The Real Vector Spaces of Finite Sequences are Finite Dimensional

Yatsuka Nakamura
Shinshu University
Nagano, Japan

Artur Korniłowicz
Institute of Computer Science
University of Białystok
Sosnowa 64, 15-887 Białystok, Poland

Nagato Oya
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this paper we show the finite dimensionality of real linear spaces with their carriers equal \(\mathbb{R}^n \). We also give the standard basis of such spaces. For the set \(\mathbb{R}^n \) we introduce the concepts of linear manifold subsets and orthogonal subsets. The cardinality of orthonormal basis of discussed spaces is proved to equal \(n \).

MML identifier: EULCID_7, version: 7.11.01 4.117.1046

The articles [32], [7], [11], [33], [9], [2], [8], [5], [31], [4], [6], [18], [13], [22], [20], [14], [1], [21], [29], [28], [26], [3], [23], [10], [12], [30], [19], [34], [16], [17], [25], [15], [24], and [27] provide the notation and terminology for this paper.

1. Preliminaries

We use the following convention: \(i, j, n \) are elements of \(\mathbb{N} \), \(z \), \(B_0 \) are sets, and \(f, x_0 \) are real-valued finite sequences.

Next we state several propositions:

1. For all functions \(f, g \) holds \(\text{dom}(f \cdot g) = \text{dom } g \cap g^{-1}(\text{dom } f) \).

2. For every binary relation \(R \) and for every set \(Y \) such that \(\text{rng } R \subseteq Y \) holds \(R^{-1}(Y) = \text{dom } R \).
Let X be a set, Y be a non-empty set, and f be a function from X into Y. If f is bijective, then $\overline{X} = \overline{Y}$.

For every element x of \mathbb{R}^0 holds $x = \varepsilon_\mathbb{R}$.

For all elements a, b, c of \mathbb{R}^n holds $(a - b) + c + b = a + c$.

Let f_1, f_2 be finite sequences. One can verify that $\langle f_1, f_2 \rangle$ is finite sequence-like.

Let D be a set and let f_1, f_2 be finite sequences of elements of D. Then $\langle f_1, f_2 \rangle$ is a finite sequence of elements of $D \times D$.

Let h be a real-valued finite sequence. Let us observe that h is increasing if and only if:

(Def. 1) For every i such that $1 \leq i < \text{len } h$ holds $h(i) < h(i + 1)$.

One can prove the following four propositions:

(7) Let h be a real-valued finite sequence. Suppose h is increasing. Let given i, j. If $i < j$ and $1 \leq i$ and $j \leq \text{len } h$, then $h(i) < h(j)$.

(8) Let h be a real-valued finite sequence. Suppose h is increasing. Let given i, j. If $i \leq j$ and $1 \leq i$ and $j \leq \text{len } h$, then $h(i) \leq h(j)$.

(9) Let h be a natural-valued finite sequence. Suppose h is increasing. Let given i. If $1 \leq i \leq \text{len } h$ and $1 \leq h(1)$, then $i \leq h(i)$.

(10) Let V be a real linear space and X be a subspace of V. Suppose V is strict and X is strict and the carrier of X = the carrier of V. Then $X = V$.

Let D be a set, let F be a finite sequence of elements of D, and let h be a permutation of $\text{dom } F$. The functor $F \circ h$ yields a finite sequence of elements of D and is defined as follows:

(Def. 2) $F \circ h = F \cdot h$.

One can prove the following propositions:

(11) Let D be a non-empty set and f be a finite sequence of elements of D. If $1 \leq i \leq \text{len } f$ and $1 \leq j \leq \text{len } f$, then $(\text{Swap}(f, i, j))(i) = f(j)$ and $(\text{Swap}(f, i, j))(j) = f(i)$.

(12) \emptyset is a permutation of \emptyset.

(13) $\langle 1 \rangle$ is a permutation of $\{1\}$.

(14) For every finite sequence h of elements of \mathbb{R} holds h is one-to-one iff $\text{sort}_a h$ is one-to-one.

(15) Let h be a finite sequence of elements of \mathbb{N}. Suppose h is one-to-one. Then there exists a permutation h_3 of $\text{dom } h$ and there exists a finite sequence h_2 of elements of \mathbb{N} such that $h_2 = h \cdot h_3$ and h_2 is increasing and $\text{dom } h = \text{dom } h_2$ and $\text{rng } h = \text{rng } h_2$.

2. Orthogonal Basis

Let B_0 be a set. We say that B_0 is \mathbb{R}-orthogonal if and only if:

(Def. 3) For all real-valued finite sequences x, y such that $x, y \in B_0$ and $x \neq y$ holds $|\langle x, y \rangle| = 0$.

Let us observe that every set which is empty is also \mathbb{R}-orthogonal.

We now state the proposition

(16) B_0 is \mathbb{R}-orthogonal if and only if for all points x, y of E^n such that $x, y \in B_0$ and $x \neq y$ holds x, y are orthogonal.

Let B_0 be a set. We say that B_0 is \mathbb{R}-normal if and only if:

(Def. 4) For every real-valued finite sequence x such that $x \in B_0$ holds $|x| = 1$.

Let us observe that every set which is empty is also \mathbb{R}-normal.

Let us observe that there exists a set which is \mathbb{R}-normal.

Let B_0, B_1 be \mathbb{R}-normal sets. One can verify that $B_0 \cup B_1$ is \mathbb{R}-normal.

One can prove the following propositions:

(17) If $|f| = 1$, then $\{f\}$ is \mathbb{R}-normal.

(18) If B_0 is \mathbb{R}-normal and $|x_0| = 1$, then $B_0 \cup \{x_0\}$ is \mathbb{R}-normal.

Let B_0 be a set. We say that B_0 is \mathbb{R}-orthonormal if and only if:

(Def. 5) B_0 is \mathbb{R}-orthogonal and \mathbb{R}-normal.

Let us note that every set which is \mathbb{R}-orthonormal is also \mathbb{R}-orthogonal and \mathbb{R}-normal and every set which is \mathbb{R}-orthogonal and \mathbb{R}-normal is also \mathbb{R}-orthonormal.

Let us observe that $\{(1)\}$ is \mathbb{R}-orthonormal.

Let us observe that there exists a set which is \mathbb{R}-orthonormal and non empty.

Let us consider n. One can verify that there exists a subset of \mathbb{R}^n which is \mathbb{R}-orthonormal.

Let us consider n and let B_0 be a subset of \mathbb{R}^n. We say that B_0 is complete if and only if:

(Def. 6) For every \mathbb{R}-orthonormal subset B of \mathbb{R}^n such that $B_0 \subseteq B$ holds $B = B_0$.

Let n be an element of \mathbb{N} and let B_0 be a subset of \mathbb{R}^n. We say that B_0 is orthogonal basis if and only if:

(Def. 7) B_0 is \mathbb{R}-orthonormal and complete.

Let us consider n. One can verify that every subset of \mathbb{R}^n which is orthogonal basis is also \mathbb{R}-orthonormal and complete and every subset of \mathbb{R}^n which is \mathbb{R}-orthonormal and complete is also orthogonal basis.

The following propositions are true:

(19) For every subset B_0 of \mathbb{R}^0 such that B_0 is orthogonal basis holds $B_0 = \emptyset$.

(20) Let B_0 be a subset of \mathbb{R}^n and y be an element of \mathbb{R}^n. Suppose B_0 is orthogonal basis and for every element x of \mathbb{R}^n such that $x \in B_0$ holds $|[x,y]| = 0$. Then $y = \langle 0, \ldots, 0 \rangle_n$.

3. Linear Manifolds

Let us consider n and let X be a subset of \mathbb{R}^n. We say that X is linear manifold if and only if:

(Def. 8) For all elements x, y of \mathbb{R}^n and for all elements a, b of \mathbb{R} such that $x, y \in X$ holds $a \cdot x + b \cdot y \in X$.

Let us consider n. Observe that $\Omega_{\mathbb{R}^n}$ is linear manifold.

The following proposition is true

(21) $\{\langle 0, \ldots, 0 \rangle_n \}$ is linear manifold.

Let us consider n. Observe that $\{\langle 0, \ldots, 0 \rangle_n \}$ is linear manifold.

Let us consider n and let X be a subset of \mathbb{R}^n. The linear span of X yielding a subset of \mathbb{R}^n is defined by:

(Def. 9) The linear span of $X = \bigcap\{Y \subseteq \mathbb{R}^n: Y \text{ is linear manifold } \land X \subseteq Y\}$.

Let us consider n and let X be a subset of \mathbb{R}^n. Observe that the linear span of X is linear manifold.

Let us consider n and let f be a finite sequence of elements of \mathbb{R}^n. The functor $\sum f$ yielding an element of \mathbb{R}^n is defined as follows:

(Def. 10) (i) There exists a finite sequence g of elements of \mathbb{R}^n such that $\text{len } f = \text{len } g$ and $f(1) = g(1)$ and for every natural number i such that $1 \leq i < \text{len } f$ holds $g(i + 1) = g_i + f_{i+1}$ and $\sum f = g(\text{len } f)$ if $\text{len } f > 0$, (ii) $\sum f = \langle 0, \ldots, 0 \rangle_n$, otherwise.

Let n be a natural number and let f be a finite sequence of elements of \mathbb{R}^n. The functor $\text{accum } f$ yields a finite sequence of elements of \mathbb{R}^n and is defined as follows:

(Def. 11) $\text{len } f = \text{len } \text{accum } f$ and $f(1) = (\text{accum } f)(1)$ and for every natural number i such that $1 \leq i < \text{len } f$ holds $(\text{accum } f)(i + 1) = (\text{accum } f)_i + f_{i+1}$.

We now state several propositions:

(22) For every finite sequence f of elements of \mathbb{R}^n such that $\text{len } f > 0$ holds $(\text{accum } f)(\text{len } f) = \sum f$.

(23) For all finite sequences F, F_2 of elements of \mathbb{R}^n and for every permutation h of $\text{dom } F$ such that $F_2 = F \circ h$ holds $\sum F_2 = \sum F$.

(24) For every element k of \mathbb{N} holds $\sum k \mapsto \langle 0, \ldots, 0 \rangle_n = \langle 0, \ldots, 0 \rangle_n$.
(25) Let \(g \) be a finite sequence of elements of \(\mathbb{R}^n \), \(h \) be a finite sequence of elements of \(\mathbb{N} \), and \(F \) be a finite sequence of elements of \(\mathbb{R}^n \). Suppose \(h \) is increasing and \(\text{rng} \ h \subseteq \text{dom} \ g \) and for every element \(i \) of \(\mathbb{N} \) such that \(i \in \text{dom} \ g \) and \(i \notin \text{rng} \ h \) holds \(g(i) = (0, \ldots, 0) \). Then

\[
\sum g = \sum F.
\]

(26) Let \(g \) be a finite sequence of elements of \(\mathbb{R}^n \), \(h \) be a finite sequence of elements of \(\mathbb{N} \), and \(F \) be a finite sequence of elements of \(\mathbb{R}^n \). Suppose \(h \) is one-to-one and \(\text{rng} \ h \subseteq \text{dom} \ g \) and \(F = g \cdot h \) and for every element \(i \) of \(\mathbb{N} \) such that \(i \in \text{dom} \ g \) and \(i \notin \text{rng} \ h \) holds \(g(i) = (0, \ldots, 0) \). Then

\[
\sum g = \sum F.
\]

4. Standard Basis

Let us consider \(n, i \). Then the base finite sequence of \(n \) and \(i \) is an element of \(\mathbb{R}^n \).

The following propositions are true:

(27) Let \(i_1, i_2 \) be elements of \(\mathbb{N} \). Suppose that
 (i) \(1 \leq i_1 \),
 (ii) \(i_1 \leq n \),
 (iii) \(1 \leq i_2 \),
 (iv) \(i_2 \leq n \), and
 (v) the base finite sequence of \(n \) and \(i_1 \) = the base finite sequence of \(n \) and \(i_2 \).

Then \(i_1 = i_2 \).

(28) \(\sum (\text{the base finite sequence of } n \text{ and } i) = \sum (\text{the base finite sequence of } n \text{ and } i) \).

(29) \(\sum \text{the base finite sequence of } n \text{ and } i = 1 \).

(30) \(|\text{the base finite sequence of } n \text{ and } i| = 1 \).

(31) Suppose \(1 \leq i \leq n \) and \(1 \leq j \leq n \) and \(i \neq j \). Then \(|(\text{the base finite sequence of } n \text{ and } i, \text{the base finite sequence of } n \text{ and } j)| = 0 \).

(32) For every element \(x \) of \(\mathbb{R}^n \) such that \(1 \leq i \leq n \) holds \(|(x, \text{the base finite sequence of } n \text{ and } i)| = x(i) \).

Let us consider \(n \) and let \(x_0 \) be an element of \(\mathbb{R}^n \). The functor \(\text{ProjFinSeq} \ x_0 \) yields a finite sequence of elements of \(\mathbb{R}^n \) and is defined by the conditions (Def. 12).

(Def. 12)(i) \(\text{len} \ \text{ProjFinSeq} \ x_0 = n \), and
 (ii) for every \(i \) such that \(1 \leq i \leq n \) holds \((\text{ProjFinSeq} \ x_0)(i) = |(x_0, \text{the base finite sequence of } n \text{ and } i)| \cdot \text{the base finite sequence of } n \text{ and } i \).
The following proposition is true

(33) For every element \(x_0 \) of \(\mathcal{R}^n \) holds \(x_0 = \sum \text{ProjFinSeq} x_0 \).

Let us consider \(n \). The functor \(\mathbb{R}\text{N-Base} \) \(n \) yields a subset of \(\mathcal{R}^n \) and is defined by:

(Def. 13) \(\mathbb{R}\text{N-Base} \) \(n \) = \{the base finite sequence of \(n \) and \(i \); \(i \) ranges over elements of \(\mathbb{N} \); \(1 \leq i \land i \leq n \} \).

Next we state the proposition

(34) For every non zero element \(n \) of \(\mathbb{N} \) holds \(\mathbb{R}\text{N-Base} \) \(n \) \(\neq \emptyset \).

Let us mention that \(\mathbb{R}\text{N-Base} \) \(0 \) is empty.

Let \(n \) be a non zero element of \(\mathbb{N} \). Note that \(\mathbb{R}\text{N-Base} \) \(n \) is non empty.

Let us consider \(n \). Observe that \(\mathbb{R}\text{N-Base} \) \(n \) is orthogonal basis.

Let us consider \(n \). Observe that there exists a subset of \(\mathcal{R}^n \) which is orthogonal basis.

Let us consider \(n \). An orthogonal basis of \(n \) is an orthogonal basis subset of \(\mathcal{R}^n \).

Let \(n \) be a non zero element of \(\mathbb{N} \). Observe that every orthogonal basis of \(n \) is non empty.

5. Finite Real Unitary Spaces and Finite Real Linear Spaces

Let \(n \) be an element of \(\mathbb{N} \). Observe that \(\langle \mathcal{E}^n, (\cdot, \cdot) \rangle \) is constituted finite sequences. Let \(n \) be an element of \(\mathbb{N} \). One can check that every element of \(\langle \mathcal{E}^n, (\cdot, \cdot) \rangle \) is real-valued.

Let \(n \) be an element of \(\mathbb{N} \), let \(x, y \) be vectors of \(\langle \mathcal{E}^n, (\cdot, \cdot) \rangle \), and let \(a, b \) be real-valued functions. One can verify that \(x + y \) and \(a + b \) can be identified when \(x = a \) and \(y = b \).

Let \(n \) be an element of \(\mathbb{N} \), let \(x \) be a vector of \(\langle \mathcal{E}^n, (\cdot, \cdot) \rangle \), let \(y \) be a real-valued function, and let \(a, b \) be elements of \(\mathbb{R} \). Observe that \(a \cdot x \) and \(b \cdot y \) can be identified when \(a = b \) and \(x = y \).

Let \(n \) be an element of \(\mathbb{N} \), let \(x \) be a vector of \(\langle \mathcal{E}^n, (\cdot, \cdot) \rangle \), and let \(a \) be a real-valued function. Observe that \(-x \) and \(-a \) can be identified when \(x = a \).

Let \(n \) be an element of \(\mathbb{N} \), let \(x, y \) be vectors of \(\langle \mathcal{E}^n, (\cdot, \cdot) \rangle \), and let \(a, b \) be real-valued functions. One can check that \(x - y \) and \(a - b \) can be identified when \(x = a \) and \(y = b \). The following three propositions are true:

(35) Let \(n \) be an element of \(\mathbb{N} \), \(x, y \) be elements of \(\mathcal{R}^n \), and \(u, v \) be points of \(\langle \mathcal{E}^n, (\cdot, \cdot) \rangle \). If \(x = u \) and \(y = v \), then \(\otimes_{\mathcal{E}^n} (\{u, v\}) = |(x, y)| \).

(36) Let \(n, j \) be elements of \(\mathbb{N} \), \(F \) be a finite sequence of elements of the carrier of \(\langle \mathcal{E}^n, (\cdot, \cdot) \rangle \), \(B_2 \) be a subset of \(\langle \mathcal{E}^n, (\cdot, \cdot) \rangle \), \(v_0 \) be an element of \(\langle \mathcal{E}^n, (\cdot, \cdot) \rangle \), and \(l \) be a linear combination of \(B_2 \). Suppose \(F \) is one-to-one and \(B_2 \) is \(\mathbb{R} \)-orthogonal and \(\text{rng} \, F = \text{the support of} \, l \) and \(v_0 \in B_2 \) and \(j \in \text{dom}(l \, F) \) and \(v_0 = F(j) \). Then \(\otimes_{\mathcal{E}^n} (\{v_0, \sum l \, F\}) = \otimes_{\mathcal{E}^n} (\{v_0, l(F_j \cdot v_0)\}) \).
is also linearly independent.

Let A be a set. Note that \mathbb{R}^A is constituted functions.

Let us consider n. Observe that $\mathbb{R}^{\text{Seg}^n}$ is constituted finite sequences.

Let A be a set. One can verify that every element of \mathbb{R}^A is real-valued.

Let A be a set, let x, y be vectors of \mathbb{R}^A, and let a, b be real-valued functions.

Observe that $x + y$ and $a + b$ can be identified when $x = a$ and $y = b$.

Let A be a set, let x be a vector of \mathbb{R}^A, let y be a real-valued function, and let a, b be elements of \mathbb{R}. Observe that $a \cdot x$ and $b y$ can be identified when $a = b$ and $x = y$.

Let A be a set, let x be a vector of \mathbb{R}^A, and let a be a real-valued function.

One can check that $-x$ and $-a$ can be identified when $x = a$.

Let A be a set, let x, y be vectors of \mathbb{R}^A, and let a, b be real-valued functions.

Observe that $x - y$ and $a - b$ can be identified when $x = a$ and $y = b$.

The following propositions are true:

(38) Let X be a subspace of $\mathbb{R}^{\text{Seg}^n}$, x be an element of \mathbb{R}^n, and a be a real number. If $x \in$ the carrier of X, then $a \cdot x \in$ the carrier of X.

(39) Let X be a subspace of $\mathbb{R}^{\text{Seg}^n}$ and x, y be elements of \mathbb{R}^n. Suppose $x \in$ the carrier of X and $y \in$ the carrier of X. Then $x + y \in$ the carrier of X.

(40) Let X be a subspace of $\mathbb{R}^{\text{Seg}^n}$, x, y be elements of \mathbb{R}^n, and a, b be real numbers. Suppose $x \in$ the carrier of X and $y \in$ the carrier of X. Then $a \cdot x + b \cdot y \in$ the carrier of X.

(41) For all elements x, y of \mathbb{R}^n and for all points u, v of $\mathbb{R}^{\text{Seg}^n}$ such that $x = u$ and $y = v$ holds $\otimes \epsilon^n((u, v)) = |(x, y)|$.

(42) Let F be a finite sequence of elements of the carrier of $\mathbb{R}^{\text{Seg}^n}$, B_2 be a subset of $\mathbb{R}^{\text{Seg}^n}$, v_0 be an element of $\mathbb{R}^{\text{Seg}^n}$, and l be a linear combination of B_2. Suppose F is one-to-one and B_2 is \mathbb{R}-orthogonal and $\text{rng } F = \text{the support of } l \text{ and } v_0 \in B_2 \text{ and } j \in \text{dom}(l F)$ and $v_0 = F(j)$. Then $\otimes \epsilon^n((v_0, \sum l F)) = \otimes \epsilon^n((v_0, l(F_j) \cdot v_0))$.

Let us consider n. Note that every subset of $\mathbb{R}^{\text{Seg}^n}$ which is \mathbb{R}-orthonormal is also linearly independent.

Let n be an element of \mathbb{N}. Note that every subset of $\langle \mathcal{E}^n, \langle \cdot \rangle \rangle$ which is \mathbb{R}-orthonormal is also linearly independent. Next we state the proposition

(43) Let B_2 be a subset of $\mathbb{R}^{\text{Seg}^n}$, x, y be elements of \mathbb{R}^n, and a be a real number. If B_2 is linearly independent and x, $y \in B_2$ and $y = a \cdot x$, then $x = y$.
6. Finite Dimensionality of the Spaces

Let us consider n. One can check that \mathbb{R}^n is finite.

The following propositions are true:

(44) $\text{card } \mathbb{R}^n = n$.

(45) Let f be a finite sequence of elements of \mathbb{R}^n and g be a finite sequence of elements of the carrier of \mathbb{R}^n. If $f = g$, then $\sum f = \sum g$.

(46) Let x_0 be an element of \mathbb{R}^n and B be a subset of \mathbb{R}^n. If $B = \mathbb{R}^n$, then there exists a linear combination l of B such that $x_0 = \sum l$.

(47) Let n be an element of \mathbb{N}, x_0 be an element of $\langle E^n, (\cdot | \cdot) \rangle$, and B be a subset of $\langle E^n, (\cdot | \cdot) \rangle$. If $B = \mathbb{R}^n$, then there exists a linear combination l of B such that $x_0 = \sum l$.

(48) For every subset B of \mathbb{R}^n such that $B = \mathbb{R}^n$ holds B is a basis of \mathbb{R}^n.

Let us consider n. Observe that \mathbb{R}^n is finite dimensional.

We now state several propositions:

(49) $\text{dim}(\mathbb{R}^n) = n$.

(50) For every subset B of \mathbb{R}^n such that B is a basis of \mathbb{R}^n holds $B = \mathbb{R}^n$.

(51) \emptyset is a basis of \mathbb{R}^0.

(52) For every element n of \mathbb{N} holds \mathbb{R}^n is a basis of $\langle E^n, (\cdot | \cdot) \rangle$.

(53) Every orthogonal basis of n is a basis of \mathbb{R}^n.

Let n be an element of \mathbb{N}. Note that $\langle E^n, (\cdot | \cdot) \rangle$ is finite dimensional.

We now state two propositions:

(54) For every element n of \mathbb{N} holds $\text{dim}(\langle E^n, (\cdot | \cdot) \rangle) = n$.

(55) For every orthogonal basis B of n holds $\overline{B} = n$.

References

Received September 23, 2008