Complex Function Differentiability

Chanapat Pacharapokin
Shinshu University
Nagano, Japan

Hiroshi Yamazaki
Shinshu University
Nagano, Japan
Yatsuka Nakamura
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Abstract

Summary. For a complex valued function defined on its domain in complex numbers the differentiability in a single point and on a subset of the domain is presented. The main elements of differential calculus are developed. The algebraic properties of differential complex functions are shown.

MML identifier: CFDIFF_1, version: $\underline{7.11 .014 .117 .1046}$

The articles [17], [18], [3], [5], [4], [8], [2], [7], [11], [6], [16], [12], [19], [9], [10], [1], [14], [15], and [13] provide the notation and terminology for this paper.

For simplicity, we use the following convention: k, n, m denote elements of \mathbb{N}, X denotes a set, s_{1}, s_{2} denote complex sequences, Y denotes a subset of \mathbb{C}, f, f_{1}, f_{2} denote partial functions from \mathbb{C} to \mathbb{C}, r denotes a real number, a, a_{1}, b, x, x_{0}, z, z_{0} denote complex numbers, and N_{1} denotes an increasing sequence of naturals.

Let I be a complex sequence. We say that I is convergent to 0 if and only if:
(Def. 1) I is non-zero and convergent and $\lim I=0$.
We now state four propositions:
(1) Let r_{1} be a sequence of real numbers and c_{1} be a complex sequence. If $r_{1}=c_{1}$ and r_{1} is convergent, then c_{1} is convergent.
(2) If $0<r$ and for every n holds $s_{1}(n)=\frac{1}{n+r}$, then s_{1} is convergent.
(3) If $0<r$ and for every n holds $s_{1}(n)=\frac{1}{n+r}$, then $\lim s_{1}=0$.
(4) If for every n holds $s_{1}(n)=\frac{1}{n+1}$, then s_{1} is convergent and $\lim s_{1}=0$.

Let us observe that there exists a complex sequence which is convergent to 0.

Let us note that there exists a complex sequence which is constant.
Next we state four propositions:
(5) s_{1} is constant iff for all n, m holds $s_{1}(n)=s_{1}(m)$.
(6) For every n holds $\left(s_{1} \cdot N_{1}\right)(n)=s_{1}\left(N_{1}(n)\right)$.
(7) If s_{1} is constant and s_{2} is a subsequence of s_{1}, then s_{2} is constant.
(8) If s_{1} is constant and s_{2} is a subsequence of s_{1}, then $s_{1}=s_{2}$.

Let s_{3} be a constant complex sequence. Note that every subsequence of s_{3} is constant.

In the sequel h is a convergent to 0 complex sequence and c is a constant complex sequence.

Let I be a partial function from \mathbb{C} to \mathbb{C}. We say that I is rest-like if and only if:
(Def. 2) $\quad I$ is total and for every h holds $h^{-1}(I \cdot h)$ is convergent and $\lim \left(h^{-1}(I\right.$. $h))=0$.
Let us mention that there exists a partial function from \mathbb{C} to \mathbb{C} which is rest-like.

A \mathbb{C}-rest is a rest-like partial function from \mathbb{C} to \mathbb{C}.
Let I be a partial function from \mathbb{C} to \mathbb{C}. We say that I is linear if and only if:
(Def. 3) I is total and there exists a such that for every z holds $I_{z}=a \cdot z$.
One can check that there exists a partial function from \mathbb{C} to \mathbb{C} which is linear.

A \mathbb{C}-linear function is a linear partial function from \mathbb{C} to \mathbb{C}.
We adopt the following convention: R, R_{1}, R_{2} are \mathbb{C}-rests and L, L_{1}, L_{2} are \mathbb{C}-linear functions.

Let us consider L_{1}, L_{2}. Observe that $L_{1}+L_{2}$ is linear and $L_{1}-L_{2}$ is linear. The following propositions are true:
(9) For all L_{1}, L_{2} holds $L_{1}+L_{2}$ is a \mathbb{C}-linear function and $L_{1}-L_{2}$ is a \mathbb{C}-linear function.
(10) For all a, L holds $a L$ is a \mathbb{C}-linear function.
(11) For all R_{1}, R_{2} holds $R_{1}+R_{2}$ is a \mathbb{C}-rest and $R_{1}-R_{2}$ is a \mathbb{C}-rest and $R_{1} R_{2}$ is a \mathbb{C}-rest.
(12) $\quad a R$ is a \mathbb{C}-rest.
(13) $L_{1} L_{2}$ is rest-like.
(14) $\quad R L$ is a \mathbb{C}-rest and $L R$ is a \mathbb{C}-rest.

Let z_{0} be a complex number. A subset of \mathbb{C} is called a neighbourhood of z_{0} if:
(Def. 4) There exists a real number g such that $0<g$ and $\{y ; y$ ranges over complex numbers: $\left.\left|y-z_{0}\right|<g\right\} \subseteq$ it.
Next we state three propositions:
(15) For every real number g such that $0<g$ holds $\{y ; y$ ranges over complex numbers: $\left.\left|y-z_{0}\right|<g\right\}$ is a neighbourhood of z_{0}.
(16) For every neighbourhood N of z_{0} holds $z_{0} \in N$.
(17) Let z_{0} be a complex number and N_{2}, N_{3} be neighbourhoods of z_{0}. Then there exists a neighbourhood N of z_{0} such that $N \subseteq N_{2}$ and $N \subseteq N_{3}$.
Let us consider f and let x_{0} be a complex number. We say that f is differentiable in x_{0} if and only if the condition (Def. 5) is satisfied.
(Def. 5) There exists a neighbourhood N of x_{0} such that $N \subseteq \operatorname{dom} f$ and there exist L, R such that for every complex number x such that $x \in N$ holds $f_{x}-f_{x_{0}}=L_{x-x_{0}}+R_{x-x_{0}}$.
Let us consider f and let z_{0} be a complex number. Let us assume that f is differentiable in z_{0}. The functor $f^{\prime}\left(z_{0}\right)$ yielding a complex number is defined by the condition (Def. 6).
(Def. 6) There exists a neighbourhood N of z_{0} such that $N \subseteq \operatorname{dom} f$ and there exist L, R such that $f^{\prime}\left(z_{0}\right)=L_{1_{\mathrm{C}}}$ and for every complex number z such that $z \in N$ holds $f_{z}-f_{z_{0}}=L_{z-z_{0}}+R_{z-z_{0}}$.
Let us consider f, X. We say that f is differentiable on X if and only if:
(Def. 7) $\quad X \subseteq \operatorname{dom} f$ and for every x such that $x \in X$ holds $f \upharpoonright X$ is differentiable in x.
We now state the proposition
(18) If f is differentiable on X, then X is a subset of \mathbb{C}.

Let X be a subset of \mathbb{C}. We say that X is closed if and only if:
(Def. 8) For every complex sequence s_{3} such that rng $s_{3} \subseteq X$ and s_{3} is convergent holds $\lim s_{3} \in X$.
Let X be a subset of \mathbb{C}. We say that X is open if and only if:
(Def. 9) X^{c} is closed.
Next we state several propositions:
(19) Let X be a subset of \mathbb{C}. Suppose X is open. Let z_{0} be a complex number. If $z_{0} \in X$, then there exists a neighbourhood N of z_{0} such that $N \subseteq X$.
(20) Let X be a subset of \mathbb{C}. Suppose X is open. Let z_{0} be a complex number. Suppose $z_{0} \in X$. Then there exists a real number g such that $\{y ; y$ ranges over complex numbers: $\left.\left|y-z_{0}\right|<g\right\} \subseteq X$.
(21) Let X be a subset of \mathbb{C}. Suppose that for every complex number z_{0} such that $z_{0} \in X$ there exists a neighbourhood N of z_{0} such that $N \subseteq X$. Then X is open.
(22) Let X be a subset of \mathbb{C}. Then X is open if and only if for every complex number x such that $x \in X$ there exists a neighbourhood N of x such that $N \subseteq X$.
(23) Let X be a subset of \mathbb{C}, z_{0} be an element of \mathbb{C}, and r be an element of \mathbb{R}. If $X=\left\{y ; y\right.$ ranges over complex numbers: $\left.\left|y-z_{0}\right|<r\right\}$, then X is open.
(24) Let X be a subset of \mathbb{C}, z_{0} be an element of \mathbb{C}, and r be an element of \mathbb{R}. If $X=\left\{y ; y\right.$ ranges over complex numbers: $\left.\left|y-z_{0}\right| \leq r\right\}$, then X is closed.
Let us note that there exists a subset of \mathbb{C} which is open.
In the sequel Z denotes an open subset of \mathbb{C}.
Next we state two propositions:
(25) $\quad f$ is differentiable on Z iff $Z \subseteq \operatorname{dom} f$ and for every x such that $x \in Z$ holds f is differentiable in x.
(26) If f is differentiable on Y, then Y is open.

Let us consider f, X. Let us assume that f is differentiable on X. The functor $f_{\uparrow X}^{\prime}$ yielding a partial function from \mathbb{C} to \mathbb{C} is defined by:
(Def. 10) $\operatorname{dom}\left(f_{\uparrow X}^{\prime}\right)=X$ and for every x such that $x \in X$ holds $\left(f_{\uparrow X}^{\prime}\right)_{x}=f^{\prime}(x)$.
The following propositions are true:
(27) Let given f, Z. Suppose $Z \subseteq \operatorname{dom} f$ and there exists a_{1} such that rng $f=$ $\left\{a_{1}\right\}$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{\lceil Z}^{\prime}\right)_{x}=0_{\mathbb{C}}$.
(28) If s_{1} is non-zero, then $s_{1} \uparrow k$ is non-zero.

Let us consider h, n. Note that $h \uparrow n$ is convergent to 0 .
Let us consider c, n. Note that $c \uparrow n$ is constant.
Next we state a number of propositions:
(29) $\left(s_{1}+s_{2}\right) \uparrow k=s_{1} \uparrow k+s_{2} \uparrow k$.
(30) $\left(s_{1}-s_{2}\right) \uparrow k=s_{1} \uparrow k-s_{2} \uparrow k$.
(31) $s_{1}^{-1} \uparrow k=\left(s_{1} \uparrow k\right)^{-1}$.
(32) $\left(s_{1} s_{2}\right) \uparrow k=\left(s_{1} \uparrow k\right)\left(s_{2} \uparrow k\right)$.
(33) Let x_{0} be a complex number and N be a neighbourhood of x_{0}. Suppose f is differentiable in x_{0} and $N \subseteq \operatorname{dom} f$. Let given h, c. Suppose $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}(f \cdot(h+c)-f \cdot c)$ is convergent and $f^{\prime}\left(x_{0}\right)=\lim \left(h^{-1}(f \cdot(h+c)-f \cdot c)\right)$.
(34) Let given f_{1}, f_{2}, x_{0}. Suppose f_{1} is differentiable in x_{0} and f_{2} is differentiable in x_{0}. Then $f_{1}+f_{2}$ is differentiable in x_{0} and $\left(f_{1}+f_{2}\right)^{\prime}\left(x_{0}\right)=$ $f_{1}^{\prime}\left(x_{0}\right)+f_{2}^{\prime}\left(x_{0}\right)$.
(35) Let given f_{1}, f_{2}, x_{0}. Suppose f_{1} is differentiable in x_{0} and f_{2} is differentiable in x_{0}. Then $f_{1}-f_{2}$ is differentiable in x_{0} and $\left(f_{1}-f_{2}\right)^{\prime}\left(x_{0}\right)=$ $f_{1}^{\prime}\left(x_{0}\right)-f_{2}^{\prime}\left(x_{0}\right)$.
(36) For all a, f, x_{0} such that f is differentiable in x_{0} holds $a f$ is differentiable in x_{0} and $(a f)^{\prime}\left(x_{0}\right)=a \cdot f^{\prime}\left(x_{0}\right)$.
(37) Let given f_{1}, f_{2}, x_{0}. Suppose f_{1} is differentiable in x_{0} and f_{2} is differentiable in x_{0}. Then $f_{1} f_{2}$ is differentiable in x_{0} and $\left(f_{1} f_{2}\right)^{\prime}\left(x_{0}\right)=$ $\left(f_{2}\right)_{x_{0}} \cdot f_{1}^{\prime}\left(x_{0}\right)+\left(f_{1}\right)_{x_{0}} \cdot f_{2}^{\prime}\left(x_{0}\right)$.
(38) For all f, Z such that $Z \subseteq \operatorname{dom} f$ and $f \upharpoonright Z=\operatorname{id}_{Z}$ holds f is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{\lceil Z}^{\prime}\right)_{x}=1_{\mathbb{C}}$.
(39) Let given f_{1}, f_{2}, Z. Suppose $Z \subseteq \operatorname{dom}\left(f_{1}+f_{2}\right)$ and f_{1} is differentiable on Z and f_{2} is differentiable on Z. Then $f_{1}+f_{2}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\left(f_{1}+f_{2}\right)^{\prime}{ }_{Z}\right)_{x}=f_{1}{ }^{\prime}(x)+f_{2}{ }^{\prime}(x)$.
(40) Let given f_{1}, f_{2}, Z. Suppose $Z \subseteq \operatorname{dom}\left(f_{1}-f_{2}\right)$ and f_{1} is differentiable on Z and f_{2} is differentiable on Z. Then $f_{1}-f_{2}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\left(f_{1}-f_{2}\right)_{Y Z}^{\prime}\right)_{x}=f_{1}^{\prime}(x)-f_{2}{ }^{\prime}(x)$.
(41) Let given a, f, Z. Suppose $Z \subseteq \operatorname{dom}(a f)$ and f is differentiable on Z. Then $a f$ is differentiable on Z and for every x such that $x \in Z$ holds $\left((a f)^{\prime}{ }_{Z}\right)_{x}=a \cdot f^{\prime}(x)$.
(42) Let given f_{1}, f_{2}, Z. Suppose $Z \subseteq \operatorname{dom}\left(f_{1} f_{2}\right)$ and f_{1} is differentiable on Z and f_{2} is differentiable on Z. Then $f_{1} f_{2}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\left(f_{1} f_{2}\right)_{\mid Z}^{\prime}\right)_{x}=\left(f_{2}\right)_{x} \cdot f_{1}^{\prime}(x)+\left(f_{1}\right)_{x} \cdot f_{2}^{\prime}(x)$.
(43) If $Z \subseteq \operatorname{dom} f$ and f is a constant on Z, then f is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{\mid Z}^{\prime}\right)_{x}=0_{\mathbb{C}}$.
(44) Suppose $Z \subseteq \operatorname{dom} f$ and for every x such that $x \in Z$ holds $f_{x}=a \cdot x+b$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $\left(f_{\upharpoonright Z}^{\prime}\right)_{x}=a$.
(45) For every complex number x_{0} such that f is differentiable in x_{0} holds f is continuous in x_{0}.
(46) If f is differentiable on X, then f is continuous on X.
(47) If f is differentiable on X and $Z \subseteq X$, then f is differentiable on Z.
(48) If s_{1} is convergent, then $\left|s_{1}\right|$ is convergent.
(49) If f is differentiable in x_{0}, then there exists R such that $R_{0_{\mathbb{C}}}=0_{\mathbb{C}}$ and R is continuous in $0_{\mathbb{C}}$.

References

[1] Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Formalized Mathematics, 4(1):121-124, 1993.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesłà Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[10] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[11] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[13] Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama. Property of complex sequence and continuity of complex function. Formalized Mathematics, 9(1):185-190, 2001.
[14] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265-268, 1997.
[15] Yasunari Shidama and Artur Korniłowicz. Convergence and the limit of complex sequences. Series. Formalized Mathematics, 6(3):403-410, 1997.
[16] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received November 4, 2008

