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Summary. For a complex valued function defined on its domain in com-
plex numbers the differentiability in a single point and on a subset of the domain
is presented. The main elements of differential calculus are developed. The alge-
braic properties of differential complex functions are shown.
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The articles [17], [18], [3], [5], [4], [8], [2], [7], [11], [6], [16], [12], [19], [9], [10],
[1], [14], [15], and [13] provide the notation and terminology for this paper.

For simplicity, we use the following convention: k, n, m denote elements of
N, X denotes a set, s1, so denote complex sequences, Y denotes a subset of C,
f, f1, fo denote partial functions from C to C, r denotes a real number, a, a1,
b, x, xo, 2z, zgp denote complex numbers, and N; denotes an increasing sequence
of naturals.

Let I be a complex sequence. We say that [ is convergent to 0 if and only if:

(Def. 1) I is non-zero and convergent and lim I = 0.
We now state four propositions:

(1) Let r; be a sequence of real numbers and ¢; be a complex sequence. If

r1 = c¢1 and 71 is convergent, then c; is convergent.

1

(2) If 0 < r and for every n holds s1(n) = then s; is convergent.

n+r’
(3) If 0 < r and for every n holds s1(n) = n%ﬂ, then lim sy = 0.
(4) If for every n holds si(n) = n%rl, then s; is convergent and lim s; = 0.
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Let us observe that there exists a complex sequence which is convergent to

Let us note that there exists a complex sequence which is constant.
Next we state four propositions:
(5) 1 is constant iff for all n, m holds s1(n) = s1(m).
(6) For every n holds (s1 - N1)(n) = s1(N1(n)).
(7) If s1 is constant and s is a subsequence of s1, then so is constant.
(8) If s; is constant and s9 is a subsequence of s1, then s; = ss.
Let s3 be a constant complex sequence. Note that every subsequence of sg
is constant.
In the sequel h is a convergent to 0 complex sequence and c is a constant
complex sequence.
Let I be a partial function from C to C. We say that I is rest-like if and
only if:
(Def. 2) I is total and for every h holds h=! (I - h) is convergent and lim(h=! (I -
h)) = 0.
Let us mention that there exists a partial function from C to C which is
rest-like.
A C-rest is a rest-like partial function from C to C.
Let I be a partial function from C to C. We say that I is linear if and only
if:
(Def. 3) I is total and there exists a such that for every z holds I, = a - 2.
One can check that there exists a partial function from C to C which is
linear.
A C-linear function is a linear partial function from C to C.
We adopt the following convention: R, Ry, Re are C-rests and L, Ly, Lo are
C-linear functions.
Let us consider L1, Lo. Observe that L + Lo is linear and L1 — Lo is linear.
The following propositions are true:
(9) For all Ly, Ly holds Ly + Lo is a C-linear function and L; — Lo is a
C-linear function.

(10) For all a, L holds a L is a C-linear function.

(11) For all Ry, R holds R; + Ry is a C-rest and Ry — Ry is a C-rest and
Ry Ry is a C-rest.

(12) aR is a C-rest.
(13) L; Lo is rest-like.
(14) RLis a C-rest and L R is a C-rest.

Let zg be a complex number. A subset of C is called a neighbourhood of zg
if:
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(Def. 4) There exists a real number g such that 0 < ¢ and {y;y ranges over
complex numbers: |y — zo| < g} C it.

Next we state three propositions:

(15) For every real number g such that 0 < g holds {y; y ranges over complex
numbers: |y — zp| < g} is a neighbourhood of zj.

(16) For every neighbourhood N of zy holds zp € N.
(17) Let zp be a complex number and Ny, N3 be neighbourhoods of zy. Then
there exists a neighbourhood N of zg such that N C Ny and N C Nj.
Let us consider f and let zg be a complex number. We say that f is diffe-
rentiable in zg if and only if the condition (Def. 5) is satisfied.

(Def. 5) There exists a neighbourhood N of 2y such that N C dom f and there
exist L, R such that for every complex number x such that x € N holds
fx - faco = Lx—xo + Rac—zo-

Let us consider f and let zy be a complex number. Let us assume that f is

differentiable in zp. The functor f’(zy) yielding a complex number is defined by
the condition (Def. 6).

(Def. 6) There exists a neighbourhood N of zy such that N C dom f and there
exist L, R such that f’(z9) = Li. and for every complex number z such
that z € N holds f, — f., = L.—z, + R.—2,.
Let us consider f, X. We say that f is differentiable on X if and only if:
(Def. 7) X C dom f and for every x such that € X holds f[X is differentiable
in x.
We now state the proposition
(18) If f is differentiable on X, then X is a subset of C.
Let X be a subset of C. We say that X is closed if and only if:

(Def. 8) For every complex sequence s3 such that rng s C X and s3 is convergent
holds lim s3 € X.

Let X be a subset of C. We say that X is open if and only if:
(Def. 9)  X¢ is closed.
Next we state several propositions:

(19) Let X be a subset of C. Suppose X is open. Let zy be a complex number.
If zp € X, then there exists a neighbourhood N of zy such that N C X.

(20) Let X be a subset of C. Suppose X is open. Let zp be a complex number.
Suppose zyp € X. Then there exists a real number g such that {y;y ranges
over complex numbers: |y — zo| < g} C X.

(21) Let X be a subset of C. Suppose that for every complex number zy such
that zg € X there exists a neighbourhood N of zy such that N C X. Then
X is open.
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(22) Let X be a subset of C. Then X is open if and only if for every complex
number x such that x € X there exists a neighbourhood N of x such that
N CX.
(23) Let X be a subset of C, zp be an element of C, and r be an element of R.
If X = {y;y ranges over complex numbers: |y — z9| < r}, then X is open.
(24) Let X be a subset of C, zp be an element of C, and r be an element of
R. If X = {y;y ranges over complex numbers: |y — zo| < r}, then X is
closed.
Let us note that there exists a subset of C which is open.
In the sequel Z denotes an open subset of C.
Next we state two propositions:
(25) f is differentiable on Z iff Z C dom f and for every x such that x € Z
holds f is differentiable in x.
(26) If f is differentiable on Y, then Y is open.
Let us consider f, X. Let us assume that f is differentiable on X. The
functor ff  Yielding a partial function from C to C is defined by:
(Def. 10) dom(f{x) = X and for every x such that x € X holds (f{x). = f'(2).
The following propositions are true:
(27) Let given f, Z. Suppose Z C dom f and there exists a; such that rng f =
{a1}. Then f is differentiable on Z and for every x such that = € Z holds
(ffz)w = Oc.
(28) If s; is non-zero, then s; T k is non-zero.
Let us consider h, n. Note that h T n is convergent to 0.
Let us consider ¢, n. Note that ¢ T n is constant.
Next we state a number of propositions:

29 (81+82)Tk‘281Tk+82Tk‘.

30 (Sl—SQ)Tk‘IslTk—SQTk'.

1 SlflTk’: (SlTk‘)fl.

32 (81 82) T k= (81 T k) (82 T k)

33) Let zg be a complex number and IV be a neighbourhood of xy. Suppose f
is differentiable in g and N C dom f. Let given h, c¢. Suppose rngc = {zo}
and rng(h +¢) € N. Then A= (f - (h 4+ ¢) — f - ¢) is convergent and
f'(xo) = lim(h=" (f - (h+c) = f-c)).

(34) Let given fi, fa, xo. Suppose fi is differentiable in zp and fy is diffe-

rentiable in zg. Then f1 + fy is differentiable in x¢ and (f1 + f2)'(z0) =
fi' (o) + fo' (20).

(35) Let given f1, fo, 9. Suppose fi is differentiable in z¢ and fy is diffe-

rentiable in zg. Then f; — fo is differentiable in z¢ and (f; — f2)'(zo) =

fi' (o) — f2' (zo).

w
o — — — —
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(36) For all a, f, zo such that f is differentiable in zy holds a f is differentiable
in 29 and (a f) (xo) = a- f'(x0).

(37) Let given f1, f2, xo. Suppose f; is differentiable in xy and fo is dif-
ferentiable in 9. Then f; fo is differentiable in xzg and (f1 f2)'(zo) =
(f2)zo - f1'(@0) + (1) - f2'(20).

(38) For all f, Z such that Z C dom f and f[Z = idyz holds f is differentiable
on Z and for every z such that x € Z holds (f{;). = lc.

(39) Let given f1, f2, Z. Suppose Z C dom(f; + f2) and f; is differentiable
on Z and fy is differentiable on Z. Then f1 + f2 is differentiable on Z and
for every x such that = € Z holds ((f1 + fo)i)e = fi'(x) + fo(2).

(40) Let given f1, f2, Z. Suppose Z C dom(f; — f2) and f; is differentiable
on Z and fy is differentiable on Z. Then f1 — fo is differentiable on Z and
for every x such that = € Z holds ((fi — fo)i)e = fi'(x) — fo(2).

(41) Let given a, f, Z. Suppose Z C dom(a f) and f is differentiable on Z.
Then a f is differentiable on Z and for every = such that x € Z holds
((@f)ig)e =a- f'(z).

(42) Let given fi, fo, Z. Suppose Z C dom(f1 f2) and f; is differentiable on
Z and fo is differentiable on Z. Then f; fo is differentiable on Z and for
every x such that = € Z holds ((f1 f2)| )z = (fo)z - fi' (x) + (f1)z - f2' ().

(43) If Z C dom f and f is a constant on Z, then f is differentiable on Z and
for every z such that x € Z holds (f{;). = Oc.

(44) Suppose Z C dom f and for every x such that z € Z holds f, = a-x+b.
Then f is differentiable on Z and for every x such that x € Z holds
(f FZ )z = a.

(45) For every complex number z( such that f is differentiable in xy holds f
is continuous in xg.

46

(46) If f is differentiable on X, then f is continuous on X.

(47) 1If f is differentiable on X and Z C X, then f is differentiable on Z.
(48)

(49)

48
49

If s1 is convergent, then |s1| is convergent.

If f is differentiable in xg, then there exists R such that Ry. = Oc and
R is continuous in Oc.
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