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Summary. A pseudorandom number generator plays an important role in
practice in computer science. For example: computer simulations, cryptology, and
so on. A pseudorandom number generator is an algorithm to generate a sequence
of numbers that is indistinguishable from the true random number sequence. In
this article, we shall formalize the “Uniform Distribution” that is the idealized
set of true random number sequences. The basic idea of our formalization is due
to [15].
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The notation and terminology used in this paper are introduced in the following
papers: [16], [10], [1], [3], [17], [6], [18], [8], [4], [5], [7], [2], [11], [13], [12], [9],
[14], and [19].

1. Probability on Finite and Discrete Set

Let S be a non empty finite set and let s be a finite sequence of elements of
S. We introduce the certain event of s as a synonym of dom s.
Let S be a non empty finite set and let s be a non empty finite sequence of

elements of S. Then the certain event of s is a non empty finite set.
Next we state the proposition

(1) Let S be a non empty finite set and s be a finite sequence of elements of
S. Then the certain event of s = s−1(S).

Let S be a non empty finite set, let s be a finite sequence of elements of S,
and let x be a set. We introduce Ei(s(i) = x) as a synonym of s−1(x).
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Let S be a non empty finite set, let s be a finite sequence of elements of S,
and let x be a set. Then Ei(s(i) = x) is an event of the certain event of s.
Let S be a non empty finite set, let s be a finite sequence of elements of

S, and let x be a set. The functor frequency(x, s) yielding a natural number is
defined as follows:

(Def. 1) frequency(x, s) = Ei(s(i) = x) .
One can prove the following propositions:

(2) Let S be a non empty finite set, s be a finite sequence of elements of S,
and e be a set. Suppose e ∈ the certain event of s. Then there exists an
element x of S such that e ∈ Ei(s(i) = x).

(3) Let S be a non empty finite set and s be a finite sequence of elements of
S. Then the certain event of s = len s.

Let S be a non empty finite set, let s be a finite sequence of elements of S,
and let x be a set. The functor ProbD(x, s) yielding a real number is defined as
follows:

(Def. 2) ProbD(x, s) =
frequency(x,s)

len s .

Next we state the proposition

(4) For every non empty finite set S and for every finite sequence s of ele-
ments of S and for every set x holds frequency(x, s) = len s · ProbD(x, s).
Let S be a non empty finite set and let s be a finite sequence of elements

of S. The functor FDprobSEQ s yielding a finite sequence of elements of R is
defined by:

(Def. 3) domFDprobSEQ s = Seg S and for every natural number n
such that n ∈ domFDprobSEQ s holds (FDprobSEQ s)(n) =
ProbD((CFS(S))(n), s).

The following proposition is true

(5) Let S be a non empty finite set, s be a non empty finite sequence of
elements of S, and x be a set. Then ProbD(x, s) = P(Ei(s(i) = x)).
Let S be a non empty finite set and let s, t be finite sequences of elements

of S. We say that s and t are probability equivalent if and only if:

(Def. 4) For every set x holds ProbD(x, s) = ProbD(x, t).

Let us notice that the predicate s and t are probability equivalent is reflexive
and symmetric.
The following proposition is true

(6) Let S be a non empty finite set and s, t, u be finite sequences of elements
of S. Suppose s and t are probability equivalent and t and u are probability
equivalent. Then s and u are probability equivalent.

Let S be a non empty finite set and let s be a finite sequence of elements of
S. The equivalence class of s yielding a non empty subset of S∗ is defined by
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the condition (Def. 5).

(Def. 5) The equivalence class of s = {t; t ranges over finite sequences of elements
of S: s and t are probability equivalent}.
Next we state three propositions:

(7) Let S be a non empty finite set and s, t be finite sequences of elements of
S. Then s and t are probability equivalent if and only if t ∈ the equivalence
class of s.

(8) Let S be a non empty finite set and s be a finite sequence of elements of
S. Then s ∈ the equivalence class of s.

(9) Let S be a non empty finite set and s, t be finite sequences of elements
of S. Then s and t are probability equivalent if and only if the equivalence
class of s = the equivalence class of t.

Let S be a non empty finite set. The distribution family of S yielding a non
empty family of subsets of S∗ is defined by the condition (Def. 6).

(Def. 6) Let A be a subset of S∗. Then A ∈ the distribution family of S if and
only if there exists a finite sequence s of elements of S such that A = the
equivalence class of s.

Next we state two propositions:

(10) Let S be a non empty finite set and s, t be finite sequences of elements of
S. Then s and t are probability equivalent if and only if FDprobSEQ s =
FDprobSEQ t.

(11) Let S be a non empty finite set and s, t be finite sequences of elements
of S. If t ∈ the equivalence class of s, then FDprobSEQ s = FDprobSEQ t.
Let S be a non empty finite set. The functor GenProbSEQS yields a function

from the distribution family of S into R∗ and is defined by the condition (Def. 7).
(Def. 7) Let x be an element of the distribution family of S. Then there exists a fi-

nite sequence s of elements of S such that s ∈ x and (GenProbSEQS)(x) =
FDprobSEQ s.

One can prove the following proposition

(12) Let S be a non empty finite set and s be a finite sequence of elements of
S. Then (GenProbSEQS)(the equivalence class of s) = FDprobSEQ s.

Let S be a non empty finite set. Observe that GenProbSEQS is one-to-one.
Let S be a non empty finite set and let p be a finite probability distribution

finite sequence of elements of R. Let us assume that len p = S and there exists
a finite sequence s of elements of S such that FDprobSEQ s = p. The functor
distribution(p, S) yielding an element of the distribution family of S is defined
by:

(Def. 8) (GenProbSEQS)(distribution(p, S)) = p.
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Let S be a non empty finite set and let s be a finite sequence of elements of
S. The functor freqSEQ s yields a finite sequence of elements of N and is defined
by:

(Def. 9) dom freqSEQ s = Seg S and for every natural number n such that n ∈
dom freqSEQ s holds (freqSEQ s)(n) = len s · (FDprobSEQ s)(n).
One can prove the following propositions:

(13) Let S be a non empty finite set, s be a non empty finite sequence of
elements of S, and n be a natural number. If n ∈ Seg S , then there
exists an element x of S such that (freqSEQ s)(n) = frequency(x, s) and
x = (CFS(S))(n).

(14) For every non empty finite set S and for every finite sequence s of ele-
ments of S holds freqSEQ s = len s · FDprobSEQ s.

(15) For every non empty finite set S and for every finite sequence s of ele-
ments of S holds

∑
freqSEQ s = len s ·

∑
FDprobSEQ s.

(16) Let S be a non empty finite set, s be a non empty finite sequence of
elements of S, and n be a natural number. Suppose n ∈ dom s. Then there
exists a natural number m such that (freqSEQ s)(m) = frequency(s(n), s)
and s(n) = (CFS(S))(m).

(17) Let n be a natural number, S be a function, and L be a finite sequence
of elements of N. Suppose that
(i) S is disjoint valued,
(ii) domS = domL,
(iii) n = lenL, and
(iv) for every natural number i such that i ∈ domS holds S(i) is finite and
L(i) = CardS(i).
Then

⋃
rngS is finite and Card

⋃
rngS =

∑
L.

(18) Let S be a function and L be a finite sequence of elements of N. Suppose
S is disjoint valued and domS = domL and for every natural number
i such that i ∈ domS holds S(i) is finite and L(i) = CardS(i). Then⋃
rngS is finite and Card

⋃
rngS =

∑
L.

(19) For every non empty finite set S and for every non empty finite sequence
s of elements of S holds

∑
freqSEQ s = len s.

(20) For every non empty finite set S and for every non empty finite sequence
s of elements of S holds

∑
FDprobSEQ s = 1.

(21) Let S be a non empty finite set and s be a non empty finite sequence of
elements of S. Then FDprobSEQ s is finite probability distribution.

Let S be a non empty finite set. A finite probability distribution finite sequ-
ence of elements of R is said to be a probability distribution finite sequence on
S if:
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(Def. 10) len it = S and there exists a finite sequence s of elements of S such that
FDprobSEQ s = it.

The following proposition is true

(22) Let S be a non empty finite set and p be a probability distribution finite
sequence on S. Then
(i) p is a finite probability distribution finite sequence of elements of R,
(ii) len p = S ,
(iii) there exists a finite sequence s of elements of S such that
FDprobSEQ s = p,

(iv) distribution(p, S) is an element of the distribution family of S, and
(v) (GenProbSEQS)(distribution(p, S)) = p.

2. Uniform Distribution

Let S be a non empty finite set and let s be a finite sequence of elements of
S. We say that s is uniformly distributed if and only if:

(Def. 11) For every natural number n such that n ∈ domFDprobSEQ s holds
(FDprobSEQ s)(n) = 1

S
.

We now state four propositions:

(23) Let S be a non empty finite set and s be a finite sequence of elements of
S. If s is uniformly distributed, then FDprobSEQ s is constant.

(24) Let S be a non empty finite set and s, t be finite sequences of elements
of S. Suppose s is uniformly distributed and s and t are probability equ-
ivalent. Then t is uniformly distributed.

(25) Let S be a non empty finite set and s, t be finite sequences of elements
of S. Suppose s is uniformly distributed and t is uniformly distributed.
Then s and t are probability equivalent.

(26) For every non empty finite set S holds CFS(S) is uniformly distributed.

Let S be a non empty finite set. The uniform distribution S yielding an
element of the distribution family of S is defined by the condition (Def. 12).

(Def. 12) Let s be a finite sequence of elements of S. Then s ∈ the uniform distri-
bution S if and only if s is uniformly distributed.

Let S be a non empty finite set. One can check that there exists a probability
distribution finite sequence on S which is constant.
Let S be a non empty finite set. The functor UniformFDprobSEQS yielding

a constant probability distribution finite sequence on S is defined as follows:

(Def. 13) UniformFDprobSEQS = FDprobSEQCFS(S).

We now state the proposition
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(27) For every non empty finite set S holds the uniform distribution S =
distribution(UniformFDprobSEQS, S).
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