Tabele

Tabela 1. Analizowane geny kodujące enzymy szlaku metabolicznego kwasów tłuszczowych. W tabeli podano nazwę genu, jego lokalizację w genomie myszy laboratoryjnej (*Mus musculus*), tj. nr chromosomu oraz pozycję genu na chromosomie w centymorganach [cM], liczbę egzonów przypadającą na dany gen, długość nukleotydową [nt] sekwencji DNA (introny i egzony) oraz mRNA (egzony), liczbę aminokwasów [aa], składających się na białko kodowane przez dany gen wraz z powszechnie stosowanym symbolem tego białka.

Gen	Nr chromosomu	Pozycja na chromosomie [cM]	Liczba egzonów	DNA [nt]	mRNA [nt]	Białko [aa]	Symbol białka
Scd1	19	37,98	6	13259	1068	355	SCD-1c
Fads1	19	6,54	12	13983	1344	447	D5D
Fads2	19	6,36	12	37340	1335	444	D6D
Elovl1	4	54,61	6	4821	609	202	ELOVL1
Elovl2	13	20,38	8	38021	879	292	ELOVL2
Elovl3	19	38,75	4	3795	816	271	ELOVL3
Elovl5	9	43,36	7	67154	900	299	ELOVL5
Elovl6	3	58,05	4	106109	804	267	ELOVL6
Srebf1	11	37,81	19	23493	3405	1134	SREBP-1c

Tabela 2. Startery zaprojektowane w celu amplifikacji genów, kodujących enzymy szlaku metabolizmu kwasów tłuszczowych oraz ich charakterystyka. W tabeli podano nazwę genu, rodzaj użytej matrycy w reakcji PCR, zaprojektowane sekwencje starterów, ich długość (n), temperaturę topnienia poszczególnych starterów (Tm), ich jakość (Q) wyznaczoną w programie FastPCR, długość produktu uzyskanego dla danej pary starterów (ps, podana w parach zasad [pz]) oraz produktu końcowego dla danego genu.

Gen	Matryca	Sekwencja	n	Tm [°C]	Q	ps [pz]	Produkt końcowy [pz]
Scd1	cDNA	F1: TTCGCGAGCCTGGCGTGCGCT	18	54,8	100	1340	1340
		R: CCTCAAAACGTGATCAAAGCT	21	53,6	84		
	gDNA	F2: TCAGATCACCGAGGACTTCA	20	57,2	73	256	
		R2: TCGAAGGAGTTGCACTGTTCC	20	56,6	85		
Fads1	cDNA	F1: TTCGCGAGCCTGGCGTGCGCT	21	68,0	92	818	1799
		R1: ACCTTCCCCAGGGCGAAGAAGA	22	62,0	72		
		F2: TCGACATGGAATCACCTGCTA	21	55,2	127	1145	
		R2: TCGAAGGAGTTGCACTGTTCC	21	57,1	109		
Fads2	cDNA	F: ATCCGGGTAGACTGGCAGCAT	21	60,0	114	1357	1357
		R: CTCATGAGAACCCTTCAGAACA	22	54,2	97		
	gDNA	F1: TCAGATCACCGAGGACTTCA	20	54,5	111	306	
		R1: GCCAATGACAAACTTGTGGAC	21	55,1	98		
		F2: GGCTTGGGCCATCAGCTACTAT	22	58,9	72	1006	
		R2: TGGTGCTCAATCTGGAAAT	19	51,5	68		
Elovl1	cDNA	F: CAGAACTTGCCCCTGAGAAG	20	55,6	85	1043	1043
		R: TGCTCAGTCCTGACCACAGA	20	57,2	106		
Elovl2	cDNA	F: CTACCCTGGACAGCGCAT	18	56,8	105	1116	1116
		R: CGGCATGGCTCCAGTTAGTA	20	56,5	85		
Elovl3	cDNA	F: TTCTGTCCTGGGTTTCTTCG	20	54,5	61	1150	1150
		R: TCCTTCCTAGGGCTTGGTTT	20	55,5	69		
Elovl5	cDNA	F: ACAAACGTGCGGGCACTAAG	20	62,7	110	1131	1131
		R: TCACACTGCAGATAGTAGGGCC	22	58,1	104		
Elovl6	cDNA	F: ACAAACGTGCGGGCACTAAG	20	58,2	84	1030	1030
		R: GCACCATATGGGATTCCTTG	20	53,6	97		
Srebf1	cDNA	F1: AACGTGGGCCTAGTCCGAA	19	57,9	85	769	3605
		R1: GCAGTGAGTCTGCCTTGATG	20	56,0	109		
		F2: AAGATGTACCCGTCCGTGTC	20	56,3	63	838	
		R2: TGTGCACTTCGTAGGGTCAG	20	56,5	110		
		F3: CCATCTTGGCCACAGTACCT	20	56,6	80	1017	
		R3: GGATGAGGTTCCAAAGCAGA	20	54,7	87		
		F4: ACAAGCTGACCTGGATTTGG	20	55,2	101	1121	
		R4: TGCCAGTTGGTGTAGAGGCTAA	22	57,6	91		
		F5: TTCTCTGTCAGCTCCAGCAT	20	55,5	68	1037	
		R5: ACTAAGGTGCCTACAGAGCA	20	54,9	102		

Gen	Matryca	Ta (°C)	liczba cykli
Scd1	cDNA	66	35
	gDNA	57	30
Fads1	cDNA	60	37
Fads2	cDNA	58	30
	gDNA	58	30
Elovl1	cDNA	57	37
Elovl2	cDNA	57	35
Elovl3	cDNA	57	37
Elovl5	cDNA	58	37
Elovl6	cDNA	58	37
Srebf1	cDNA	57	35

Tabela 3. Optymalizacja warunków reakcji PCR amplifikowanych genów. Ta – temperatura przyłączania starterów.

Tabela 4. Startery wykorzystane w reakcji real-time PCR; ps – wielkość produktu reakcji sekwencjonowania [pz - pary zasad]; n - długość startera [pz - pary zasad]; Tm temperatura topnienia; Q – jakość startera wyliczona w programie FastPCR.

Gen	Primer	ps [pz]	n [pz]	Tm [°C]	Q
Scd1#	F: CATTCAATCCCGGGAGAATA	139	20	51,7	72
	R: GTCGATGAAGAACGTGGTGA		20	54,5	87
Fads1**	F: TGTGTGGGTGACACAGATGA	115	20	55,6	54
	R: GTTGAAGGCTGATTGGTGAA		20	53,2	63
Fads2#	F: CCACCGACATTTCCAACAC	133	19	54,2	58
	R: GGGCAGGTATTTCAGCTTCTT		21	55,1	78
Elovl1#	F: CCCTACCTTTGGTGGAAGAA	137	20	54,1	92
	R: ATCCAGATGAGGTGGATGATGA		22	54,8	67
Elovl2#	F: ACGCTGGTCATCCTGTTCTT	119	20	56,0	75
	R: GCCACAATTAAGTGGGCTTT		20	54,0	89
Elovl3**	F: TTTGCCATCTACACGGATGA	143	20	53,6	97
	R: GTGCTGTGGTGGTACCAGTG		20	58,1	97
Elovl5**	F: CGGGAGAATCCGATATGAAG	118	20	52,3	57
	R: ACGGTGATCTGGTGGTTGTT		20	56,3	104
Elovl6#	F: ACAATGGACCTGTCAGCAAA	119	20	54,4	84
	R: GTACCAGTGCAGGAAGATCAGT		22	56,2	80
Srebf1#	F: TGCGGCTGTTGTCTACCATA	127	20	55,7	85
-	R: GATAGCATCTCCTGCGCACT		20	56,7	81
β -Actin*	F: AGGCCCAGAGCAAGAGAGGT	81	20	59,9	42
-	R: TCTCCATGTCGTCCCAGTTG		20	56,4	69
Źródła sek	wencii starterów:				

*

- Dobrzyń i in. 2010.
- ** Wang i in. 2006.
- Badania własne. #

Tabela 5. Loci mikrosatelitarnego DNA wykorzystane do zgenotypowania analizowanych myszy laboratoryjnej (*Mus musculus*), zestawione w dwóch panelach (MmI i MmII). Startery F (*forward*) zostały wyznakowane od końca 5' jednym ze znaczników fluorescencyjnych: VIC (zielony), FAM (niebieski), PET (czerwony) i NED (żółty).

Panel	Locus	Startery	Znacznik	Stężenie [µM]
MmI	D1Mit322*	F: CAAATTTACACCCATGTTGTGG R: TCAATGGAGGGGAAGATCAG	VIC	2,5
	D5Mit95*	F: TGTTCTTGTCCATGTCTGATCC R: AACCAAAGCATGAAACAGCC	VIC	2
	D12Mit4*	F: ACATCCCCAGCTCTTGTTTG R: AAACCAAACCAAAGAAGCTTAGG	FAM	2
	D17Mit51*	F: TCTGCCCTGTAACAGGAGCT R: CTTCTGGAATCAGAGGATCCC	PET	2
MmII	<u>D2Mit295</u> *	F: AAGCCAACCTCAATCCAATG R: GTCCTGACACACAGCAGCAT	NED	1
	D6Mit138*	F: GCTCTTATTAATGAAGAAGAAGAAGG R: CAAAGAAAGCATTTCAAGACTGC	VIC	4
	D10Mit20*	F: CACCCTCACACAGATATGCG R: GCATTGGGAAGTCCATGAGT	NED	1,25
	D15Mit16*	F: AGACTCAGAGGGCAAAATAAAGC R: TCGGCTTTTGTCTGTCTGTC	PET	2
	MUSMCKA(D7)**	F: CCAGACCATCTGATCCAGATC R: GGAGGTTGCAGTGAATTCAAG	FAM	1
	MMCY03(D9)**	F: AGTTTTAGGCTAGTATAGGTT R: ACTGGAACCTTAGAGCATGAG	FAM	3
	MMGFAPD(D11)*	F: GTACTAAAACGTCTACAAGTGG	NED	1
		R: GCGGATATATATGCAGCAGAG		

Źródła sekwencji starterów:

* www.informatics.jax.org

** Hearne i in.1991.

<u>D2Mit295</u> – locus wykluczone z dalszych analiz z powodu wysokiej frekwencji alleli zerowych.

Tabela 6. Wartości tempa metabolizmu podstawowego (BMR) skorygowanego o masę ciała oraz wartości resztkowe BMR myszy laboratoryjnej (*Mus musculus*) pochodzących z linii selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (N=120) oraz myszy z trzech linii nieselekcjonowanych na żadną cechę (US1, US2 i US3; N=36).

Linia	BMR (ml $O_2h^{-1}g^{-1}$) ± SE	Wartości resztkowe BMR (ml $O_2h^{-1}g^{-1}) \pm SE$
L-BMR	44,90 ± 0,618	$-9,01 \pm 0,805$
H-BMR	$66,56 \pm 1,469$	11,65 ± 1,093
US1	64,26 ± 1,322	$-1,67 \pm 1,110$
US2	$64,29 \pm 1,822$	2,18 ± 0,846
US3	63,52 ± 2,545	$-1,64 \pm 2,535$
US (śr)	$64,05 \pm 1,078$	$-0,27 \pm 0,936$

SE – błąd standardowy (ang. *standard error*)

Tabela 7. Wartości F (poniżej przekątnej) i *P* (powyżej przekątnej) w teście jednoczynnikowej ANOVA w porównaniach BMR (ml O₂ h⁻¹ g⁻¹) pomiędzy myszami laboratoryjnymi (*Mus musculus*) pochodzącymi z linii selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (N=120) oraz pomiędzy myszami z trzech linii nieselekcjonowanych na żadną cechę (US1, US2 i US3 oraz próby połączone: USśr.; N=36). Wartości istotne statystycznie pogrubiono.

Linia	L-BMR	H-BMR	US1	US2	US3	USśr.
L-BMR		< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
H-BMR	189,061		0,491	0,488	0,399	0,226
US1	163,853	0,478		0,988	0,794	-
US2	151,462	0,485	0,000		0,803	-
US3	107,172	0,719	0,070	0,063		-
USśr.	275,292	1,486	-	-	-	

Tabela 8. Wartości F (poniżej przekątnej) i *P* (powyżej przekątnej) w teście jednoczynnikowej ANOVA w porównaniach wartości resztkowych BMR (ml $O_2 h^{-1} g^{-1}$) pomiędzy myszami laboratoryjnymi (*Mus musculus*) pochodzącymi z linii selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (N=120) oraz pomiędzy myszami z trzech linii nieselekcjonowanych na żadną cechę (US1, US2 i US3 oraz połączone próby: USśr.; N=36). Wartości istotne statystycznie pogrubiono.

Linia	L-BMR	H-BMR	US1	US2	US3	USśr.
L-BMR		< 0,001	< 0,001	< 0,001	0,001	< 0,001
H-BMR	233,659		< 0,001	< 0,001	< 0,001	< 0,001
US1	15,124	28,694		0,010	0,989	-
US2	38,955	15,877	7,790		0,140	-
US3	11,523	23,183	0,0002	2,341		-
USśr.	47,296	56,818	-	-	-	

Tabela 9. Frekwencje alleli i genotypów w genach *Scd1* i *Fads2* u myszy laboratoryjnych (*Mus musculus*) selekcjonowanych w 32 oraz 22 pokoleniu na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego oraz wśród trzech linii myszy nieselekcjonowanych na żadną cechę (US1, US2 i US3).

Linia	Scd1					Fads2	Fads2			
	Frekwei	ncje alleli	Frekwei	ncje genotyp	ów	Frekwei	ncje alleli	Frekwei	ncje genotyp	ów
F32	F _A	F_{T}	F_{AA}	F_{AT}	F_{TT}	F_{A}	$F_{\rm G}$	F_{AA}	$F_{ m AG}$	$F_{ m GG}$
L-BMR	0,06	0,94	0,00	0,11	0,89	0,34	0,66	0,10	0,47	0,43
H-BMR	0,53	0,47	0,30	0,46	0,24	0,10	0,90	0,03	0,14	0,83
F22										
L-BMR	0,31	0,69	0,10	0,43	0,47	0,41	0,59	0,10	0,63	0,27
H-BMR	0,37	0,63	0,13	0,47	0,40	0,07	0,93	0,00	0,13	0,87
USśr.	0,72	0,28	0,67	0,11	0,22	0,28	0,72	0,11	0,33	0,56

Tabela 10. Zróżnicowanie genetyczne między liniami myszy laboratoryjnych (*Mus musculus*) selekcjonowanymi na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w pokoleniu F32 i F22 oraz w liniach nieselekcjonowanych na żadną cechę (US1, US2 i US3) w pokoleniu 16 w genach polimorficznych: *Scd1* i *Fads2* oraz w 10 loci mikrosatelitarnego DNA. F_{ST} – współczynnik zróżnicowania genetycznego (wariancja we frekwencji alleli).

I DMD --- II DMD

L-DIVIK VS H-DIVIK						
				$F_{ m ST}$		
Pokolenie	Fads2	zróżnicowanie genetyczne	Scd1	zróżnicowanie genetyczne	mikrosatelitarne DNA	zróżnicowanie genetyczne
F32	0,140	umiarkowane	0,426	bardzo wysokie	0,224	wysokie
F22	0,273	bardzo wysokie	0,000	brak	0,086	umiarkowane
US (US1 vs US2 US	S2 v US3)					
F16	0,045	niskie (ns)	0,458	bardzo wysokie	0,153	wysokie
					(0,148-0,159)	
F22 vs F32						
L-BMR	0,004	niskie (ns)	0,208	wysokie	0,060	umiarkowane
H-BMR	0,000	brak	0,043	niskie (ns)	0,042	niskie (ns)

Tabela 11. Charakterystyka 10 loci mikrosatelitarnego DNA powielonych u 234 myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie i wysokie tempo metabolizmu podstawowego (L-BMR i H-BMR) w 32 pokoleniu (F32; N=120) i 22 pokoleniu (F22; N=78) oraz myszy, pochodzących z trzech linii nieselekcjonowanych na żadną cechę (US1, US2, US3; N=36) w pokoleniu 16 (F16). N_A – liczba alleli przypadająca na locus; H_0 – heterozygotyczność obserwowana; H_e – heterozygotyczność oczekiwana; F_{Null} – frekwencja alleli zerowych.

Locus	N _A	Zakres wielkości	H_{o}	H _e	F _{Null}
D1Mit322	3	324-332	0,051	0,067	0,123
D5Mit95	4	118-134	0,568	0,635	0,057
D6Mit138	4	126-138	0,248	0,301	0,087
D10Mit20	6	218-238	0,517	0,648	0,119
D12Mit4	3	184-207	0,504	0,598	0,063
D15Mit16	4	119-135	0,295	0,292	-0,002
D17Mit51	4	141-157	0,423	0,485	0,053
MUSMCKA(D7)	2	123-139	0,197	0,224	0,064
MMCY03(D9)	3	188-200	0,547	0,561	0,010
MMGFAPD(D11)	2	96-100	0,043	0,058	0,144

Tabela 12. Charakterystyka 10 loci mikrosatelitarnego DNA powielonych u myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie i wysokie tempo metabolizmu podstawowego w pokoleniu F32 (L-BMR; N=61 i H-BMR; N=59) i F22 (L-BMR; N=40 i H-BMR; N=38) oraz myszy, pochodzących z trzech linii nieselekcjonowanych na żadną cechę (US1; N=12, US2; N=13, US3; N=11) w F16. N_A – średnia liczba alleli przypadająca na locus; H_o – heterozygotyczność obserwowana; H_e – heterozygotyczność oczekiwana.

Linia	N _A	H _o	He
F32	2,8	0,311	0,351
L-BMR	2,2	0,285	0,292
H-BMR	2,4	0,337	0,322
F22	2,7	0,353	0,380
L-BMR	2,7	0,340	0,366
H-BMR	2,6	0,366	0,360
USśr.	2,8	0,405	0,431
US1	2,3	0,358	0,369
US2	2,3	0,385	0,361
US3	2,3	0,482	0,432

Tabela 13. Allele stwierdzone w 10 loci mikrosatelitarnego DNA występujące u 234 myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie i wysokie tempo metabolizmu podstawowego w pokoleniu F32 (L-BMR; N=61 i H-BMR; N=59) i F22 (L-BMR; N=40 i H-BMR; N=38) oraz myszy pochodzących z trzech linii nieselekcjonowanych na żadną cechę w F16 (US1; N=12, US2; N=13, US3; N=11). Allele prywatne (*Np*) zaznaczone na szaro.

		F	32	F22		US		
Locus	Allel	L- BMR	H- BMR	L- BMR	H- BMR	US1	US2	US3
D1Mit322	324	_	_	+	+	_	+	_
	328	+	+	+	+	+	+	+
	332	_	_	_	_	_	_	+
D5Mit95	118	+	+	+	+	+	+	+
	130	+	+	+	+	+	+	+
	132	+	+	+	+	+	+	+
	134	+	-	-	—	-	-	_
D6Mit138	126	_	+	_	_	+	+	+
	130	+	+	+	+	+	+	+
	134	+	+	+	+	+	-	+
	138	_	+	_	—	_	-	_
D10Mit20	218	_	+	_	_	_	_	_
	222	+	+	+	+	+	+	+
	226	_	_	-	_	+	+	+
	230	+	—	+	+	+	+	—
	234	+	—	+	+	+	-	+
	238	+	+	+	+	-	-	—
D12Mit4	184	+	+	+	+	+	+	+
	195	+	-	+	+	-	-	-
	207	_	+	+	+	+	+	+
D15Mit16	119	_	_	=	_	_	+	_
	127	-	—	+	—	—	-	—
	131	+	+	+	+	+	+	+
	135	+	+	+	+	+	+	+
D17Mit51	141	+	+	+	+	_	_	_
	143	+	+	+	+	+	+	+
	150	-	-	-	-	-	+	_
	157	_	+	+	+	+	-	+
MUSMCKA(D7)	123	+	+	+	+	+	+	+
	139	—	+	+	+	-	+	+
MMCY03(D9)	188	+	+	+	+	+	+	+
	196	+	+	+	+	+	+	+
	200	+	+	+	+	+	+	+
MMGFAPD(D11)	96	+	+	+	+	+	+	+
、 <i>'</i>	100	_	_	+	+	+	_	_

Tabela 14. Procentowy udział poszczególnych kwasów tłuszczowych we frakcji lipidów całkowitych (TL) i fosfolipidów (PL), wyizolowanych z fragmentów wątroby myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu eksperymentu. Wartości *P* i F uzyskano porównując obie linie myszy testem jednoczynnikowej ANOVA. Wartości *P* istotne statystycznie pogrubiono. Graficzne przedstawienie profili lipidowych znajduje się w Suplemencie (Rycina S1 i S2).

Kwasy tłuszczowe	TL (%)			PL (%)				
	L-BMR	H-BMR	F	Р	L-BMR	H-BMR	F	Р
C14:0	$0,33 \pm 0,076$	$0,15 \pm 0,007$	5,557	0,020	-	-	-	-
C16:0 [#]	$34,38 \pm 0,324$	$36,01 \pm 0,239$	16,520	< 0,001	$35,83 \pm 0,184$	$36,90 \pm 0,176$	17,800	< 0,001
C18:0 [#]	$10,07 \pm 0,136$	$10,70 \pm 0,176$	8,005	0,005	$13,51 \pm 0,129$	$13,16 \pm 0,168$	2,830	0,095
C20:0	$0,06 \pm 0,003$	$0,09 \pm 0,003$	94,944	< 0,001	-	-	-	-
C16:1n-7 ^{##}	$2,36 \pm 0,072$	$1,80 \pm 0,071$	31,205	< 0,001	$1,32 \pm 0,022$	$1,21 \pm 0,041$	5,706	0,018
C18:1n-7	$13,27 \pm 0,465$	$3,20 \pm 0,484$	255,014	< 0,001	$1,89 \pm 0,029$	$2,07 \pm 0,096$	3,397	0,068
C18:1n-9* ^{##}	$2,97 \pm 0,433$	$10,96 \pm 0,442$	166,522	< 0,001	$6,99 \pm 0,073$	$7,76 \pm 0,096$	41,280	< 0,001
C20:1n-9	$0,36 \pm 0,009$	$0,34 \pm 0,012$	1,689	0,196	-	-	-	-
C18:2n-6*	$19,25 \pm 0,321$	$19,31 \pm 0,172$	0,030	0,867	$21,79 \pm 0,185$	$19,90 \pm 0,152$	62,160	< 0,001
C18:3n-3*	$0,07 \pm 0,003$	$0,05 \pm 0,002$	25,230	< 0,001	-	-	-	-
C18:3n-6**	$0,08 \pm 0,003$	$0,07 \pm 0,003$	4,424	0,038	-	-	-	-
C20:4n-6	$6,64 \pm 0,133$	$7,34 \pm 0,088$	19,406	< 0,001	$8,24 \pm 0,079$	$8,41 \pm 0,084$	2,130	0,147
C20:5n-3	$1,98 \pm 0,037$	$2,08 \pm 0,161$	2,159	0,144	$2,14 \pm 0,041$	$2,19 \pm 0,067$	0,376	0,541
C22:6n-3**	$8,32 \pm 0,092$	$7,86 \pm 0,114$	9,960	< 0,01	$8,28 \pm 0,119$	$8,39 \pm 0,069$	0,660	0,419
SFA	$44,85 \pm 0,389$	$46,96 \pm 0,293$	18,170	< 0,001	$49,35 \pm 0,238$	$50,06 \pm 0,162$	6,2	< 0,05
MUFA	$18,86 \pm 0,378$	$16,30 \pm 0,371$	24,926	< 0,001	$10,20 \pm 0,097$	$11,04 \pm 0,198$	14,758	< 0,001
PUFA	$36,29 \pm 0,513$	$36,74 \pm 0,228$	0,880	0,350	$40,46 \pm 0,200$	$38,90 \pm 0,127$	42,9	< 0,001
IxA SCD-1c	$0,07 \pm 0,002$	$0,05 \pm 0,002$	38,020	< 0,001	-	-	-	-
IxA D6D	$0,0042 \pm 0,0002$	$0,0036 \pm 0,0001$	5,991	< 0,05	-	-	-	-
IS	$0,55 \pm 0,043$	$0,45 \pm 0,012$	6,047	< 0,05	$0,25 \pm 0,003$	$0,28 \pm 0,006$	27,385	< 0,001
IU	$143,72 \pm 1,517$	$142,\!42\pm0,\!827$	0,39	0,535	$147, 14 \pm 0,755$	$145,79 \pm 0,331$	2,7	0,106
IP	$124,31 \pm 1,791$	$124,99 \pm 1,152$	0,200	0,656	$134,11 \pm 0,887$	$134,09 \pm 0,498$	0,000	0,989

[#] - kwasy tłuszczowe, będące bezpośrednimi substratami Δ9-desaturazy (SCD-1c); ^{##} - produkty Δ9-desaturazy (SCD-1c); * - kwasy tłuszczowe, będące bezpośrednimi substratami Δ6-desaturazy (D6D); ** - produkty Δ6-desaturazy (D6D); SFA, nasycone kwasy tłuszczowe; MUFA, jednonienasycone kwasy tłuszczowe; PUFA, wielonienasycone kwasy tłuszczowe; IxA SCD-1c, indeks aktywności Δ9-desaturazy (C16:1n-7/16:0); IxA D6D, indeks aktywności Δ6-desaturazy (C18:3n-6/18:2n-6); IS, indeks saturacji; IU, indeks nienasycenia; IP, indeks peroksydacji.

Tabela 15. Procentowy udział poszczególnych kwasów tłuszczowych we frakcji lipidów całkowitych (TL) i fosfolipidów (PL), wyizolowanych z fragmentów wątroby myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu i posiadających różne allele w genie *Scd1* (AA, AT, TT), kodującym Δ 9-desaturazę (SCD-1c). Wartości *P* i F uzyskano porównując obie linie myszy testem jednoczynnikowej ANOVA. Graficzne przedstawienie profili lipidowych znajduje się w Suplemencie (Rycina S3 i S4).

Kwasy tłuszczowe	e TL (%) PL (%)					
	AA	AT	TT	AA	AT	TT
C14:0	$0,15 \pm 0,015$	$0,17 \pm 0,015$	$0,30 \pm 0,068$	-	-	-
C16:0 [#]	$36,65^{\rm b} \pm 0,423$	$35,71^{\circ} \pm 0,318$	$34,53^{bc} \pm 0,301$	$37,09^{b} \pm 0,201$	$36,82^{\circ} \pm 0,316$	$35,95^{\rm bc} \pm 0,158$
C18:0 [#]	$10,74^{\rm b} \pm 0,321$	$10,62 \pm 0,260$	$10,16^{\rm b} \pm 0,124$	$13,41 \pm 0,275$	$13,03 \pm 0,240$	$13,47 \pm 0,124$
C20:0	$0,10^{\rm b} \pm 0,005$	$0,09^{\circ} \pm 0,004$	$0,06^{\rm bc} \pm 0,003$	-	-	-
C16:1n-7 ^{##}	$1,75^{\rm b} \pm 0,136$	$1,93^{\circ} \pm 0,100$	$2,25^{\rm bc} \pm 0,073$	$1,11^{b} \pm 0,075$	$1,30 \pm 0,053$	$1,29^{\rm b} \pm 0,025$
C18:1n-7	$2,61^{ab} \pm 0,778$	$5,\!48^{\mathrm{ac}}\pm0,\!928$	$11,19^{\rm bc} \pm 0,679$	$1,83 \pm 0,144$	$2,17^{c} \pm 0,133$	$1,93^{\circ} \pm 0,043$
C18:1n-9 ^{##}	$11,42^{b} \pm 0,722$	$9,01^{\circ} \pm 0,807$	$4,69^{bc} \pm 0,584$	$7,62^{b} \pm 0,194$	$7,71^{\circ} \pm 0,132$	$7,13^{\rm bc} \pm 0,080$
C20:1n-9	$0,33 \pm 0,027$	$0,35 \pm 0,015$	$0,36 \pm 0,008$	-	-	-
C18:2n-6	$19,41 \pm 0,251$	$18,96 \pm 0,248$	$19,40 \pm 0,290$	$20,18^{b} \pm 0,193$	$19,99^{\circ} \pm 0,293$	$21,46^{bc} \pm 0,179$
C18:3n-3	$0,05^{\rm b} \pm 0,004$	$0,05^{\circ} \pm 0,003$	$0,06^{\rm bc} \pm 0,003$	-	-	-
C18:3n-6	$0,07^{\rm b} \pm 0,005$	$0,07 \pm 0,004$	$0,08^{\rm b} \pm 0,003$	-	-	-
C20:4n-6	$7,10 \pm 0,175$	$7,25^{\circ} \pm 0,115$	$6,83^{\circ} \pm 0,131$	$8,20 \pm 0,160$	$8,29 \pm 0,095$	$8,37 \pm 0,80$
C20:5n-3	$2,00 \pm 0,104$	$2,19^{\circ} \pm 0,080$	$1,95^{\circ} \pm 0,038$	$2,15 \pm 0,103$	$2,31^{\circ} \pm 0,089$	$2,11^{\circ} \pm 0,044$
C22:6n-3	$7,61^{a} \pm 0,179$	$8,12^{a} \pm 0,153$	$8,13 \pm 0,130$	$8,40 \pm 0,093$	$8,38 \pm 0,110$	$8,29 \pm 0,106$
SFA	$47,64^{b} \pm 0,580$	$46,59^{\circ} \pm 0,370$	$45,06^{bc} \pm 0,377$	$50,51^{b} \pm 0,304$	$49,85 \pm 0,282$	$49,41^{\rm b} \pm 0,196$
MUFA	$16,11^{\rm b}\pm0,750$	$16,77^{\circ} \pm 0,491$	$18,49^{\rm bc} \pm 0,382$	$10,56 \pm 0,379$	$11,18^{\circ} \pm 0,250$	$10,35^{\circ} \pm 0,117$
PUFA	$36,24 \pm 0,452$	$36,64 \pm 0,282$	$36,45 \pm 0,479$	$38,93^{\text{b}} \pm 0,213$	$38,97^{\circ} \pm 0,234$	$40,23^{\rm bc} \pm 0,181$
IxA SCD-1c	$0,05 \pm 0,004^{\rm b}$	$0,05 \pm 0,003^{\circ}$	$0,07 \pm 0,002^{\rm bc}$	-	-	-
IS	$0,45 \pm 0,025$	$0,46 \pm 0,016$	$0,54 \pm 0,040$	$0,27 \pm 0,011$	$0,29^{\rm c} \pm 0,007$	$0,26^{\circ} \pm 0,003$
IU	$139,38^{a} \pm 1,452$	$143,72^{a} \pm 1,007$	$143,74 \pm 1,385$	$144,87 \pm 0,576$	$146,13 \pm 0,657$	147,06 ±0,631
IP	$121,38^{a} \pm 1,937$	$126,72^{a} \pm 1,480$	$124,21 \pm 1,684$	$133,34 \pm 0,849$	$134,\!30\pm0,\!827$	$134,20 \pm 0,767$

Jednoczynnikowa ANOVA; P < 0,05: różnica pomiędzy genotypami^a – AA i AT; ^b – AA i TT; ^c – AT i TT; [#] - kwasy tłuszczowe, będące bezpośrednimi substratami Δ 9-desaturazy (SCD-1c); ^{##} - produkty Δ 9-desaturazy (SCD-1c); SFA, nasycone kwasy tłuszczowe; MUFA, jednonienasycone kwasy tłuszczowe; PUFA, wielonienasycone kwasy tłuszczowe; IxA SCD-1c, indeks aktywności Δ 9-desaturazy (C16:1n-7/16:0); IS, indeks saturacji; IU, indeks nienasycenia; IP, indeks peroksydacji.

Tabela 16. Procentowy udział poszczególnych kwasów tłuszczowych we frakcji lipidów całkowitych (TL) i fosfolipidów (PL), wyizolowanych z fragmentów wątroby myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu eksperymentu i posiadających różne allele w genie *Fads2* (AA, AG, GG), kodującym Δ 6-desaturazę (D6D). Wartości *P* i F uzyskano porównując obie linie myszy testem jednoczynnikowej ANOVA. Graficzne przedstawienie profili lipidowych znajduje się w Suplemencie (Rycina S5 i S6).

Kwasy tłuszczowe	TL (%)					
	AA	AG	GG	AA	AG	GG
C14:0	$0,18 \pm 0,013$	$0,37^{c} \pm 0,121$	$0,18^{c} \pm 0,010$	-	-	-
C16:0	$34,82 \pm 0,592$	$34,50^{\circ} \pm 0,513$	$35,59^{\circ} \pm 0,211$	$35,95 \pm 0,707$	$35,54^{\circ} \pm 0,263$	$36,80^{\circ} \pm 0,137$
C18:0	$10,64 \pm 0,491$	$10,33 \pm 0,222$	$10,38 \pm 0,139$	$12,96 \pm 0,686$	$13,63 \pm 0,203$	$13,24 \pm 0,117$
C20:0	$0,07 \pm 0,006$	$0,06^{\circ} \pm 0,004$	$0,08^{\circ} \pm 0,003$	-	-	-
C16:1n-7	$1,96 \pm 0,119$	$2,23 \pm 0,087$	$2,02 \pm 0,078$	$1,36 \pm 0,086$	$1,28 \pm 0,035$	$1,25 \pm 0,033$
C18:1n-7	$9,41 \pm 1,501$	$11,49^{\rm c} \pm 0,912$	$6,45^{\circ} \pm 0,711$	$2,10 \pm 0,157$	$1,99 \pm 0,098$	$1,96 \pm 0,062$
C18:1n-9*	$4,98 \pm 1,978$	$4,63^{\circ} \pm 0,796$	$8,36^{\circ} \pm 0,711$	$7,63 \pm 0,352$	$7,23 \pm 0,111$	$7,\!40 \pm 0,\!089$
C20:1n-9	$0,33 \pm 0,026$	$0,37 \pm 0,013$	$0,35 \pm 0,010$	-	-	-
C18:2n-6*	$18,98 \pm 0,579$	$19,12 \pm 0,487$	$19,39 \pm 0,577$	$20,84 \pm 0,666$	$21,61^{\circ} \pm 0,273$	$20,50^{\circ} \pm 0,168$
C18:3n-3*	$0,04^{a} \pm 0,004$	$0,07^{\rm ac} \pm 0,005$	$0,05^{\circ} \pm 0,149$	-	-	-
C18:3n-6**	$0,06 \pm 0,007$	$0,08^{\circ} \pm 0,005$	$0,07^{\rm c} \pm 0,002$	-	-	-
C20:4n-6	$7,63^{\mathrm{a}} \pm 0,287$	$6,70^{\mathrm{ac}} \pm 0,171$	$7,07^{c} \pm 0,099$	$8,56 \pm 0,169$	$8,27 \pm 0,096$	$8,33 \pm 0,077$
C20:5n-3	$2,15 \pm 0,110$	$1,99 \pm 0,068$	$2,04 \pm 0,046$	$2,21 \pm 0,153$	$2,15 \pm 0,068$	$2,17 \pm 0,051$
C22:6n-3**	$8,7^{b} \pm 0,350$	$8,22 \pm 0,187$	$7,96^{b} \pm 0,013$	$8,39 \pm 0,278$	$8,30 \pm 0,118$	$8,34 \pm 0,089$
SFA	$45,71 \pm 0,434$	$45,27 \pm 0,635$	$46,23 \pm 0,280$	$48,91^{\rm b} \pm 0,788$	$49,17^{c} \pm 0,275$	$50,04^{\rm cb} \pm 0,165$
MUFA	$16,68 \pm 0,705$	$18,73^{\circ} \pm 0,498$	$17,18^{c} \pm 0,380$	$11,09 \pm 0,570$	$10,50 \pm 0,178$	$10,62 \pm 0,152$
PUFA	$37,61^{ab} \pm 0,624$	$34,02^{a} \pm 0,768$	$34,55^{\rm b} \pm 0,235$	$40,00 \pm 0,732$	$40,33^{\circ} \pm 0,239$	$39,34^{\circ} \pm 0,160$
IxA D6D	$0,0035 \pm 0,0005$	$0,0045 \pm 0,0003^{\circ}$	$0,0037 \pm 0,0001^{\circ}$	-	-	-
IS	$0,45 \pm 0,025$	$0,57 \pm 0,070$	$0,47 \pm 0,013$	$0,28 \pm 0,017$	$0,26 \pm 0,005$	$0,27 \pm 0,005$
IU	$148,69^{b} \pm 2,035$	$142,50 \pm 2,375$	$142,77^{\rm b}\pm 0,709$	$148,40 \pm 2,192$	$147,36 \pm 0,707$	$145,84 \pm 0,513$
IP	$132,98 \pm 3,391$	$123,09 \pm 2,633$	$124,29 \pm 1,031$	$135,75 \pm 2,351$	$134,27 \pm 0,834$	$133,85 \pm 0,661$

Jednoczynnikowa ANOVA; P < 0,05: różnica pomiędzy genotypami ^a – AA i AG; ^b – AA i GG; ^c – AG i GG; * - kwasy tłuszczowe, będące bezpośrednimi substratami $\Delta 6$ desaturazy (D6D); ** - produkty $\Delta 6$ -desaturazy (D6D); SFA, nasycone kwasy tłuszczowe; MUFA, jednonienasycone kwasy tłuszczowe; PUFA, wielonienasycone kwasy tłuszczowe; IxA D6D, indeks aktywności $\Delta 6$ -desaturazy (C18:3n-6/18:2n-6); IS, indeks saturacji; IU, indeks nienasycenia; IP, indeks peroksydacji. **Tabela 17**. Wartości F (poniżej przekątnej) i *P* (powyżej przekątnej) w teście jednoczynnikowej ANOVA w porównaniach indeksu aktywności Δ 9-desaturazy (IxA SCD-1c) pomiędzy myszami laboratoryjnymi (*Mus musculus*) pochodzącymi z linii selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) oraz pomiędzy myszami z trzech linii nieselekcjonowanych na żadną cechę (US1, US2 i US3). Wartości istotne statystycznie pogrubiono.

Linia	L-BMR	H-BMR	US1	US2	US3	USśr.
L-BMR		< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
H-BMR	38,02		0,689	0,738	0,315	0,996
US1	12,762	0,161		0,888	0,205	-
US2	13,765	0,122	0,020		0,189	-
US3	6,143	1,026	1,709	1,842		-
USśr.	34,78	0,000	-	-	-	

Tabela 18. Wartości F (poniżej przekątnej) i *P* (powyżej przekątnej) w teście jednoczynnikowej ANOVA w porównaniach indeksu aktywności Δ 6-desaturazy (IxA D6D) pomiędzy myszami laboratoryjnymi (*Mus musculus*) pochodzącymi z linii selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) oraz pomiędzy myszami z trzech linii nieselekcjonowanych na żadną cechę (US1, US2 i US3). Wartości istotne statystycznie pogrubiono.

Linia	L-BMR	H-BMR	US1	US2	US3	USśr.
L-BMR		0,016	0,001	< 0,001	< 0,001	< 0,001
H-BMR	5,991		0,005	< 0,001	< 0,001	< 0,001
US1	11,242	8,543		0,231	0,009	-
US2	19,422	18,736	1,512		0,103	-
US3	19,474	24,274	8,744	2,954		-
USśr.	43,055	37,815	-	-	-	

Wykres 1. Skorygowane o masę ciała (**A**) wartości tempa metabolizmu podstawowego (BMR); (**B**) wartości resztkowe tempa metabolizmu podstawowego (BMR) w liniach myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR; N=61) i wysokie (H-BMR; N=59) tempo metabolizmu podstawowego w 32 pokoleniu (F32) oraz trzech linii myszy nieselekcjonowanych na żadną cechę (US1, US2 i US3; N=36) w 16 pokoleniu (F16).

Wykres 2. Skorygowane o masę ciała (**A**) wartości tempa metabolizmu podstawowego (BMR) oraz (**B**) wartości resztkowe BMR w liniach myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie i wysokie (L-BMR i H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32), posiadających różne allele w genie *Scd1*, kodującym Δ 9-desaturazę (stearoilo-CoA desaturazą; SCD-1c).

Wykres 3. Skorygowane o masę ciała (A) wartości tempa metabolizmu podstawowego (BMR) oraz (B) wartości resztkowe BMR w liniach myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie i wysokie (L-BMR i H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32), posiadających różne allele w genie *Fads2*, kodującym Δ 6-desaturazę kwasów tłuszczowych (D6D).

Wykres 4. Indeks aktywności Δ 9-desaturazy (IxA SCD-1c) wyrażony jako stosunek produktu (kwasu palmitooleinowego; PO, C16:1n-7) do substratu (kwasu palmitynowego; C16:0) we frakcji lipidów całkowitych (TL) wyekstrahowanych z wątrób myszy laboratoryjnych (*Mus musculus*) (**A**) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) oraz z trzech linii myszy nieselekcyjnych (US1, US2 i US3), a także (**B**) z linii L-BMR i H-BMR (F32), posiadających różne warianty genetyczne w genie *Scd1*.

Wykres 5. Indeks aktywności Δ6-desaturazy (IxA D6D) wyrażony jako stosunek produktu (kwasu γ -linolenowego; GLA, C18:3n-6) do substratu (kwasu linolowego; LA, 18:2n-6) we frakcji lipidów całkowitych (TL) wyekstrahowanych z wątrób myszy laboratoryjnych (*Mus musculus*) (A) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) oraz z trzech linii myszy nieselekcyjnych (US1, US2 i US3), a także (B) z linii L-BMR i H-BMR (F32), posiadających różne warianty genetyczne w genie *Fads2*.

Wykres 6. Aktywność pompy sodowo-potasowej $(Na^+/K^+-ATPazy)$ myszy laboratoryjnych (*Mus musculus*) (**A**) z linii selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu oraz w trzech liniach nieselekcyjnych (US1, US2 i US3), a także (**B**) z linii L-BMR i H-BMR, posiadających różne genotypy w genie *Scd1* (AA, AT, TT) oraz (**C**) w genie *Fads2* (AA, AG i GG).

Wykres 7. Zależność pomiędzy skorygowanym o masę ciała (A) tempem metabolizmu podstawowego (BMR) oraz (B) wartościami resztkowymi BMR w liniach myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) a indeksem aktywności Δ9-desaturazy (IxA SCD-1c) wyznaczonym na podstawie oznaczeń kwasów tłuszczowych we frakcji lipidów całkowitych (TL).

Wykres 8. Zależność pomiędzy skorygowanym o masę ciała (A) tempem metabolizmu podstawowego (BMR) oraz (B) wartościami resztkowymi BMR w liniach myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) a indeksem aktywności Δ 6-desaturazy (IxA D6D) wyznaczonym na podstawie oznaczeń kwasów tłuszczowych we frakcji lipidów całkowitych (TL).

Wykres 9. Zależność pomiędzy skorygowanym o masę ciała (A) tempem metabolizmu podstawowego (BMR) oraz (B) wartościami resztkowymi BMR w liniach myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) a procentowym udziałem nasyconych kwasów tłuszczowych (SFA) w ich hepatocytach, wyznaczonym na podstawie oznaczeń kwasów tłuszczowych we frakcji lipidów całkowitych (TL).

Wykres 10. Zależność pomiędzy skorygowanym o masę ciała (A) tempem metabolizmu podstawowego (BMR) oraz (B) wartościami resztkowymi BMR w liniach myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) a procentowym udziałem nasyconych kwasów tłuszczowych (SFA) w ich hepatocytach, wyznaczonym na podstawie oznaczeń kwasów tłuszczowych we frakcji fosfolipidów (PL).

Wykres 11. Zależność pomiędzy skorygowanym o masę ciała (A) tempem metabolizmu podstawowego (BMR) oraz (B) wartościami resztkowymi BMR w liniach myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) a procentowym udziałem jednonienasyconych kwasów tłuszczowych (MUFA) w ich hepatocytach, wyznaczonym na podstawie oznaczeń kwasów tłuszczowych we frakcji lipidów całkowitych (TL).

Wykres 12. Zależność pomiędzy skorygowanym o masę ciała (**A**) tempem metabolizmu podstawowego (BMR) oraz (**B**) wartościami resztkowymi BMR w liniach myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) a procentowym udziałem jednonienasyconych kwasów tłuszczowych (MUFA) w ich hepatocytach, wyznaczonym na podstawie oznaczeń kwasów tłuszczowych we frakcji fosfolipidów (PL).

Wykres 13. Zależność pomiędzy skorygowanym o masę ciała (A) tempem metabolizmu podstawowego (BMR) oraz (B) wartościami resztkowymi BMR w liniach myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) a procentowym udziałem wielonienasyconych kwasów tłuszczowych (PUFA) w ich hepatocytach, wyznaczonym na podstawie oznaczeń kwasów tłuszczowych we frakcji lipidów całkowitych (TL).

Wykres 14. Zależność pomiędzy skorygowanym o masę ciała (A) tempem metabolizmu podstawowego (BMR) oraz (B) wartościami resztkowymi BMR w liniach myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) a procentowym udziałem wielonienasyconych kwasów tłuszczowych (PUFA) w ich hepatocytach, wyznaczonym na podstawie oznaczeń kwasów tłuszczowych we frakcji fosfolipidów (PL).

Wykres 15. Zależność pomiędzy skorygowanym o masę ciała (A) tempem metabolizmu podstawowego (BMR) oraz (B) wartościami resztkowymi BMR w liniach myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) a indeksem saturacji (IS) wyznaczonym na podstawie oznaczeń kwasów tłuszczowych we frakcji fosfolipidów (PL).

Wykres 16. Zależność pomiędzy skorygowanym o masę ciała (A) tempem metabolizmu podstawowego (BMR) oraz (B) wartościami resztkowymi BMR w liniach myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) a indeksem nienasycenia (IU) wyznaczonym na podstawie oznaczeń kwasów tłuszczowych we frakcji fosfolipidów (PL).

Wykres 17. Zależność pomiędzy skorygowanym o masę ciała (A) tempem metabolizmu podstawowego (BMR) oraz (B) wartościami resztkowymi BMR w liniach myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) a indeksem peroksydacji (IP) wyznaczonym na podstawie oznaczeń kwasów tłuszczowych we frakcji fosfolipidów (PL).

Wykres 18. Zależność pomiędzy skorygowanym o masę ciała (A) tempem metabolizmu podstawowego (BMR) oraz (B) wartościami resztkowymi BMR w liniach myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) a aktywnością pompy sodowo-potasowej (Na⁺/K⁺-ATPazy).

Wykres 19. Zależność pomiędzy indeksem aktywności Δ 9-desaturazy (IxA SCD-1c) wyznaczonym na podstawie oznaczeń kwasów tłuszczowych we frakcji lipidów całkowitych (TL) w liniach myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) a procentowym udziałem jednonienasyconych kwasów tłuszczowych (MUFA) w ich hepatocytach, wyznaczonym na podstawie oznaczeń kwasów tłuszczowych we frakcji (**A**) lipidów całkowitych (TL) oraz (**B**) fosfolipidów (PL).

Wykres 20. Zależność pomiędzy indeksem aktywności Δ 9-desaturazy (IxA SCD-1c) wyznaczonym na podstawie oznaczeń kwasów tłuszczowych we frakcji lipidów całkowitych (TL) a (**A**) indeksem saturacji (IS), (**B**) indeksem nienasycenia (IU) oraz (**C**) indeksem peroksydacji (IP) błon komórkowych, wyznaczonymi na podstawie oznaczeń kwasów tłuszczowych we frakcji fosfolipidów (PL).

Wykres 21. Zależność pomiędzy indeksem aktywności Δ 6-desaturazy (IxA D6D) wyznaczonym na podstawie oznaczeń kwasów tłuszczowych we frakcji lipidów całkowitych (TL) w liniach myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) a procentowym udziałem wielonienasyconych kwasów tłuszczowych (PUFA) w ich hepatocytach, wyznaczonym na podstawie oznaczeń kwasów tłuszczowych we frakcji (**A**) lipidów całkowitych (TL) oraz (**B**) fosfolipidów (PL).

Wykres 22. Zależność pomiędzy indeksem aktywności Δ 6-desaturazy (IxA D6D) wyznaczonym na podstawie oznaczeń kwasów tłuszczowych we frakcji lipidów całkowitych (TL) a (**A**) indeksem saturacji (IS), (**B**) indeksem nienasycenia (IU) oraz (**C**) indeksem peroksydacji (IP) błon komórkowych, wyznaczonymi na podstawie oznaczeń kwasów tłuszczowych we frakcji fosfolipidów (PL).

Ryciny

Rycina 1. Szlaki metaboliczne kwasów tłuszczowych omega-3 (ω3; n-3), omega-6 (ω6; n-6), omega-7 (ω7; n-7) oraz omega-9 (ω9; n-9).

Rycina 2. Miejsca zmienne w genie *Scd1* zlokalizowanym na chromosomie 19 w genomie myszy laboratoryjnej (*Mus musculus*). (**A**) Ideogram chromosomu 19 myszy laboratoryjnej (*Mus musculus*); ramka na schemacie wskazuje lokalizację genu *Scd1*. Gen ten jest położony pomiędzy 44 394 451 a 44 407 709 parą zasad w sekcji C3 chromosomu 19. (**B**) Schemat genu *Scd1*; strzałka wskazuje kierunek transkrypcji genu; egzony są reprezentowane przez zacienione prostokąty, podczas gdy introny przez łączące je ciemne linie. (**C**) Dwa allele genu *Scd1*; kodony zawierające polimorfizm oraz odpowiadające im aminokwasy znajdują się w niezacienionych ramkach.

Rycina 3. Miejsca zmienne w genie *Fads2* zlokalizowanym na chromosomie 19 w genomie myszy laboratoryjnej (*Mus musculus*). (**A**) Ideogram chromosomu 19 myszy laboratoryjnej (*Mus musculus*); ramka na schemacie wskazuje lokalizację genu *Fads2*. Gen ten jest położony pomiędzy 10 138 654 a 10 175 993 parą zasad w sekcji B chromosomu 19. (**B**) Schemat genu *Fads2*; strzałka wskazuje kierunek transkrypcji genu; egzony są reprezentowane przez zacienione prostokąty, podczas gdy introny przez łączące je ciemne linie. (**C**) Dwa allele genu *Fads2*; kodony zawierające polimorfizm oraz odpowiadające im aminokwasy znajdują się w niezacienionych ramkach. Dodatkowo na czerwono zaznaczono polimorfizm niesynonimowy.

Rycina 4. Test na selekcję w locus *Scd1* przeprowadzony w programie LOSITAN: porównanie wartości współczynnika zróżnicowania genetycznego (F_{ST}) oraz heterozygotyczności oczekiwanej (H_e) w loci polimorficznych, tj. w genie *Scd1* i 10 loci mikrosatelitarnego DNA w genomie myszy laboratoryjnych (*Mus musculus*) selekcjonowanych w 32 pokoleniu na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego.

Rycina 5. Test na selekcję w locus *Fads2* przeprowadzony w programie LOSITAN: porównanie wartości współczynnika zróżnicowania genetycznego (F_{ST}) oraz heterozygotyczności oczekiwanej (H_e) w loci polimorficznych, tj. w genie *Fads2* i 10 loci mikrosatelitarnego DNA w genomie myszy laboratoryjnych (*Mus musculus*) selekcjonowanych w 22 pokoleniu na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego.

Rycina 6. Test na selekcję przeprowadzony w programie LOSITAN: porównanie wartości współczynnika zróżnicowania genetycznego (F_{ST}) oraz heterozygotyczności oczekiwanej (H_e) w loci polimorficznych, tj. w genach *Scd1* i *Fads2* oraz 10 loci mikrosatelitarnego DNA w genomie myszy laboratoryjnych (*Mus musculus*) nie selekcjonowanych na żadną cechę w 16 pokoleniu (US).

Suplement

Suplement 1A. Sekwencja genu *Scd1*, kodującego Δ 9-desaturazę kwasów tłuszczowych (stearoilo-CoA desaturaza, SCD-1c) myszy domowej (*Mus musculus*) – allel A; cDNA (jednoniciowe DNA uzyskane na matrycy mRNA).

AGGTTTCCAAGCGCAGTTCCGCCACTCGCCTACACCGAGGCTCCGGAACCGAAGTCCACGCTCGATCTCAG CACTGGGAAAGTGAGGCGAGCAACTGACTATCATCATGCCGGCCCACATGCTCCAAGAGATCTCCAGTTCTTA CACGACCACCACCATCACTGCACCTCCCGGAAATGAACGAGAGAGGTGAAGACGGTGCACCTCCAC CTGGAAGAAGACATCCGTCCTGAAATGAAAGAAGATATTCACGACCCCACCTATCAGGATGAGGAGGGACCCC CGCCCAAGCTGGAGTACGTCTGGAGGAACATCATTCTCATGGTCCTGCTGCACTTGGGAGGCCTGTACGGGAT ${\tt CATACTGGTTCCCTCCTGCAAGCTCTACACCTGCCTCTTCGGGATTTTCTACTACATGACCAGCGCTCTGGGC$ $\texttt{ATCACAGCCGGGGCTCATCGCCTCTGGAGCCACAGAACTTACAAG} \underline{\texttt{GCA}} \texttt{CGGCTGCCCCTGCGGATCTTCCTTA}$ TCATTGCCAACACCATGGCGTTCCAGAATGACGTGTACGAATGGGCCCGAGATCACCGCGCCCACCAGAGTT CGCAAACACCCCGGCTGTCAAAGAGAAGGGCCGGAAAACTGGACATGTCTGACCTGAAAGCCGAGAAGCTGGTGA TGTTCCAGAGGAGGTACTACAAGCCCGGCCTCCTGCTGATGTGCTTCATCCTGCCCACGCTGGTGCCCTGGTA CTGCTGGGGCGAGACTTTTGTAAACAGCCTGTTCGTTAGCACCTTCTTGCGATACACTCTGGTGCTCAACGCC ACCTGGCTGGTGAACAGTGCCGCGCGCATCTCTATGGATATCGCCCCTACGACAAGAACATTCAATCCCGGGAGA ATATCCTGGTTTCCCTGGGTGCCGTGGGCGAGGGCTTCCACAACTACCACCACCACCTTCCCCTTCGACTACTC TGCCAGTGAGTACCGCTGGCACATCAACTTCACCACGTTCTTCATCGACTGCATGGCTGCCCTGGGCCTGGCC TACGACCGGAAGAAAGTTTCTAAGGCTACTGTCTTAGCCAGGATTAAGAGAACTGGAGACGGGAGTCACAAGA GTAGCTGAGCTTTGGGCTTCTGAGTTCCTGTTTCAAACGTTTTCTGGCAGAGATTTAATATTCTGTTGATTAA CTAACAACTGGATATTGCTATCGGGGTGTTAATGATGCATTTAACCTATTCCGGTACAGTATTCTTATAAAAT GAGAAAGCTTTGATCACGTTTTGAGG

Suplement 1B. Sekwencja genu *Scd1*, kodującego Δ 9-desaturazę kwasów tłuszczowych (stearoilo-CoA desaturaza, SCD-1c) myszy domowej (*Mus musculus*) – allel T; cDNA (jednoniciowe DNA uzyskane na matrycy mRNA).

AGGTTTCCAAGCGCAGTTCCGCCACTCGCCTACACCAACGGGCTCCGGAACCGAAGTCCACGCTCGATCTCAG CACTGGGAAAGTGAGGCGAGCAACTGACTATCATCATGCCGGCCCACATGCTCCAAGAGATCTCCAGTTCTTA CACGACCACCACCACCATCACTGCACCTCCCGGAAATGAACGAGAGAGGTGAAGACAGTGCCCCTCCAC CTGGAAGAAGACATCCGTCCTGAAATGAAAGAAGATATTCACGACCCCACCTATCAGGATGAGGAGGGACCCC CGCCCAAGCTGGAGTACGTCTGGAGGAACATCATTCTCATGGTCCTGCTGCACTTGGGAGGCCTGTACGGGAT CATACTGGTTCCCTCCTGCAAGCTCTACACCTGCCTCTTCGGGATTTTCTACTACATGACCAGCGCTCTGGGC ATCACAGCCGGGGCTCATCGCCTCTGGAGCCACAGAACTTACAAGGC**T**CGGCTGCCCCTGCGGATCTTCCTTA TCATTGCCAACACCATGGCGTTCCAGAATGACGTGTACGAATGGGCCCGAGATCACCGCGCCCACCAGAGTT CTCAGAAACACACGCCGACCCTCACAATTCCCGCCGTGGCTTCTTCTTCTCTCACGTGGGTTGGCTGCTTGTG CGCAAACACCCGGCTGTCAAAGAGAAGGGCGGAAAACTGGACATGTCTGACCTGAAAGCCGAGAAGCTGGTGA TGTTCCAGAGGAGGTACTACAAGCCCGGCCTCCTGCTGATGTGCTTCATCCTGCCCACGCTGGTGCCCTGGTA CTGCTGGGGGCGAGACTTTTGTAAACAGCCTGTTCGTTAGCACCTTCTTGCGATACACTCTGGTGCTCAACGCC ACCTGGCTGGTGAACAGTGCCGCGCATCTCTATGGATATCGCCCCTACGACAAGAACATTCAATCCCGGGAGA ATATCCTGGTTTCCCTGGGTGCCGTGGGCGAGGGCTTCCACAACTACCACCACCCTTCCCCTTCGACTACTC TGCCAGTGAGTACCGCTGGCACATCAACTTCACCACGTTCTTCATCGACTGCATGGCTGCCCTGGGCCTGGCCT TACGACCGGAAGAAAGTTTCTAAGGCTACTGTCTTAGCCAGGATTAAGAGAACTGGAGACGGGAGTCACAAGA GTAGCTGAGCTTTGGGCTTCTGAGTTCCTGTTTCAAACGTTTTCTGGCAGAGATTTAATATTCTGTTGATTAA CTAACAACTGGATATTGCTATCGGGGTGTTAATGATGCATTTAACCTATTCCGGTACAGTATTCTTATAAAAT GAGAAAGCTTTGATCACGTTTTGAGG

Suplement 1C. Fragment sekwencji genu *Scd1*, kodującego Δ 9-desaturazę kwasów tłuszczowych (stearoilo-CoA desaturaza, SCD-1c) myszy domowej (*Mus musculus*) – allel A; gDNA (genomowe DNA).

 $\label{eq:accorrect} a caccorrect caccacaacaacacteg catcage caccter caccacter cactacter cactacter caccacter caccacter caccace cace caccace cace cace$

Suplement 1D. Fragment sekwencji genu *Scd1*, kodującego Δ 9-desaturazę kwasów tłuszczowych (stearoilo-CoA desaturaza, SCD-1c) myszy domowej (*Mus musculus*) – allel T; gDNA (genomowe DNA).

Suplement 2. Sekwencja genu *Fads1*, kodującego Δ 5-desaturazę kwasów tłuszczowych (FADS1, D5D) myszy domowej (*Mus musculus*); cDNA (jednoniciowe DNA uzyskane na matrycy mRNA).

TTCGCGAGCCTGGCGTGCGCTGCCCCGCGCGCCCGGAGCGCGCACCTCTCAGACTCCAGCTTCCCCCGCCAAGC TTGCTATGGCTCCCGACCCGGTGCCGACCCCTGGCCCGGCCTCCGCCAGCTCCGCCAAACGCGCTACTTTAC TTGGGAGGAGGTGGCGCAGCGCTCCGGGCGGGGAGAAGGAGCGATGGCTCGTGATCGACCGGAAGGTGTACAAC ATCAGCGACTTCAGCCGCCGCCACCCGGGGGGGCTCCCCGGGTCATCAGCCACTACGCGGGTCAGGATGCCACGG ATCCTTTTGTGGCATTCCACATCAACAAGGGTCTTGTGAGAAAGTATATGAACTCTCTTCTGATTGGAGAGCT GGCTCCGGAGCAACCCAGCTTTGAACCCAACAAGAATAAAGCGCTAACTGATGAATTCCGGGAGCTGCGGGGCC ACAGTAGAGCGAATGGGCCTCATGAAGGCCAACCACCTCTTCTTCCTGGTCTACCTGCTTCACATCCTGCTGC TGGATGTGGCTGCCTGGCTCACCCTTTGGATCTTTGGAACTTCCTTGGTGCCCTTCATCCTCTGTGCAGTACT GCTCAGTACAGTTCAGGCTCAGGCAGGTTGGCTACAGCATGACTTTGGGCACCTGTCAGTCTTTGGCACCTCG ACATGGAATCACCTGCTACATCATTTTGTGATTGGCCACCTGAAGGGGGCCCCCGCCAGCTGGTGGAACCACA TGCATTTCCAGCACCATGCCAAGCCTAACTGCTTCCGCAAGGACCCCGATATCAACATGCACCCCCTCTTCTT CGCCCTGGGGAAGGTCCTTCCTGTGGAGCTCGGGAGGGAAAAGAAGAAGCACATGCCATACAACCATCAGCAC AAGTACTTCTTCCTCATCGGACCCCCAGCCTTGCTGCCTCTATACTTCCAGTGGTATATTTTCTATTTTGTGG TTCAGCGGAAAAAATGGGTGGACTTGGCCTGGATGCTCAGCTTCTATGCCCGCATCTTCTTCACTTACATGCC GCTGCTGGGGCTGAAAGGCTTCCTGGGCCTTTTCTTCATTGTCAGGTTCCTGGAAAGCAACTGGTTTGTGTGG GTGACACAGATGAACCATATCCCCATGCACATTGATCACGACCGGAATGTGGACTGGGTCTCCACCCAGCTGC AGGCAACCTGCAACGTTCACCAATCAGCCTTCAACAACTGGTTCAGTGGCCACCTAAATTTCCAGATTGAACA CCACCTCTTCCCCACCATGCCGCGGCACAACTACCACAAGGTGGCACCCCTAGTACAATCCCTGTGCGCCAAG TACGGCATCAAGTATGAGTCCAAGCCCTGCTCACAGCCTTCGCGGACATTGTTTACTCCCTGAAGGAGTCAG GGCAACTCTGGTTGGACGCTTACCTTCACCAATAGCAGCAGCAGCACCTCCATATGGAGGAGGAAGAGGACACC TGGAGCCAAAGCAGGAGTTGGAGGGACAATGCCACTATGAATCTAATGTTTAAAAGGTTAGGGAACATGGATA TGCATGAAGTAGGGACCCCACACTAGATAACCCCTCTTGTAAAGTATGAGCCCATCTCACTGGGCTATCTGAC TCTCCACCCTCCTTGTTAGTCTCTGAGGAACAGTGCAACTCCTTCGA

Suplement 3A. Sekwencja genu *Fads2*, kodującego Δ 6-desaturazę kwasów tłuszczowych (FADS2, D6D) myszy domowej (*Mus musculus*) – allel G; cDNA (jednoniciowe DNA uzyskane na matrycy mRNA).

TCTACAACGTTACCAAATGGTCCCAGCGGCACCCGGGGGGCCACCGTGTCATCGGACACTATTCGGGAGAAGA TGCTACGGATGCCTTCCGTGCCTTCCATCTGGACCTGGACTTCGTGGGCAAGTTCTTGAAGCCCCTGCTGATT GGTGAGCTGGCCCCAGAGGAGCCCAGCCTGGACCGTGGCAAAAGCTCTCAGATCACCGAGGACTTCAGGGCCC GCCTTTGTCCTCGCTACCTCTCAGGCCCAAGCTGGATGGCTGCAACATGACTATGGCCACCTTTCTGTCTATA AGAAATCCATATGGAACCACGTTGTCCACAAGTTTGTCATTGGCCACTTAAAGGGTGCCTCAGCCAACTGGTG GAACCACCGACATTTCCAACACCATGCCAAGCCCAACATCTTCCACAAGGACCCGGACATAAAGAGCCTGCAT GTGTTTGTCCTTGGCGAGTGGCAGCCCCTTGAGTATGGCAAGAAGAAGCTGAAATACCTGCCCTACAACCACC AGCATGAATACTTCTTCCTGATCGGACCGCCGCTGCTCATCCCTATGTACTTCCAGTACCAGATCATCATGAC AATGATCAGCCGCAGGGACTGGGTGGACTTGGCTTGGGCCATCAGCTACTATATGCGTTTCTTCTACACCTAC ATCCCTTTCTACGGCATCTTGGGAGCCCTGGTTTTCCTCAACTTTATCAGGTTCCTGGAGAGCCACTGGTTTG TGTGGGTCACACAGATGAACCACCTTGTCATGGAGATTGATCTTGATCACTACCGGGACTGGTTCAGCAGCCA GCTGGCAGCCACCTGCAATGTGGAGCAGTCCTTCTTCAATGACTGGTTCAGCGGGCACCTCAATTTCCAGATT GAGCACCACCTCTTCCCCACTATGCCACGTCACAACCTGCACAAGATTGCCCCACTGGTGAAGTCTCTCTGCG CCAAGCATGGCATTGAATACCAGGAGAAGCCGTTGCTGAGGGCCCTGATCGACATTGTGAGTTCACTGAAGAA GTCTGGGGAGCTGTGGCTGGATGCTTACCTCCATAAATGAAGCTGCCGTCCTCCGGGCACCCTCGGGAAAGGG

Suplement 3B. Sekwencja genu *Fads2*, kodującego Δ 6-desaturazę kwasów tłuszczowych (FADS2, D6D) myszy domowej (*Mus musculus*) – allel A; cDNA (jednoniciowe DNA uzyskane na matrycy mRNA).

TCTACAACGTTACCAAATGGTCCCAGCGGCACCCGGGGGGGCCACCGTGTCATCGGACACTATTCGGGAGAAGA TGCTACGGATGCCTTCCGTGCCTTCCATCTGGACCTGGACTTCGTGGGCAAGTTCTTGAAGCCCCTGCTGATT GGTGAGCTGGCCCCAGAGGAGCCCAGCCTGGACCGTGGCAAAAGCTCTCAGATCACCGAGGACTTCAGGGCCC GCCTTTGTCCTCGCTACCTCTCAGGCCCAAGCTGGATGGCTGCAACATGACTATGGCCACCTTTCTGTCTATA AGAAATCCATATGGAACCACGTTGTCCACAAGTTTGTCATTGGCCACTTAAAGGGTGCCTCAGCCAACTGGTG GAACCACCGACATTTCCAACACCATGCCAAGCCCAACATCTTCCACAAGGACCCCGGACATAAAGAGCCTGCAT GTGTTTGTCCTTGGCGAGTGGCAGCCCCTTGAGTATGGCAAGAAGAAGCTGAAATACCTGCCCTACAACCACC AGCATGAATACTTCTTCCTGATCGGACCGCCGCTGCTCATCCCTATGTACTTCCAGTACCAGATCATCATGAC AATGATCAGCCGCAGGGACTGGGTGGACTTGGCTTGGGCCATCAGCTACTATATGCGTTTCTTCTACACCTAC ATCCCTTTCTACGGCATCTTGGGAGCCCTGGTTTTCCTCAACTTTATCAGGTTCCTGGAGAGCCACTGGTTTG TGTGGGTCACACAGATGAACCACCTTGTCATGGAGATTGATCTTGATCACTACCGGGACTGGTTTAGCAGCCA GCTGGCAGCCACCTGCAATGTGGAGCAGTCCTTCTTCAATGACTGGTTCAGCGGGCACCTCAATTTCCAGATT GAGCACCACCTCTTCCCCACTATGCCACGTCACAACCTGCACAAGATTGCCCCCACTGGTGAAGTCTCTCTGCG CCAAGCATGGCATTGAATACCAGGAGAAGCCGTTGCTGAGGGCCCTGATCGACATTGTGAGTTCACTGAAGAA GTCTGGGGAGCTGTGGCTGGATGCTTACCTCCATAAATGAAGCTGCCGTCCTCCGGGCACCCTCGGGAAAGGG GCACTGTTGGGTGACAGCCAGAGGGGGGGGGGGGGGGCTTTTGTTCTGAAGGGTTCTCATGAG

Suplement 3C. Fragment sekwencji genu *Fads2*, kodującego Δ 6-desaturazę kwasów tłuszczowych (FADS2, D6D) myszy domowej (*Mus musculus*) – allel G; gDNA (genomowe DNA).

Suplement 3D. Fragment sekwencji genu *Fads2*, kodującego Δ 6-desaturazę kwasów tłuszczowych (FADS2, D6D) myszy domowej (*Mus musculus*) – allel A; gDNA (genomowe DNA).

Suplement 3E. Fragment sekwencji genu *Fads2*, kodującego Δ 6-desaturazę kwasów tłuszczowych (FADS2, D6D) myszy domowej (*Mus musculus*) – allel G; gDNA (genomowe DNA).

Suplement 3F. Fragment sekwencji genu *Fads2*, kodującego Δ 6-desaturazę kwasów tłuszczowych (FADS2, D6D) myszy domowej (*Mus musculus*) – allel A; gDNA (genomowe DNA).

Suplement 4. Sekwencja genu *Elovl1*, kodującego elongazę ELOVL1 kwasów tłuszczowych myszy domowej (*Mus musculus*); cDNA (jednoniciowe DNA uzyskane na matrycy mRNA).

Suplement 5. Sekwencja genu *Elovl2*, kodującego elongazę ELOVL2 kwasów tłuszczowych myszy domowej (*Mus musculus*); cDNA (jednoniciowe DNA uzyskane na matrycy mRNA).

TCTTGGACAACATGTTTGGACCACGAGATTCTCGAGTTCGCGGGTGGTTCCTGCTGGACTCTTACCTTCCCAC CTTCATCCTCACCATCACGTACCTGCTCTCGATATGGCTGGGTAACAAGTACATGAAGAACAGGCCTGCTCTG TCCTCTCCAGCTGGGAAGGAGGTTACAACTTGCAGTGTCAGAATCTCGACAGTGCAGGAGAAGGTGATGTCCG GGTAGCCAAGGTCTTGTGGTGGTACTACTTCTCCAAACTAGTGGAGTTCCTGGACACGATTTTCTTTGTTCTA CGAAAAAAGACCAATCAGATCACCTTCCTTCATGTCTATCACCACGCGTCCATGTTCAACATCTGGTGGTGTG CTCCTACTACGGCCTGTCTGTGTTCCCGTCCATGCACAAGTACCTTTGGTGGAAGAAGTACCTCACACAGGCT CAGCTGGTGCAGTTCGTACTCACCATCACGCACACGCTGAGTGCCGTGGTGAAGCCCTGTGGCTTCCCCTTTG **GCTGTCTCATCTTCCAGTCTTCCTATATGATGACGCTGGTCATCCTGTTCTTAAACTTCTATATTCAGACATA** GTGGCTAATGGCATGACGGACAAGAAGGCTCAATAAAATGAAGTGCCGGGGAACACAAACTGAGGTGGTGGCG GCGGCGGCGGCGGCAGCAAACAGACGAGCTTGTTTTAAAGCAGAGACTGAATAGAAAGTTGTATGTTTTAGCA TAAACTAATTCCTTTTGAGTTTGTAAATCATTTGTACCCAGAATGTATTATAATATATTGCTATTAGGTTACT CTACTAACTGGAGCCATGCCG

Suplement 6. Sekwencja genu *Elovl3*, kodującego elongazę ELOVL3 kwasów tłuszczowych myszy domowej (*Mus musculus*); cDNA (jednoniciowe DNA uzyskane na matrycy mRNA).

TTCTGTCCTGGGTTTCTTCGTCCCTGAGACCCACTCCATCTTCTACTTCTTTGGCTCTCGCCCAGCTCCCTAC CCCAAGCTCTGTAACTCGTCGTCTGCAAAATCGAAATGGACACATCCATGAATTTCTCACGCGGGTTAAAAAT GGACCTGATGCAACCCTATGACTTCGAGACGTTTCAGGACCTTAAGGCCCCTTTTTGGAGGAGTACTGGGTAAGC TCATTTCTCATAGTGGTCGTCTATCTGTTGCTCATCGTTGTTGGCCAGACCTACATGAGAACGCGGAAGAGCT TCAGCTTGCAGAGGCCTCTCATCCTCTGGTCCTTCCTGGCAATATTCAGTATCCTGGGTACTCTGAGGAT GTGGAAGTTTATGGCAACAGTGATGTTTACAGTGGGCCTCAAGCAAACCGTGTGCTTTGCCATCTACACGGAT GACGCCGTAGTCAGATTCTGGTCCTTTCTCTTCTCTCAGCAAGGTTGTTGAACTGGGAGACACGGCCTTCA TCATCCTGCGTAAGCGTCCACTCATCTTTGTCCACTGGTACCACCACCAGCACGTGCTACTGTTCACAAGCTT TGGATACAAGAACAAAGTGCCTTCGGGTGGCTGGTTCATGACCATGAACTTTGGCGTCCATTCTGTCATGTAC ACTTACTACACTATGAAGGCTGCCAAACTGAAGCATCCTAATCTTCTCCCCCATGGTCATCACCAGCCTGCAGA TTCTGCAGATGGTTCTGGGCACCATCTTTGGCATACTGAATTACATCTGGAGGCAGGAGAAAGGATGCCACAC AACAACGGAACACTTCTTCTGGTCTTTTATGCTATATGGGACCTATTTCATCCTATTCGCTCACTTCTTCCAC AGCCGTTCCTCCGTGGCACTAAGGGTATGGGAGAATGATTAGGGTACCTCCCTGTATGGTTTCCCCCATGGGA TATGTACCCTCAAAGTTGCAGGAAGCTATGACAACCAAGAAATGTCACCCTTGGGGATAGGGGGTGTGTGGTT

Suplement 7. Sekwencja genu *Elovl5*, kodującego elongazę ELOVL5 kwasów tłuszczowych myszy domowej (*Mus musculus*); cDNA (jednoniciowe DNA uzyskane na matrycy mRNA).

TTGCATCGCGGCTGCAGCTTGCTTCTGTTCCCGCGCCCGCTTGCACATCCTCCTGCTCGCGCGGTCCTGCTGC CGTCCGGTGCTCCCCGTAGCCGCTCAGGCAGAGAGGTTTTAAAATGGAACATTTCGATGCGTCACTCAGTACC TATTTCAAGGCCTTCCTGGGCCCCCGAGATACAAGAGTCAAAGGATGGTTCCTCCTGGACAATTACATCCCTA CGTTTGTCTGTTCTGTTATTTACTTACTCATTGTATGGCTGGGACCAAAATACATGAAGAACCGGCAGCCGTT CTCTTGCCGAGGCATCCTGCAGTTGTATAACCTTGGACTCACCCTGCTGTCTCTCTACATGTTCTATGAGTTG GTGACAGGTGTGGGGAAGGCAAATACAACTTTTTCTGCCAGGGAACACGCAGCGCGGGAGAATCCGATATGA AGATCATCCGCGTCCTCTGGTGGTACTACTTCTCCAAACTCATCGAATTCATGGACACCTTTTTCTTCATCCT TCGCAAGAACAACCACCAGATCACCGTGCTCCATGTCTACCACCACGCTACCATGCTCAACATCTGGTGGTTT GTGATGAACTGGGTTCCCTGCGGCCATTCATATTTTGGTGCGACACTCAACAGCTTCATCCATGTCCTCATGT ACTCGTACTATGGTCTGTCCTCCATCCCGTCCATGCGTCCCTACCTCTGGTGGAAAAAGTACATCACTCAAGG GCAGCTGGTCCAGTTTGTGCTGACAATCATCCAGACGACCTGCGGGGGTCTTCTGGCCATGCTCCTTCCCTCTC GGGTGGCTGTTCTTCCAGATTGGATACATGATTTCCCTGATTGCTCTTCTCACAAACTTCTACATTCAGACTT ACAACAAGAAAGGGGCCTCTCGGAGGAAAGAACACCTGAAGGGCCACCAGAACGGGTCTGTGGCCGCCGTCAA CGGACACACCAACAGCTTCCCTTCCCTGGAAAACAGCGTGAAGCCCAGGAAGCAGCGAAAGGATTGACAAGCC GAGCCGAAGCCTCCAGACCGCGGCGTGTGATTGTAAGCACAGCGTGACTTGTGCCCTGACGCTCATAGCAGCT GCTGTCACTAGTCTGGCCCTACTATCTGCAGTGTGA

Suplement 8. Sekwencja genu *Elovl6*, kodującego elongazę ELOVL6 kwasów tłuszczowych myszy domowej (*Mus musculus*); cDNA (jednoniciowe DNA uzyskane na matrycy mRNA).

Suplement 9. Sekwencja genu *Srebf1*, kodującego białko wiążące sekwencję odpowiedzi na sterole (SREBP-1) myszy domowej (*Mus musculus*); cDNA (jednoniciowe DNA uzyskane na matrycy mRNA).

AACGTGGGCCTAGTCCGAAGCCGGGTGGGCGCCGCGGCGCCATGGACGAGCTGGCCTTCGGTGAGGCGGCTCTGG AACAGACACTGGCCGAGATGTGCGAACTGGACACAGCGGTTTTGAACGACATCGAAGACATGCTCCAGCTCAT CAACAACCAAGACAGTGACTTCCCGGGCCTGTTTGACGCCCCCTATGCTGGGGGTGAGACAGGGGACACAGGC CCCAGCAGCCCAGGTGCCAACTCTCCTGAGAGCTTCTCTTCTGCTTCTGGCCTCCTCTGGAAGCCTTCC TGGGAGGACCCAAGGTGACACCTGCACCCTTGTCCCCTCCACCATCGGCACCCGCTGCTTTAAAGATGTACCC GTCCGTGTCCCCCTTTTCCCCTGGGCCTGGGATCAAAGAGGAGCCAGTGCCACTCACCATCCTACAGCCTGCA GCGCCACAGCCGTCACCGGGGACCCTCCTGCCTCCGAGCTTCCCCGCACCACCCGTACAGCTCAGCCCTGCGC CCGTGCTGGGTTACTCGAGCCTGCCTTCAGGCTTCTCAGGGACCCTTCCAGGAAACACTCAGCAGCCACCATC TAGCCTGCCGCTGGCCCCTGCACCAGGAGTCTTGCCCACCCCTGCCCTGCACACCCAGGTCCAAAGCTTGGCC TTGTATTGCAGCCACACTTCATCAAGGCAGACTCACTGCTGCTGACAGCTGTGAAGACAGATGCAGGAGCCAC CGTGAAGACTGCAGGCATCAGCACCCTGGCTCCTGGCACAGCCGTGCAGGCCAGGTCCCCTGCAGACCCTGGTG AGTGGAGGGACCATCTTGGCCACAGTACCTTTGGTTGTGGACACAGACAAACTGCCCATCCACCGACTCGCAG CTGGCAGCAAGGCCCTAGGCTCAGCTCAGAGCCGTGGTGAGAAGCGCACAGCCCACAATGCCATTGAGAAGCG CTACCGGTCTTCTATCAATGACAAGATTGTGGAGCTCAAAGACCTGGTGGTGGGCACTGAAGCAAAGCTGAAT AAATCTGCTGTCTTGCGCAAGGCCATCGACTACATCCGCTTCTTGCAGCACCAGCAACCAGAAGCTCAAGCAGG AGAACCTGACCCTACGAAGTGCACACAAAAGCAAATCACTGAAGGACCTGGTGTCAGCTTGTGGCAGTGGAGG AGGCACAGATGTGTCTATGGAGGGCATGAAACCCGAAGTGGTGGAGACGCTTACCCCTCCACCCTCAGACGCC GGCTCACCCTCCCAGAGTAGCCCCTTGTCTTTTGGCAGCAGAGCTAGCAGCAGTGGTGGTAGTGACTCTGAGC CCGACAGTCCAGCCTTTGAGGATAGCCAGGTCAAAGCCCAGCGGCTGCCTTCACACAGCCGAGGCATGCTGGA CCGCTCCCGCCTGGCCCTGTGTGTACTGGCCTTTCTGTGTCTGACCTGCAATCCTTTGGCCTCGCTTTTCGGC TGGGGCATTCTCACTCCCTCTGATGCTACGGGTACACACCGTAGTTCTGGGCGCAGCATGCTGGAGGCAGAGA GCAGAGATGGCTCTAATTGGACCCAGTGGTTGCTGCCACCCCTAGTCTGGCCGCCAATGGACTACTAGTGTT GGCCTGCTTGGCTCTTCTCTTTGTCTATGGGGAACCTGTGACTAGGCCACACTCTGGCCCGGCTGTACACTTC TGGAGACATCGCAAACAAGCTGACCTGGATTTGGCCCGGGGAGATTTCCCCCCAGGCTGCTCAACAGCTGTGGC TGGCCCTGCAAGCGCTGGGCCGGCCCCTGCCCACCTCAAACCTGGATCTGGCCTGCAGTCTGCTTTGGAACCT CGTGGGCTGAGGAAGGATGCCCGTGCCAGTGCCCGGGATGCGGCTGTTGTCTACCATAAGCTGCACCAGCTGC ATGCCATGGGCAAGTACACAGGAGGACATCTTGCTGCTTCTAACCTGGCACTAAGTGCCCTCAACCTGGCTGA GTGCGCAGGAGATGCTATCTCCATGGCAACACTGGCAGAGATCTATGTGGCAGCGGCCCTGAGGGTCAAAACC GCGGCTCGGTGCCTCTTGCCATGCAGTGGCTCTGCCACCCTGTAGGTCACCGTTTCTTTGTGGACGGGGACTG GGCCGTGCACGGTGCCCCCCGGAGAGCCTGTACAGCGTGGCTGGGAACCCAGTGGATCCGCTGGCCCAGGTG ACCCGGCTATTCCGTGAACATCTCCTAGAGCGAGCGTTGAACTGTATTGCTCAGCCCAGCCCAGGGGCAGCTG ACGGAGACAGGGAGTTCTCAGATGCCCTTGGATATCTGCAGTTGCTAAATAGCTGTTCTGATGCTGCCGGGGC TCCTGCTTGCAGTTTCTCTGTCAGCTCCAGCATGGCTGCCACCACTGGCCCAGACCCAGTGGCCAAGTGGTGG GCCTCACTGACAGCTGTGGTGATCCACTGGCTGAGGCGGGATGAAGAGGCAGCTGAGCGCTTGTACCCACTGG TAGAGCATATCCCCCAGGTGCTGCAGGACACTGAGAGACCCCTGCCCAGGGCAGCTCTGTACTCCTTCAAGGC GGGTACCTGCGGGACAGCTTAGCCTCTACACCAACTGGCAGTTCCATTGACAAGGCCATGCAGCTGCTCCTGT GTGATCTACTTCTTGTGGCCCGTACCAGTCTGTGGCAGCGGCAGCAGTCACCAGCTTCAGTCCAGGTAGCTCA CGGTACCAGCAATGGACCCCAGGCCTCTGCTCTGGAGCTGCGTGGTTTCCAACATGACCTGAGCAGCCTGCGG CGGTTGGCACAGAGCTTCCGGCCTGCTATGAGGAGGGTATTCCTACATGAGGCCACAGCTCGGCTGATGGCAG GAGCAAGTCCTGCCCGGACACCAGCCCCTGGATCGCAGTCTGAGGAGGAGGGCAGGTTCCAGTGGCAAAGG AGGCACTACAGCTGAGCTGGAGCCACGGCCCACATGGCGGGAGCACCCGAGGCCCTGCTGTTGGCATCCTGC TATCTGCCCCCTGCCTTCCTGTCGGCTCCTGGGCAGCGAATGAGCATGCTGGCCGAGGCGGCACCGCACCGTAG AGAAGCTTGGCGATCACCGGCTACTGCTGGACTGCCAGCAGATGCTCCTGCGCCTGGGCGGCGGAACCACCGT CACTTCCAGCTAGACCCCCAAAGCTTTCCCTTGAGGACCTTTGTCATTGGCTGTGGTCTTCCAGAGGGTGAGCC TGACAAGCAATCAGGACCATGCCGACCTCTAGTGGCAGATCTGGAAATTGCAGAGGCTGCACTGGCCCGATGG CACCCTCTTGCTCTGTAGGCACCTTAGT

Rycina S1. Profil lipidowy hepatocytów myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) oraz nie selekcjonowanych na żadną cechę (US) przez 16 pokoleń (F16) wyznaczony na podstawie oznaczeń poszczególnych kwasów tłuszczowych we frakcji lipidów całkowitych (TL).

■ C16:0 ■ C18:0 ■ C16:1n-7 ■ C18:1n-7 ■ C18:1n-9 ■ C18:2n-6 ■ C20:4n-6 ■ C20:5n-3 ■ C22:6n-3

Rycina S2. Profil lipidowy hepatocytów myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32) oraz nie selekcjonowanych na żadną cechę (US) przez 16 pokoleń (F16) wyznaczony na podstawie oznaczeń poszczególnych kwasów tłuszczowych we frakcji fosfolipidów (PL).

Gen Scd1

Rycina S3. Profil lipidowy hepatocytów myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32), posiadających różne genotypy (AA, AT, TT) w genie *Scd1*, wyznaczony na podstawie oznaczeń poszczególnych kwasów tłuszczowych we frakcji lipidów całkowitych (TL).

Gen Scd1

■ C16:0 ■ C18:0 ■ C16:1n-7 ■ C18:1n-7 ■ C18:1n-9 ■ C18:2n-6 ■ C20:4n-6 ■ C20:5n-3 ■ C22:6n-3

Rycina S4. Profil lipidowy hepatocytów myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32), posiadających różne genotypy (AA, AT, TT) w genie *Scd1*, wyznaczony na podstawie oznaczeń poszczególnych kwasów tłuszczowych we frakcji fosfolipidów (PL).

Gen Fads2

Rycina S5. Profil lipidowy hepatocytów myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32), posiadających różne genotypy (AA, AG, GG) w genie *Fads2*, wyznaczony na podstawie oznaczeń poszczególnych kwasów tłuszczowych we frakcji lipidów całkowitych (TL).

Gen Fads2

Rycina S6. Profil lipidowy hepatocytów myszy laboratoryjnych (*Mus musculus*) selekcjonowanych na niskie (L-BMR) i wysokie (H-BMR) tempo metabolizmu podstawowego w 32 pokoleniu (F32), posiadających różne genotypy (AA, AG, GG) w genie *Fads2*, wyznaczony na podstawie oznaczeń poszczególnych kwasów tłuszczowych we frakcji fosfolipidów (PL).