Integrability Formulas. Part I

Bo Li
Qingdao University of Science
and Technology
China

Na Ma
Qingdao University of Science
and Technology
China

Summary. In this article, we give several differentiation and integrability formulas of special and composite functions including the trigonometric function, and the polynomial function.

MML identifier: INTEGR12, version: 7.11.04 4.130.1076

The papers [12], [2], [3], [1], [7], [11], [13], [4], [17], [8], [9], [6], [18], [5], [10], [15], [16], and [14] provide the terminology and notation for this paper.

One can check that there exists a subset of \mathbb{R} which is closed-interval.

For simplicity, we use the following convention: a, b, x, r are real numbers, n is an element of \mathbb{N}, A is a closed-interval subset of \mathbb{R}, f, g, f_1, f_2, g_1, g_2 are partial functions from \mathbb{R} to \mathbb{R}, and Z is an open subset of \mathbb{R}.

We now state a number of propositions:

1. Suppose $Z \subseteq \text{dom}(\frac{1}{f_1+f_2})$ and for every x such that $x \in Z$ holds $f_1(x) = 1$ and $f_2 = \square^2$. Then $\frac{1}{f_1+f_2}$ is differentiable on Z and for every x such that $x \in Z$ holds $(\frac{1}{f_1+f_2})'(x) = -\frac{2x}{(1+x^2)^2}$.

2. Suppose that $A \subseteq Z$ and $f = \frac{1}{f_1+f_2}$ and $f_2 = \text{the function } \text{arccot}$ and $Z \subseteq]-1,1[\text{ and } g_2 = \square^2$ and for every x such that $x \in Z$ holds $g_1(x) = 1$ and $f_2(x) > 0$ and $Z = \text{dom } f$.

Then $\int_A f(x)dx = (-(\text{the function } \text{ln}) \cdot (\text{the function } \text{arccot}))(\text{sup } A) - (-(\text{the function } \text{ln}) \cdot (\text{the function } \text{arccot}))(\text{inf } A)$.

3. Suppose that

(i) $A \subseteq Z$,

© 2010 University of Białystok
ISSN 1426–2630(p), 1898-9934(e)
(ii) for every \(x \) such that \(x \in Z \) holds \((\text{the function exp})(x) < 1\) and \(f_1(x) = 1 \),
(iii) \(Z \subseteq \text{dom}(\text{the function arctan}) \cdot (\text{the function exp})\),
(iv) \(Z = \text{dom} \ f, \) and
(v) \(f = \frac{\text{the function exp}}{f_1 + (\text{the function exp})^2} \).

Then \(\int_A f(x) \, dx = ((\text{the function arctan}) \cdot (\text{the function exp}))(\sup A) - ((\text{the function arctan}) \cdot (\text{the function exp}))(\inf A) \).

(4) Suppose that
(i) \(A \subseteq Z \),
(ii) for every \(x \) such that \(x \in Z \) holds \((\text{the function exp})(x) < 1\) and \(f_1(x) = 1 \),
(iii) \(Z \subseteq \text{dom}(\text{the function arccot}) \cdot (\text{the function exp})\),
(iv) \(Z = \text{dom} \ f, \) and
(v) \(f = \frac{-\text{the function exp}}{f_1 + (\text{the function exp})^2} \).

Then \(\int_A f(x) \, dx = ((\text{the function arccot}) \cdot (\text{the function exp}))(\sup A) - ((\text{the function arccot}) \cdot (\text{the function exp}))(\inf A) \).

(5) Suppose that
(i) \(A \subseteq Z \),
(ii) \(Z = \text{dom} \ f, \) and
(iii) \(f = (\text{the function exp}) \frac{\text{the function sin}}{\text{the function cos}} + \frac{\text{the function exp}}{(\text{the function cos})^2} \).

Then \(\int_A f(x) \, dx = ((\text{the function exp}) \cdot (\text{the function tan}))(\sup A) - ((\text{the function exp}) \cdot (\text{the function tan}))(\inf A) \).

(6) Suppose that
(i) \(A \subseteq Z \),
(ii) \(Z = \text{dom} \ f, \) and
(iii) \(f = (\text{the function exp}) \frac{-\text{the function cos}}{\text{the function sin}} - \frac{\text{the function exp}}{(\text{the function sin})^2} \).

Then \(\int_A f(x) \, dx = ((\text{the function exp}) \cdot (\text{the function cot}))(\sup A) - ((\text{the function exp}) \cdot (\text{the function cot}))(\inf A) \).

(7) Suppose that
(i) \(A \subseteq Z \),
(ii) for every \(x \) such that \(x \in Z \) holds \(f_1(x) = 1 \),
(iii) \(Z \subseteq \{ -1, 1 \} \),
(iv) \(Z = \text{dom} \ f, \) and
(v) \(f = (\text{the function exp}) \cdot (\text{the function arctan}) + \frac{\text{the function exp}}{f_1 + \text{L}_p} \).
Then $\int_A f(x)\,dx = ((\text{function exp}) \cdot (\text{function arctan}))(\sup A) - ((\text{function exp}) \cdot (\text{function arctan}))(\inf A)$.

(8) Suppose that

(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f_1(x) = 1$,
(iii) $Z \subseteq]-1, 1[,$
(iv) $Z = \text{dom } f$, and
(v) $f = (\text{function exp}) \cdot (\text{function arccot}) - \frac{\text{the function exp}}{f_1 + 1^p}.$

Then $\int_A f(x)\,dx = ((\text{function exp}) \cdot (\text{function arccot}))(\sup A) - ((\text{function exp}) \cdot (\text{function arccot}))(\inf A)$.

(9) Suppose $A \subseteq Z = \text{dom } f$ and $f = ((\text{function exp}) \cdot (\text{function sin}) \cdot (\text{function cos})).$ Then $\int_A f(x)\,dx = ((\text{function exp}) \cdot (\text{function sin}))(\sup A) - ((\text{function exp}) \cdot (\text{function sin}))(\inf A)$.

(10) Suppose $A \subseteq Z = \text{dom } f$ and $f = ((\text{function exp}) \cdot (\text{function cos})(\text{function sin})).$ Then $\int_A f(x)\,dx = (-((\text{function exp}) \cdot (\text{function cos}))(\sup A) - ((\text{function exp}) \cdot (\text{function cos}))(\inf A)$.

(11) Suppose $A \subseteq Z$ and for every x such that $x \in Z$ holds $x > 0$ and $Z = \text{dom } f$ and $f = ((\text{function cos}) \cdot (\text{function ln})) \frac{1}{x^p}.$ Then $\int_A f(x)\,dx = ((\text{function sin}) \cdot (\text{function ln}))(\sup A) - ((\text{function sin}) \cdot (\text{function ln}))(\inf A)$.

(12) Suppose $A \subseteq Z$ and for every x such that $x \in Z$ holds $x > 0$ and $Z = \text{dom } f$ and $f = ((\text{function sin}) \cdot (\text{function ln})) \frac{1}{x^p}.$ Then $\int_A f(x)\,dx = (-((\text{function cos}) \cdot (\text{function ln}))(\sup A) - ((\text{function cos}) \cdot (\text{function ln}))(\inf A)$.

(13) Suppose $A \subseteq Z = \text{dom } f$ and $f = (\text{the function exp}) ((\text{function cos}) \cdot (\text{function exp})).$ Then $\int_A f(x)\,dx = ((\text{function sin}) \cdot (\text{function exp}))(\sup A) - ((\text{function sin}) \cdot (\text{function exp}))(\inf A)$.

(14) Suppose $A \subseteq Z = \text{dom } f$ and $f = (\text{the function exp}) ((\text{function sin}) \cdot (\text{function exp})).$ Then $\int_A f(x)\,dx = (-((\text{function cos}) \cdot (\text{function exp}))(\sup A) - ((\text{function cos}) \cdot (\text{function exp}))(\inf A)$.
(15) Suppose that \(A \subseteq Z \subseteq \text{dom}((\text{the function } \ln) \cdot (f_1 + f_2)) \) and \(r \neq 0 \) and for every \(x \) such that \(x \in Z \) holds \(g(x) = \frac{x}{r} \) and \(g(x) > -1 \) and \(g(x) < 1 \) and \(f_1(x) = 1 \) and \(f_2 = (\bigcirc^2) \cdot g \) and \(Z = \text{dom} f \) and \(f = (\text{the function } \arctan) \cdot g \). Then \(\int_A f(x)dx = (\text{id}_Z ((\text{the function } \arctan) \cdot g) - \frac{r}{2} ((\text{the function } \ln) \cdot (f_1 + f_2)))((\sup A) - (\text{id}_Z ((\text{the function } \arctan) \cdot g) - \frac{r}{2} ((\text{the function } \ln) \cdot (f_1 + f_2)))((\inf A)). \)

(16) Suppose that \(A \subseteq Z \subseteq \text{dom}((\text{the function } \ln) \cdot (f_1 + f_2)) \) and \(r \neq 0 \) and for every \(x \) such that \(x \in Z \) holds \(g(x) = \frac{x}{r} \) and \(g(x) > -1 \) and \(g(x) < 1 \) and \(f_1(x) = 1 \) and \(f_2 = (\bigcirc^2) \cdot g \) and \(Z = \text{dom} f \) and \(f = (\text{the function } \arccot) \cdot g \). Then \(\int_A f(x)dx = (\text{id}_Z ((\text{the function } \arccot) \cdot g) + \frac{r}{2} ((\text{the function } \ln) \cdot (f_1 + f_2)))((\inf A)). \)

(17) Suppose that

(i) \(A \subseteq Z \),
(ii) \(f = (\text{the function } \arctan) \cdot f_1 + \frac{\text{id}_x}{r(g+f_1x)} \).
(iii) for every \(x \) such that \(x \in Z \) holds \(g(x) = 1 \) and \(f_1(x) = \frac{x}{r} \) and \(f_1(x) > -1 \) and \(f_1(x) < 1 \),
(iv) \(Z = \text{dom} f \), and
(v) \(f \) is continuous on \(A \).

Then \(\int_A f(x)dx = (\text{id}_Z ((\text{the function } \arctan) \cdot f_1))((\sup A) - (\text{id}_Z ((\text{the function } \arctan) \cdot f_1)))((\inf A)). \)

(18) Suppose that

(i) \(A \subseteq Z \),
(ii) \(f = (\text{the function } \arccot) \cdot f_1 - \frac{\text{id}_x}{r(g+f_1x)} \).
(iii) for every \(x \) such that \(x \in Z \) holds \(g(x) = 1 \) and \(f_1(x) = \frac{x}{r} \) and \(f_1(x) > -1 \) and \(f_1(x) < 1 \),
(iv) \(Z = \text{dom} f \), and
(v) \(f \) is continuous on \(A \).

Then \(\int_A f(x)dx = (\text{id}_Z ((\text{the function } \arccot) \cdot f_1))((\sup A) - (\text{id}_Z ((\text{the function } \arccot) \cdot f_1)))((\inf A)). \)

(19) Suppose that \(A \subseteq Z \subseteq [-1,1] \) and for every \(x \) such that \(x \in Z \) holds \(f_1(x) = 1 \) and \(Z = \text{dom} f \) and \(Z \subseteq \text{dom}((\bigcirc^n) \cdot (\text{the function } \arcsin)) \) and \(1 < n \) and \(f = \frac{n}{((\bigcirc^{n-1}) \cdot (\text{the function } \arcsin))} \). Then \(\int_A f(x)dx = (((\bigcirc^n) \cdot (\text{the function } \arcsin))((\sup A) - ((\bigcirc^n) \cdot (\text{the function } \arcsin)))((\inf A)). \)

(20) Suppose that \(A \subseteq Z \subseteq [-1,1] \) and for every \(x \) such that \(x \in Z \) holds
Integrability formulas. Part I

\[f_1(x) = 1 \text{ and } Z \subseteq \text{dom}(\Box^n \cdot (\text{the function arccos})) \text{ and } Z = \text{dom } f \text{ and } 1 < n \text{ and } f = \frac{n((\Box^{n-1}) \cdot (\text{the function arccos}))}{(\Box^2 \cdot (f_1 - f_2))}. \]

Then \[\int_A f(x) dx = (-\Box^n \cdot (\text{the function arccos})) (\sup A) - (-\Box^n \cdot (\text{the function arccos})) (\inf A). \]

(21) Suppose \(A \subseteq Z \) and for every \(x \) such that \(x \in Z \) holds \(f_1(x) = 1 \) and \(Z \subseteq [-1, 1] \) and \(Z = \text{dom } f \) and \(f = (\text{the function arcsin}) + \frac{id_Z}{(\Box^2 \cdot (f_1 - f_2))}. \)

Then \[\int_A f(x) dx = (id_Z (\text{the function arcsin})) (sup A) - (id_Z (\text{the function arcsin})) (inf A). \]

(22) Suppose \(A \subseteq Z \) and for every \(x \) such that \(x \in Z \) holds \(f_1(x) = 1 \) and \(Z \subseteq [-1, 1] \) and \(Z = \text{dom } f \) and \(f = (\text{the function arccos}) - \frac{id_Z}{(\Box^2 \cdot (f_1 - f_2))}. \)

Then \[\int_A f(x) dx = (id_Z (\text{the function arccos})) (sup A) - (id_Z (\text{the function arccos})) (inf A). \]

(23) Suppose that

- (i) \(A \subseteq Z \),
- (ii) \(Z \subseteq [-1, 1] \),
- (iii) for every \(x \) such that \(x \in Z \) holds \(f_1(x) = a \cdot x + b \) and \(f_2(x) = 1 \),
- (iv) \(Z = \text{dom } f \), and
- (v) \(f = a (\text{the function arcsin}) + \frac{f_1}{(\Box^2 \cdot (f_2 - f_2))}. \)

Then \[\int_A f(x) dx = (f_1 (\text{the function arcsin})) (sup A) - (f_1 (\text{the function arcsin})) (inf A). \]

(24) Suppose that

- (i) \(A \subseteq Z \),
- (ii) \(Z \subseteq [-1, 1] \),
- (iii) for every \(x \) such that \(x \in Z \) holds \(f_1(x) = a \cdot x + b \) and \(f_2(x) = 1 \),
- (iv) \(Z = \text{dom } f \), and
- (v) \(f = a (\text{the function arccos}) - \frac{f_1}{(\Box^2 \cdot (f_2 - f_2))}. \)

Then \[\int_A f(x) dx = (f_1 (\text{the function arccos})) (sup A) - (f_1 (\text{the function arccos})) (inf A). \]

(25) Suppose that

- (i) \(A \subseteq Z \),
- (ii) for every \(x \) such that \(x \in Z \) holds \(g(x) = 1 \) and \(f_1(x) = \frac{x}{a} \) and \(f_1(x) > -1 \) and \(f_1(x) < 1 \),
- (iii) \(Z = \text{dom } f \),
- (iv) \(f \) is continuous on \(A \), and
(v) \(f = (\text{the function arcsin}) \cdot f_1 + \frac{id_Z}{a ((\square^n - f_1)(a - f_1)^2)} \).

Then \(\int_A f(x) dx = (id_Z ((\text{the function arcsin}) \cdot f_1))(sup A) - (id_Z ((\text{the function arcsec}) \cdot f_1))(inf A) \).

(26) Suppose that
(i) \(A \subseteq Z \),
(ii) for every \(x \) such that \(x \in Z \) holds \(g(x) = 1 \) and \(f_1(x) > -1 \) and \(f_1(x) < 1 \),
(iii) \(Z = \text{dom} f \),
(iv) \(f \) is continuous on \(A \), and
(v) \(f = (\text{the function arccos}) \cdot f_1 \).

Then \(\int_A f(x) dx = (id_Z ((\text{the function arccos}) \cdot f_1))(sup A) - (id_Z ((\text{the function arccos}) \cdot f_1))(inf A) \).

(27) Suppose \(A \subseteq Z \) and \(f = \frac{n ((\square^n - f_1))(\text{the function sin})}{(\square^n - f_1)(\text{the function cos})} \) and \(1 \leq n \) and \(Z \subseteq \text{dom}((\square^n) \cdot (\text{the function tan})) \) and \(Z = \text{dom} f \). Then \(\int_A f(x) dx = (\text{sup A}) - ((\square^n) \cdot (\text{the function tan})) \).

(28) Suppose \(A \subseteq Z \) and \(f = \frac{n ((\square^n - f_1))(\text{the function cos})}{(\square^n - f_1)(\text{the function sin})} \) and \(1 \leq n \) and \(Z \subseteq \text{dom}((\square^n) \cdot (\text{the function cot})) \) and \(Z = \text{dom} f \). Then \(\int_A f(x) dx = (\text{sup A}) - ((\square^n) \cdot (\text{the function cot})) \).

(29) Suppose that
(i) \(A \subseteq Z \),
(ii) \(Z \subseteq \text{dom}((\text{the function tan}) \cdot f_1) \),
(iii) \(f = ((\text{the function sin}) \cdot f_1)^2((\text{the function cos}) \cdot f_1)^2 \),
(iv) for every \(x \) such that \(x \in Z \) holds \(f_1(x) = a \cdot x \) and \(a \neq 0 \), and
(v) \(Z = \text{dom} f \).

Then \(\int_A f(x) dx = (\frac{1}{a} ((\text{the function tan}) \cdot f_1) - id_Z)(sup A) - (\frac{1}{a} ((\text{the function tan}) \cdot f_1) - id_Z)(inf A) \).

(30) Suppose that
(i) \(A \subseteq Z \),
(ii) \(Z \subseteq \text{dom}((\text{the function cot}) \cdot f_1) \),
(iii) \(f = ((\text{the function cos}) \cdot f_1)^2((\text{the function sin}) \cdot f_1)^2 \),
(iv) for every \(x \) such that \(x \in Z \) holds \(f_1(x) = a \cdot x \) and \(a \neq 0 \), and
(v) \(Z = \text{dom} f \).
Then \(\int_A f(x)\,dx = \left(\frac{1}{a} \right) ((\text{the function cot}) \cdot f_1) - \text{id}_Z)(\sup A) - \left(\frac{1}{a} \right) ((\text{the function cot}) \cdot f_1) - \text{id}_Z)(\inf A). \)

(31) Suppose that
(i) \(A \subseteq Z, \)
(ii) for every \(x \) such that \(x \in Z \) holds \(f_1(x) = a \cdot x + b, \)
(iii) \(Z = \text{dom} f, \)
(iv) \(f = a \frac{\text{the function sin}}{\text{the function cos}} + \frac{f_1}{(\text{the function cos})^2}. \)

Then \(\int_A f(x)\,dx = (f_1 (\text{the function tan}))(\sup A) - (f_1 (\text{the function tan}))(\inf A). \)

(32) Suppose that
(i) \(A \subseteq Z, \)
(ii) for every \(x \) such that \(x \in Z \) holds \(f_1(x) = a \cdot x + b, \)
(iii) \(Z = \text{dom} f, \)
(iv) \(f = a \frac{\text{the function cos}}{\text{the function sin}} - \frac{f_1}{(\text{the function sin})^2}. \)

Then \(\int_A f(x)\,dx = (f_1 (\text{the function cot}))(\sup A) - (f_1 (\text{the function cot}))(\inf A). \)

(33) Suppose that
(i) \(A \subseteq Z, \)
(ii) for every \(x \) such that \(x \in Z \) holds \(f(x) = \frac{(\text{the function sin})(x)^2}{(\text{the function cos})(x)^2}, \)
(iii) \(Z \subseteq \text{dom}((\text{the function tan})-\text{id}_Z), \)
(iv) \(Z = \text{dom} f, \)
(v) \(f \) is continuous on \(A. \)

Then \(\int_A f(x)\,dx = ((\text{the function tan})-\text{id}_Z)(\sup A) - ((\text{the function tan})-\text{id}_Z)(\inf A). \)

(34) Suppose that
(i) \(A \subseteq Z, \)
(ii) for every \(x \) such that \(x \in Z \) holds \(f(x) = \frac{(\text{the function cos})(x)^2}{(\text{the function sin})(x)^2}, \)
(iii) \(Z \subseteq \text{dom}(-\text{the function cot} - \text{id}_Z), \)
(iv) \(Z = \text{dom} f, \)
(v) \(f \) is continuous on \(A. \)

Then \(\int_A f(x)\,dx = (-\text{the function cot} - \text{id}_Z)(\sup A) - (-\text{the function cot} - \text{id}_Z)(\inf A). \)

(35) Suppose that
(i) \(A \subseteq Z, \)
(ii) for every \(x \) such that \(x \in Z \) holds \(f(x) = \frac{1}{x \cdot (1 + (\text{the function ln})(x)^2)} \) and \((\text{the function ln})(x) > -1 \) and \((\text{the function ln})(x) < 1, \)
(iii) \(Z \subseteq \text{dom}(\text{the function arctan}) \cdot (\text{the function ln}) \),
(iv) \(Z = \text{dom } f \), and
(v) \(f \) is continuous on \(A \).

Then \(\int_A f(x)dx = ((\text{the function arctan}) \cdot (\text{the function ln}))\,(\sup A) - ((\text{the function arctan}) \cdot (\text{the function ln}))\,(\inf A) \).

(36) Suppose that
(i) \(A \subseteq Z \),
(ii) for every \(x \) such that \(x \in Z \) holds \(f(x) = \frac{1}{x} \cdot (1+(\text{the function ln})(x)^2) \) and (the function ln)(x) > \(-1\) and (the function ln)(x) < \(1\),
(iii) \(Z \subseteq \text{dom}(\text{the function arccot}) \cdot (\text{the function ln}) \),
(iv) \(Z = \text{dom } f \), and
(v) \(f \) is continuous on \(A \).

Then \(\int_A f(x)dx = ((\text{the function arccot}) \cdot (\text{the function ln}))\,(\sup A) - ((\text{the function arccot}) \cdot (\text{the function ln}))\,(\inf A) \).

(37) Suppose that
(i) \(A \subseteq Z \),
(ii) for every \(x \) such that \(x \in Z \) holds \(f(x) = \frac{a}{\sqrt{1-(a \cdot x+b)^2}} \) and \(f_1(x) = a \cdot x + b \) and \(f_1(x) > -1 \) and \(f_1(x) < 1 \),
(iii) \(Z \subseteq \text{dom}(\text{the function arcsin}) \cdot f_1 \),
(iv) \(Z = \text{dom } f \), and
(v) \(f \) is continuous on \(A \).

Then \(\int_A f(x)dx = ((\text{the function arcsin}) \cdot f_1)\,(\sup A) - ((\text{the function arcsin}) \cdot f_1)\,(\inf A) \).

(38) Suppose that
(i) \(A \subseteq Z \),
(ii) for every \(x \) such that \(x \in Z \) holds \(f(x) = \frac{a}{\sqrt{1-(a \cdot x+b)^2}} \) and \(f_1(x) = a \cdot x + b \) and \(f_1(x) > -1 \) and \(f_1(x) < 1 \),
(iii) \(Z \subseteq \text{dom}(\text{the function arccos}) \cdot f_1 \),
(iv) \(Z = \text{dom } f \), and
(v) \(f \) is continuous on \(A \).

Then \(\int_A f(x)dx = (-((\text{the function arccos}) \cdot f_1))\,(\sup A) - (-((\text{the function arccos}) \cdot f_1))\,(\inf A) \).

(39) Suppose that \(A \subseteq Z \) and \(f_1 = g - f_2 \) and \(f_2 = \square^2 \) and for every \(x \) such that \(x \in Z \) holds \(f(x) = x \cdot (1-x^2)^{-\frac{1}{2}} \) and \(g(x) = 1 \) and \(f_1(x) > 0 \) and \(Z \subseteq \text{dom}(\square^3) \cdot f_1 \) and \(Z = \text{dom } f \) and \(f \) is continuous on \(A \). Then \(\int_A f(x)dx = \)
Integrability formulas. Part I

(40) Suppose that $A \subseteq \mathbb{Z}$ and $g = f_1 - f_2$ and $f_2 = \Box^2$ and for every x such that $x \in Z$ holds $f(x) = x \cdot (a^2 - x^2)^{-\frac{1}{2}}$ and $f_1(x) = a^2$ and $g(x) > 0$ and $Z \subseteq \text{dom}((\Box^2) \cdot g)$ and $Z = \text{dom} f$ and f is continuous on A. Then

$$\int_A f(x)dx = \left(-\left(\frac{1}{a^2} \cdot f_1\right)\right)\left(\sup A\right) - \left(-\left(\frac{1}{a^2} \cdot f_1\right)\right)\left(\inf A\right).$$

(41) Suppose that

(i) $A \subseteq \mathbb{Z}$,

(ii) $n > 0$,

(iii) for every x such that $x \in \mathbb{Z}$ holds $f(x) = \frac{(\text{the function cos})(x)}{(\text{the function sin})(x)^{n+1}}$ and $(\text{the function sin})(x) \neq 0$,

(iv) $Z \subseteq \text{dom}(\Box^n) \cdot \frac{1}{\text{the function sin}}$,

(v) $Z = \text{dom} f$, and

(vi) f is continuous on A.

Then

$$\int_A f(x)dx = \left(\left(-\frac{1}{n}\right)\left(\frac{1}{\text{the function sin}}\right)\right)\left(\sup A\right) - \left(\left(-\frac{1}{n}\right)\left(\frac{1}{\text{the function sin}}\right)\right)\left(\inf A\right).$$

(42) Suppose that

(i) $A \subseteq \mathbb{Z}$,

(ii) $n > 0$,

(iii) for every x such that $x \in \mathbb{Z}$ holds $f(x) = \frac{(\text{the function sin})(x)}{(\text{the function cos})(x)^{n+1}}$ and $(\text{the function cos})(x) \neq 0$,

(iv) $Z \subseteq \text{dom}(\Box^n) \cdot \frac{1}{\text{the function cos}}$,

(v) $Z = \text{dom} f$, and

(vi) f is continuous on A.

Then

$$\int_A f(x)dx = \left(\frac{1}{n}\left(\frac{1}{\text{the function cos}}\right)\right)\left(\sup A\right) - \left(\frac{1}{n}\left(\frac{1}{\text{the function cos}}\right)\right)\left(\inf A\right).$$

(43) Suppose that $A \subseteq \mathbb{Z}$ and $f = \frac{1}{g_1(x)}$ and $g_2 = \Box^2$ and for every x such that $x \in Z$ holds $f(x) = (1+x^2)^{-1} \cdot (\text{the function arccot})(x)$ and $g_1(x) = 1$ and $g_2(x) > 0$ and $Z = \text{dom} f$. Then

$$\int_A f(x)dx = \left(-\left(\text{the function ln}\right) \cdot (\text{the function arccot})\right)\left(\sup A\right) - \left(-\left(\text{the function ln}\right) \cdot (\text{the function arccot})\right)\left(\inf A\right).$$

(44) Suppose that

(i) $A \subseteq \mathbb{Z}$,

(ii) $Z \subseteq [\!-1, 1[,$

(iii) for every x such that $x \in Z$ holds $\text{the function arcsin}(x) > 0$ and $f_1(x) = 1$,
(iv) \(Z \subseteq \text{dom}((\text{the function } \ln) \cdot (\text{the function } \arcsin)) \),
(v) \(Z = \text{dom } f \), and
(vi) \(f = \frac{1}{((□\overline{2}) \cdot (f_1 - □\overline{2}) \cdot (\text{the function } \arcsin))} \).

Then \(\int_A f(x)dx = ((\text{the function } \ln) \cdot (\text{the function } \arcsin))(\sup A) - ((\text{the function } \ln) \cdot (\text{the function } \arcsin))(\inf A) \).

Suppose that
(i) \(A \subseteq Z \),
(ii) \(Z \subseteq [-1, 1] \),
(iii) for every \(x \) such that \(x \in Z \) holds \(f_1(x) = 1 \) and \((\text{the function } \arccos)(x) > 0 \),
(iv) \(Z \subseteq \text{dom}((\text{the function } \ln) \cdot (\text{the function } \arccos)) \),
(v) \(Z = \text{dom } f \), and
(vi) \(f = \frac{1}{((□\overline{2}) \cdot (f_1 - □\overline{2}) \cdot (\text{the function } \arccos))} \).

Then \(\int_A f(x)dx = ((- (\text{the function } \ln) \cdot (\text{the function } \arccos))(\sup A) - ((- (\text{the function } \ln) \cdot (\text{the function } \arccos))(\inf A) \).

References

Received November 7, 2009