Basic Properties of Periodic Functions

Bo Li
Qingdao University of Science and Technology
China

Yanhong Men
Qingdao University of Science and Technology
China

Dailu Li
Qingdao University of Science and Technology
China

Xiquan Liang
Qingdao University of Science and Technology
China

Summary. In this article we present definitions, basic properties and some examples of periodic functions according to [5].

MML identifier: FUNCT_9, version: 7.11.04 4.130.1076

The papers [2], [6], [3], [10], [11], [9], [8], [1], [4], and [7] provide the terminology and notation for this paper.

1. BASIC PROPERTIES OF A PERIOD OF A FUNCTION

We use the following convention: x, t, t_1, t_2, r, a, b are real numbers and F, G are partial functions from \mathbb{R} to \mathbb{R}.

Let F be a partial function from \mathbb{R} to \mathbb{R} and let t be a real number. We say that t is a period of F if and only if:

(Def. 1) $t \neq 0$ and for every x holds $x \in \text{dom } F$ iff $x + t \in \text{dom } F$ and if $x \in \text{dom } F$, then $F(x) = F(x + t)$.

Let F be a partial function from \mathbb{R} to \mathbb{R}. We say that F is periodic if and only if:

(Def. 2) There exists t which is a period of F.

We now state a number of propositions:

© 2009 University of Białystok
ISSN 1426-2630(p), 1898-9934(e)
One can check the following observations:

(1) \(t \) is a period of \(F \) iff \(t \neq 0 \) and for every \(x \) such that \(x \in \text{dom} \ F \) holds \(x + t, x - t \in \text{dom} \ F \) and \(F(x) = F(x + t) \).

(2) If \(t \) is a period of \(F \) and a period of \(G \), then \(t \) is a period of \(F + G \).

(3) If \(t \) is a period of \(F \) and a period of \(G \), then \(t \) is a period of \(F - G \).

(4) If \(t \) is a period of \(F \) and a period of \(G \), then \(t \) is a period of \(FG \).

(5) If \(t \) is a period of \(F \) and a period of \(G \), then \(t \) is a period of \(F/G \).

(6) If \(t \) is a period of \(F \), then \(t \) is a period of \(-F \).

(7) If \(t \) is a period of \(F \), then \(t \) is a period of \(rF \).

(8) If \(t \) is a period of \(F \), then \(t \) is a period of \(r + F \).

(9) If \(t \) is a period of \(F \), then \(t \) is a period of \(F - r \).

(10) If \(t \) is a period of \(F \), then \(t \) is a period of \(|F| \).

(11) If \(t \) is a period of \(F \), then \(t \) is a period of \(F^{-1} \).

(12) If \(t \) is a period of \(F \), then \(t \) is a period of \(F^2 \).

(13) If \(t \) is a period of \(F \), then for every \(x \) such that \(x \in \text{dom} \ F \) holds \(F(x) = F(x - t) \).

(14) If \(t \) is a period of \(F \), then \(-t \) is a period of \(F \).

(15) If \(t_1 \) is a period of \(F \) and \(t_2 \) is a period of \(F \) and \(t_1 + t_2 \neq 0 \), then \(t_1 + t_2 \) is a period of \(F \).

(16) If \(t_1 \) is a period of \(F \) and \(t_2 \) is a period of \(F \) and \(t_1 - t_2 \neq 0 \), then \(t_1 - t_2 \) is a period of \(F \).

(17) Suppose \(t \neq 0 \) and for every \(x \) such that \(x \in \text{dom} \ F \) holds \(x + t, x - t \in \text{dom} \ F \) and \(F(x + t) = F(x - t) \). Then \(2 \cdot t \) is a period of \(F \) and \(F^2 \) is periodic.

(18) Suppose \(t_1 + t_2 \neq 0 \) and for every \(x \) such that \(x \in \text{dom} \ F \) holds \(x + t_1, x - t_1, x + t_2, x - t_2 \in \text{dom} \ F \) and \(F(x + t_1) = F(x - t_2) \). Then \(t_1 + t_2 \) is a period of \(F \) and \(F^2 \) is periodic.

(19) Suppose \(t_1 - t_2 \neq 0 \) and for every \(x \) such that \(x \in \text{dom} \ F \) holds \(x + t_1, x - t_1, x + t_2, x - t_2 \in \text{dom} \ F \) and \(F(x + t_1) = F(x - t_2) \). Then \(t_1 - t_2 \) is a period of \(F \) and \(F^2 \) is periodic.

(20) Suppose \(t \neq 0 \) and for every \(x \) such that \(x \in \text{dom} \ F \) holds \(x + t, x - t \in \text{dom} \ F \) and \(F(x + t) = F(x)^{-1} \). Then \(2 \cdot t \) is a period of \(F \) and \(F^{-1} \) is periodic.

Let us observe that there exists a partial function from \(\mathbb{R} \) to \(\mathbb{R} \) which is periodic.

Let \(F \) be a periodic partial function from \(\mathbb{R} \) to \(\mathbb{R} \). One can check that \(-F \) is periodic.

Let \(F \) be a periodic partial function from \(\mathbb{R} \) to \(\mathbb{R} \) and let \(r \) be a real number. One can check the following observations:

* \(r \cdot F \) is periodic,

* \(r + F \) is periodic, and
basic properties of periodic functions

247

F − r is periodic.

Let F be a periodic partial function from \(\mathbb{R} \) to \(\mathbb{R} \). One can check the following observations:

* \(|F| \) is periodic,
* \(F^{-1} \) is periodic, and
* \(F^2 \) is periodic.

2. Some Examples

Let us note that the function sin is periodic and the function cos is periodic.

We now state two propositions:

(21) For every element \(k \) of \(\mathbb{N} \) holds \(2 \cdot \pi \cdot (k + 1) \) is a period of the function sin.

(22) For every element \(k \) of \(\mathbb{N} \) holds \(2 \cdot \pi \cdot (k + 1) \) is a period of the function cos.

Let us observe that the function cosec is periodic and the function sec is periodic.

We now state two propositions:

(23) For every element \(k \) of \(\mathbb{N} \) holds \(2 \cdot \pi \cdot (k + 1) \) is a period of the function sec.

(24) For every element \(k \) of \(\mathbb{N} \) holds \(2 \cdot \pi \cdot (k + 1) \) is a period of the function cosec.

Let us mention that the function tan is periodic and the function cot is periodic.

Next we state a number of propositions:

(25) For every element \(k \) of \(\mathbb{N} \) holds \(\pi \cdot (k + 1) \) is a period of the function tan.

(26) For every element \(k \) of \(\mathbb{N} \) holds \(\pi \cdot (k + 1) \) is a period of the function cot.

(27) For every element \(k \) of \(\mathbb{N} \) holds \(\pi \cdot (k + 1) \) is a period of \(|\text{the function sin}| \).

(28) For every element \(k \) of \(\mathbb{N} \) holds \(\pi \cdot (k + 1) \) is a period of \(|\text{the function cos}| \).

(29) For every element \(k \) of \(\mathbb{N} \) holds \(\frac{\pi}{2} \cdot (k + 1) \) is a period of \(|\text{the function sin}| + |\text{the function cos}| \).

(30) For every element \(k \) of \(\mathbb{N} \) holds \(\pi \cdot (k + 1) \) is a period of \((\text{the function sin})^2 \).

(31) For every element \(k \) of \(\mathbb{N} \) holds \(\pi \cdot (k + 1) \) is a period of \((\text{the function cos})^2 \).

(32) For every element \(k \) of \(\mathbb{N} \) holds \(\pi \cdot (k + 1) \) is a period of \((\text{the function sin}) \) \((\text{the function cos}) \).

(33) For every element \(k \) of \(\mathbb{N} \) holds \(\pi \cdot (k + 1) \) is a period of \((\text{the function cos}) \) \((\text{the function sin}) \).

(34) For every element \(k \) of \(\mathbb{N} \) holds \(2 \cdot \pi \cdot (k + 1) \) is a period of \(b + a \) (the function sin).

(35) For every element \(k \) of \(\mathbb{N} \) holds \(2 \cdot \pi \cdot (k + 1) \) is a period of \(a \) (the function sin) \(-b \).
(36) For every element k of \mathbb{N} holds $2 \cdot \pi \cdot (k + 1)$ is a period of $b + a$ (the function \cos).

(37) For every element k of \mathbb{N} holds $2 \cdot \pi \cdot (k + 1)$ is a period of a (the function \cos) $- b$.

(38) If $\text{dom } F = \mathbb{R}$ and for every real number x holds $F(x) = a$, then for every element k of \mathbb{N} holds $k + 1$ is a period of F.

References

Received October 10, 2009