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Summary. For a complex valued function defined on its domain in com-
plex numbers the differentiability in a single point and on a subset of the domain
is presented. The main elements of differential calculus are developed. The alge-
braic properties of differential complex functions are shown.
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The articles [17], [18], [3], [5], [4], [8], [2], [7], [11], [6], [16], [12], [19], [9], [10],
[1], [14], [15], and [13] provide the notation and terminology for this paper.
For simplicity, we use the following convention: k, n, m denote elements of

N, X denotes a set, s1, s2 denote complex sequences, Y denotes a subset of C,
f , f1, f2 denote partial functions from C to C, r denotes a real number, a, a1,
b, x, x0, z, z0 denote complex numbers, and N1 denotes an increasing sequence
of naturals.
Let I be a complex sequence. We say that I is convergent to 0 if and only if:

(Def. 1) I is non-zero and convergent and lim I = 0.

We now state four propositions:

(1) Let r1 be a sequence of real numbers and c1 be a complex sequence. If
r1 = c1 and r1 is convergent, then c1 is convergent.

(2) If 0 < r and for every n holds s1(n) = 1
n+r , then s1 is convergent.

(3) If 0 < r and for every n holds s1(n) = 1
n+r , then lim s1 = 0.

(4) If for every n holds s1(n) = 1
n+1 , then s1 is convergent and lim s1 = 0.
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Let us observe that there exists a complex sequence which is convergent to
0.
Let us note that there exists a complex sequence which is constant.
Next we state four propositions:

(5) s1 is constant iff for all n, m holds s1(n) = s1(m).

(6) For every n holds (s1 ·N1)(n) = s1(N1(n)).
(7) If s1 is constant and s2 is a subsequence of s1, then s2 is constant.

(8) If s1 is constant and s2 is a subsequence of s1, then s1 = s2.

Let s3 be a constant complex sequence. Note that every subsequence of s3
is constant.
In the sequel h is a convergent to 0 complex sequence and c is a constant

complex sequence.
Let I be a partial function from C to C. We say that I is rest-like if and

only if:

(Def. 2) I is total and for every h holds h−1 (I · h) is convergent and lim(h−1 (I ·
h)) = 0.

Let us mention that there exists a partial function from C to C which is
rest-like.
A C-rest is a rest-like partial function from C to C.
Let I be a partial function from C to C. We say that I is linear if and only

if:

(Def. 3) I is total and there exists a such that for every z holds Iz = a · z.
One can check that there exists a partial function from C to C which is

linear.
A C-linear function is a linear partial function from C to C.
We adopt the following convention: R, R1, R2 are C-rests and L, L1, L2 are

C-linear functions.
Let us consider L1, L2. Observe that L1+L2 is linear and L1−L2 is linear.
The following propositions are true:

(9) For all L1, L2 holds L1 + L2 is a C-linear function and L1 − L2 is a
C-linear function.

(10) For all a, L holds a L is a C-linear function.
(11) For all R1, R2 holds R1 + R2 is a C-rest and R1 − R2 is a C-rest and
R1 R2 is a C-rest.

(12) aR is a C-rest.
(13) L1 L2 is rest-like.

(14) RL is a C-rest and LR is a C-rest.
Let z0 be a complex number. A subset of C is called a neighbourhood of z0

if:
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(Def. 4) There exists a real number g such that 0 < g and {y; y ranges over
complex numbers: |y − z0| < g} ⊆ it.
Next we state three propositions:

(15) For every real number g such that 0 < g holds {y; y ranges over complex
numbers: |y − z0| < g} is a neighbourhood of z0.

(16) For every neighbourhood N of z0 holds z0 ∈ N.
(17) Let z0 be a complex number and N2, N3 be neighbourhoods of z0. Then
there exists a neighbourhood N of z0 such that N ⊆ N2 and N ⊆ N3.
Let us consider f and let x0 be a complex number. We say that f is diffe-

rentiable in x0 if and only if the condition (Def. 5) is satisfied.

(Def. 5) There exists a neighbourhood N of x0 such that N ⊆ dom f and there
exist L, R such that for every complex number x such that x ∈ N holds
fx − fx0 = Lx−x0 +Rx−x0 .
Let us consider f and let z0 be a complex number. Let us assume that f is

differentiable in z0. The functor f ′(z0) yielding a complex number is defined by
the condition (Def. 6).

(Def. 6) There exists a neighbourhood N of z0 such that N ⊆ dom f and there
exist L, R such that f ′(z0) = L1C and for every complex number z such
that z ∈ N holds fz − fz0 = Lz−z0 +Rz−z0 .
Let us consider f , X. We say that f is differentiable on X if and only if:

(Def. 7) X ⊆ dom f and for every x such that x ∈ X holds f�X is differentiable
in x.

We now state the proposition

(18) If f is differentiable on X, then X is a subset of C.
Let X be a subset of C. We say that X is closed if and only if:

(Def. 8) For every complex sequence s3 such that rng s3 ⊆ X and s3 is convergent
holds lim s3 ∈ X.
Let X be a subset of C. We say that X is open if and only if:

(Def. 9) Xc is closed.

Next we state several propositions:

(19) Let X be a subset of C. Suppose X is open. Let z0 be a complex number.
If z0 ∈ X, then there exists a neighbourhood N of z0 such that N ⊆ X.

(20) Let X be a subset of C. Suppose X is open. Let z0 be a complex number.
Suppose z0 ∈ X. Then there exists a real number g such that {y; y ranges
over complex numbers: |y − z0| < g} ⊆ X.

(21) Let X be a subset of C. Suppose that for every complex number z0 such
that z0 ∈ X there exists a neighbourhood N of z0 such that N ⊆ X. Then
X is open.
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(22) Let X be a subset of C. Then X is open if and only if for every complex
number x such that x ∈ X there exists a neighbourhood N of x such that
N ⊆ X.

(23) Let X be a subset of C, z0 be an element of C, and r be an element of R.
If X = {y; y ranges over complex numbers: |y − z0| < r}, then X is open.

(24) Let X be a subset of C, z0 be an element of C, and r be an element of
R. If X = {y; y ranges over complex numbers: |y − z0| ≤ r}, then X is
closed.

Let us note that there exists a subset of C which is open.
In the sequel Z denotes an open subset of C.
Next we state two propositions:

(25) f is differentiable on Z iff Z ⊆ dom f and for every x such that x ∈ Z
holds f is differentiable in x.

(26) If f is differentiable on Y , then Y is open.

Let us consider f , X. Let us assume that f is differentiable on X. The
functor f ′�X yielding a partial function from C to C is defined by:

(Def. 10) dom(f ′�X) = X and for every x such that x ∈ X holds (f ′�X)x = f ′(x).
The following propositions are true:

(27) Let given f , Z. Suppose Z ⊆ dom f and there exists a1 such that rng f =
{a1}. Then f is differentiable on Z and for every x such that x ∈ Z holds
(f ′�Z)x = 0C.

(28) If s1 is non-zero, then s1 ↑ k is non-zero.
Let us consider h, n. Note that h ↑ n is convergent to 0.
Let us consider c, n. Note that c ↑ n is constant.
Next we state a number of propositions:

(29) (s1 + s2) ↑ k = s1 ↑ k + s2 ↑ k.
(30) (s1 − s2) ↑ k = s1 ↑ k − s2 ↑ k.
(31) s1−1 ↑ k = (s1 ↑ k)−1.
(32) (s1 s2) ↑ k = (s1 ↑ k) (s2 ↑ k).
(33) Let x0 be a complex number and N be a neighbourhood of x0. Suppose f
is differentiable in x0 and N ⊆ dom f. Let given h, c. Suppose rng c = {x0}
and rng(h + c) ⊆ N. Then h−1 (f · (h + c) − f · c) is convergent and
f ′(x0) = lim(h−1 (f · (h+ c)− f · c)).

(34) Let given f1, f2, x0. Suppose f1 is differentiable in x0 and f2 is diffe-
rentiable in x0. Then f1 + f2 is differentiable in x0 and (f1 + f2)′(x0) =
f1
′(x0) + f2′(x0).

(35) Let given f1, f2, x0. Suppose f1 is differentiable in x0 and f2 is diffe-
rentiable in x0. Then f1 − f2 is differentiable in x0 and (f1 − f2)′(x0) =
f1
′(x0)− f2′(x0).
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(36) For all a, f , x0 such that f is differentiable in x0 holds a f is differentiable
in x0 and (a f)′(x0) = a · f ′(x0).

(37) Let given f1, f2, x0. Suppose f1 is differentiable in x0 and f2 is dif-
ferentiable in x0. Then f1 f2 is differentiable in x0 and (f1 f2)′(x0) =
(f2)x0 · f1′(x0) + (f1)x0 · f2′(x0).

(38) For all f , Z such that Z ⊆ dom f and f�Z = idZ holds f is differentiable
on Z and for every x such that x ∈ Z holds (f ′�Z)x = 1C.

(39) Let given f1, f2, Z. Suppose Z ⊆ dom(f1 + f2) and f1 is differentiable
on Z and f2 is differentiable on Z. Then f1+ f2 is differentiable on Z and
for every x such that x ∈ Z holds ((f1 + f2)′�Z)x = f1

′(x) + f2′(x).

(40) Let given f1, f2, Z. Suppose Z ⊆ dom(f1 − f2) and f1 is differentiable
on Z and f2 is differentiable on Z. Then f1− f2 is differentiable on Z and
for every x such that x ∈ Z holds ((f1 − f2)′�Z)x = f1

′(x)− f2′(x).
(41) Let given a, f , Z. Suppose Z ⊆ dom(a f) and f is differentiable on Z.
Then a f is differentiable on Z and for every x such that x ∈ Z holds
((a f)′�Z)x = a · f ′(x).

(42) Let given f1, f2, Z. Suppose Z ⊆ dom(f1 f2) and f1 is differentiable on
Z and f2 is differentiable on Z. Then f1 f2 is differentiable on Z and for
every x such that x ∈ Z holds ((f1 f2)′�Z)x = (f2)x · f1

′(x) + (f1)x · f2′(x).
(43) If Z ⊆ dom f and f is a constant on Z, then f is differentiable on Z and
for every x such that x ∈ Z holds (f ′�Z)x = 0C.

(44) Suppose Z ⊆ dom f and for every x such that x ∈ Z holds fx = a ·x+ b.
Then f is differentiable on Z and for every x such that x ∈ Z holds
(f ′�Z)x = a.

(45) For every complex number x0 such that f is differentiable in x0 holds f
is continuous in x0.

(46) If f is differentiable on X, then f is continuous on X.

(47) If f is differentiable on X and Z ⊆ X, then f is differentiable on Z.
(48) If s1 is convergent, then |s1| is convergent.
(49) If f is differentiable in x0, then there exists R such that R0C = 0C and
R is continuous in 0C.
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