset is a type-distribution for ℓ.

References

Received November 20, 2009