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INTRODUCTION

The concept of free groups and the free product of groups is widely known,
cf. [1l, [7], [12] for example. However, a formalization in the Mizar system (cf.
[2], [4]) has not taken place until now, even if the overall hierarchy of algebraic
structures in the MML seems to be quite rich [5], and formalization of group
theory is also promising [I1]. This article was primarily written as a necessary
precursor to the formalization of the Seifert-Van Kampen theorem, hence the
formalization loosely follows that of [6] and does not go into much detail about
the properties of the free product or free groups. Anyway, we are motivated by
another similar developments in another proof-assistants [3], [§], having in mind
that this could result in reusing fundamental groups as described formally in [9]
or even more categorical viewpoint as in [10].

After the preliminaries the free atoms of a family of groups {G;}ics are
introduced: they are the set of all pairs of the form (i, g) with i € I and g € G;.
This choice allows for the G; to have non-empty intersections with each other,
or all be the same even; some fundamental properties are given in Section 3.
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The typical reduction relation for free products is then defined (Sect. 4) on the
set of all finite sequences of free atoms. Afterwards the free product naturally
appears as the quotient of the finite sequences of free atoms and the equivalence
closure of the reduction relation (Sect. 5) with corresponding injections and
factorization given in Sect. 6 and 7. The final section of the article concludes
with the definition of the attribute free-abelian.

1. PRELIMINARIES

Let us consider a finite sequence p. Now we state the propositions:
(1) Iflenp # 0, then p[l = (p(1)).
(2) Iflenp # 0, then ppen,r1 = (p(lenp)).
Let us consider a function f and an object . Now we state the propositions:
(3) If x € dom f, then (uncurry(f))(1,z) = f(x).
(4) If x € dom f, then (commute(({f)))(z) = (f(z)).

Let X be a finite sequence-membered set and R be a binary relation on X.
One can verify that every reduction sequence w.r.t. R which is non trivial is also
finite sequence-yielding. Now we state the proposition:

(5) Let us consider a non empty set I, an element i of I, and a group family
F of I.1f I is trivial, then F'(i) and [] F' are isomorphic.

Observe that (0*, ”) is non empty and trivial and ((*, ™, ¢) is non empty and
trivial.

2. THE SET OF FREE ATOMS

From now on x, y, z denote objects, X denotes a set, I denotes a non empty
set, i, j denote elements of I, My denotes a multiplicative magma yielding func-
tion, M denotes a non empty, multiplicative magma yielding function, My, M,
M3 denote non empty multiplicative magmas, G denotes a group-like multipli-
cative magma family of I, and H denotes a group-like, associative multiplicative
magma family of I.

Let us consider M. The functor FreeAtoms(Mj) yielding a binary relation
is defined by the term

(Def. 1) G, where « is the support of M.
Now we state the propositions:

(6) (z,y) € FreeAtoms(My) if and only if x € dom My and y € (the support
of Mp)(z).
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(7) Let us consider an element i of dom M. Then (i, ) € FreeAtoms(M) if
and only if x € the carrier of M (7). The theorem is a consequence of (6).

(8) Let us consider a multiplicative magma family N of I. Then (i, z) €
FreeAtoms(NN) if and only if x € the carrier of N (). The theorem is a con-
sequence of (6).

(9) My = 0 if and only if FreeAtoms(Mj) = (. The theorem is a consequence
of (7).

Observe that FreeAtoms(()) is empty. Let us consider M. One can verify
that FreeAtoms(M) is non empty. Let us consider I and G. Let us observe that
FreeAtoms(G) is non empty.

3. PROPERTIES OF THE SET OF FREE ATOMS

Now we state the propositions:

(10) FreeAtoms(M) = |Jthe set of all {i} x (the carrier of M(i)) where i is
an element of dom M. The theorem is a consequence of (6) and (7).

(11) FreeAtoms((M;)) = {1} x (the carrier of Mj).

(12) FreeAtoms((Mi, Ms)) = {1} x (the carrier of M;) U {2} x (the carrier
of Mg)

(13) FreeAtoms({Mj, Ma, Ms)) = ({1} x(the carrier of M;)U{2} X (the carrier
of Ms)) U {3} x (the carrier of M3).

(14) Let us consider an element z1 of M;. Then
(i) (1, z1) € FreeAtoms((M;)), and
(ii) (1, z1) € FreeAtoms((M;, M3)), and
(iii) (1, z1) € FreeAtoms((M;, Ma, M3)).
The theorem is a consequence of (11), (12), and (13).
(15) Let us consider an element z2 of Ms. Then
(i) (2, z2) € FreeAtoms((M;, M>)), and
(ii) (2, z2) € FreeAtoms((My, Ma, M3z)).
The theorem is a consequence of (12) and (13).

(16) Let us consider an element x3 of Ms. Then (3, z3) € FreeAtoms((M,
Ms, M3)). The theorem is a consequence of (13).

(17) FreeAtoms(X —— M;) = X x (the carrier of My).

Let us consider a multiplicative magma yielding function Ny. Now we state
the propositions:
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(18) FreeAtoms(My+-Np) C FreeAtoms(My) U FreeAtoms(Np). The theorem
is a consequence of (6).

(19) If My tolerates No, then FreeAtoms(Mp+-No) = FreeAtoms(Mp) U Free-
Atoms(Np). The theorem is a consequence of (18) and (6).

(20) Let us consider a finite sequence p of elements of FreeAtoms(G). Then
there exists a finite sequence g of elements of FreeAtoms(G) such that

(i) lenp = lengq, and
(ii) for every natural number k and for every element i of I and for every
element g of G(i) such that p(k) = (i, g) there exists an element h
of G(i) such that g-h =14 and (Rev(q))(k) = (i, h).
PROOF: Define Plobject,object] = there exists an element ¢ of I and
there exist elements g, h of G(i) such that p($;1) = (i, g) and g - h =
1g(;) and 82 = (i, h). Consider ¢’ being a finite sequence of elements of
FreeAtoms(G) such that dom ¢’ = Seglen p and for every natural number
k such that k € Seglenp holds P[k, ¢ (k)]. O
In the sequel p, ¢ denote finite sequences of elements of FreeAtoms(H), g,
h denote elements of H(7), and k denotes a natural number. Now we state the
propositions:
(21) There exists ¢ such that
(i) lenp = lengq, and
(ii) for every k, i, and g such that p(k) = (i, g) holds (Rev(q))(k) = (7,
g7t
The theorem is a consequence of (20).
(22) Let us consider an element g of G(7). Then ({7, g)) is a finite sequence
of elements of FreeAtoms(G). The theorem is a consequence of (8).
(23) Let us consider an element g of G(7), and an element h of G(j). Then ({3,

9), {(j, h)) is a finite sequence of elements of FreeAtoms(G). The theorem
is a consequence of (8).

4. REDUCTION RELATION

Let I be a set and G be a group-like multiplicative magma family of I. The
functor ReductionRel(G) yielding a binary relation on (FreeAtoms(G)*, 7, ¢) is
defined by

(Def. 2) if I is empty, then it = () and if I is not empty, then there exists a non
empty set I’ and there exists a group-like multiplicative magma family G’
of I’ such that I = I’ and G = G’ and for every finite sequences p, q of
elements of FreeAtoms(G’), (p, q) € it iff there exist finite sequences s,
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t of elements of FreeAtoms(G’) and there exists an element i of I’ such
that p = (s 7 ({4, 1ar(5)))) "t and ¢ = s 7 t or there exist finite sequences
s, t of elements of FreeAtoms(G’) and there exists an element ¢ of I’ and
there exist elements g, h of G’(¢) such that p = (s~ ({4, g), (i, h))) "t and
q=(s" (i, g-h)) "t
Let us consider I and G. One can verify that the functor ReductionRel(G)
is defined by
(Def. 3) for every finite sequences p, g of elements of FreeAtoms(G), (p, ¢) € it
iff there exist finite sequences s, ¢ of elements of FreeAtoms(G) and there
exists an element 7 of I such that p = (s ™~ ({(i, 1g(;)))) "t and ¢ = s "t
or there exist finite sequences s, ¢ of elements of FreeAtoms(G) and there
exists an element i of I and there exist elements g, h of G(i) such that
p=(s"{(i, 9),(i, h))) " tand g = (s~ (i, g - h))) " .
Now we state the propositions:
(24) Let us consider finite sequences p, ¢, r of elements of FreeAtoms(G).
Suppose (p, ¢) € ReductionRel(G). Then (p ~r,q "), (r "p,r " q) €
ReductionRel(G).

(25) Let us consider finite sequences p, g of elements of FreeAtoms(G), and

elements g, h of G(i). Then ((p™ ({7, 9), (i, h))) ~q, (p™ (i, g-))) "q) €
ReductionRel(G). The theorem is a consequence of (8).

(26) Let us consider elements g, h of G(7). Then ({{7, g), (i, h)), ((i, g-h))) €
ReductionRel(G). The theorem is a consequence of (25).

(27) Let us consider finite sequences p, ¢ of elements of FreeAtoms(G). Then
((p ™ ({5, 1)) ~ ¢ p ™ q) € ReductionRel(G). The theorem is a conse-
quence of (8).

28 i, 1am)), 0) € ReductionRel(G). The theorem is a consequence of
G(i)
(27).
(29) (i) dom(ReductionRel(G)) C (FreeAtoms(G))*, and
(ii) rngReductionRel(G) = (FreeAtoms(G))*, and
(iii) field ReductionRel(G) = (FreeAtoms(G))*.
The theorem is a consequence of (27).
(30) Let us consider objects x, y. Suppose (z, y) € ReductionRel(G). Then

(i) « is a finite sequence of elements of FreeAtoms(G), and
(ii) y is a finite sequence of elements of FreeAtoms(G).

The theorem is a consequence of (29).

(31) Let us consider finite sequences p, ¢ of elements of FreeAtoms(G), and
elements g, h of G(i). Suppose g-h = 1¢(;). Then ReductionRel(G) reduces
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(p~ ({4, g), (i, h))) " q to p~ q. The theorem is a consequence of (25) and
(27).

(32) Let us consider finite sequences p, ¢ of elements of FreeAtoms(G). Sup-

pose lenp = len g and for every natural number k£ and for every element
i of I and for every elements g, h of G(i) such that p(k) = (i, ¢g) and
g-h = 1g;) holds (Rev(q))(k) = (i, h). Then ReductionRel(G) reduces
p~q to 0.
PROOF: Define S|finite sequence, finite sequence] = if len $; = len $2 and
for every natural number k and for every element ¢ of I and for every
elements g, h of G(i) such that $1(k) = (i, g) and g - h = 1) holds
(Rev($2))(k) = (i, h), then ReductionRel(G) reduces $; ~ $2 to 0. De-
fine P[natural number| = for every finite sequences p, ¢ of elements of
FreeAtoms(G) such that lenp = $; holds S[p, ¢]. P[0]. For every natural
number n such that P[n] holds P[n+1]. For every natural number n, P[n].
|

(33) Suppose lenp = lenq and for every k, i, and g such that p(k) = (i, g)
holds (Rev(q))(k) = (i, g~!). Then
(i) ReductionRel(H) reduces p ™ ¢ to ), and
(ii) ReductionRel(H) reduces ¢ ~ p to 0.
PROOF: For every k, i, and h such that ¢(k) = (i, h) holds (Rev(p))(k) =
(i, 1. O
(34) Let us consider finite sequences p, gq. Suppose (p, ¢) € ReductionRel(G).
Then lenp = len g + 1. The theorem is a consequence of (30).

(35) Let us consider finite sequences p, ¢ of elements of FreeAtoms(G). Sup-
pose ReductionRel(G) reduces p to q. Then

(i) p=gq,or

(ii) leng < lenp.
PROOF: Consider r being a reduction sequence w.r.t. ReductionRel(G)
such that r(1) = p and r(lenr) = ¢. Define P[natural number] = if §; <

lenr, then lenr($1+ 1)+ $; = lenp. For every natural number & such that
P[k] holds P[k + 1]. For every natural number k, P[k]. O

Let us consider I and G. One can check that ReductionRel(G) is strongly-
normalizing. Now we state the propositions:
(36) 0 is a normal form w.r.t. ReductionRel(G). The theorem is a consequence
of (29) and (34).
(37) Let us consider an element g of G(i). Suppose g # 1g(;)- Then ({3, g))

is a normal form w.r.t. ReductionRel(G). The theorem is a consequence
of (29).
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(38) Let us consider finite sequences p, q1, g2 of elements of FreeAtoms(G).
Suppose (p, q1), {p, ¢2) € ReductionRel(G) and ¢; # ¢2. Then

(i) there exist finite sequences s, ¢ of elements of FreeAtoms(G) and
there exists an element i of I and there exist elements f, g, h of G(i)
such that p = (S A <(7’7 f)? (ia g)? (i7 h)>) ~tand (ql = (S a <(Z7 [ g)?
(i, h))) ~tand g2 = (s = (i, f), (i, g-h))) “tor qu = (s~ (i, f), (4,
g-h)))~tand g = (57 ((i, [-9), (i, h))) " 1), or

(ii) there exist finite sequences r, s, t of elements of FreeAtoms(G) and
there exist elements i, j of I such that p = (((r ({4, 1a;)))) ~s) ™ ({4,

LeyM) ™t and (g1 = ((n~ ) ~ (G, Lo ~ ¢ and g2 = ((r~ ({7,

La@))) " s)~torqu = ((r™~ (i, 1)) ~s) "tand g = ((r™s) " ((j,

G(j)))) " t) or there exist elements g, h of G(i) such that p = (((r~((i,

b )~ (G T~ and (= (Lo o 3T 8) (0

Legy ) "t and g = ((r= (G, 9), (i, B))) ™)™t or v = (™ (40, g),

)70 2t and e = (0 (G0 1)~ (U Sag)) 0 o

P (G, 1e) ™ )~ (G 9, G, AY) =t and (a1 = (((r~ (.

)~ )~ (4ir g - h))) "~ and g3 = ()~ (4G, g), {i, B))) ¢ or

r7s) " ((i, g), (i, h))) "t and g2 = (((r ™ ({4, o)) ~s) ™ (i

~t) or there exist elements ¢, b’ of G(j) such that p = (((r™((s,

9)7 (i, 1)) ")~ ({4, ¢), (5, W) "t and (@ = (((r™ (i, g-h)))"s)~({J,

9, Gy 1Y)~ tand g3 = (0 (G 9), Gy ) ™ 8) ™ (s o7 1))

or v = ((r™ (40, g, i, BY)™5)~((js o' W))) ~t and g = (™ (4,

g )" 8) ™ (s o), G W) " 0)

Let us consider I and H. Observe that ReductionRel(H) is subcommutative
and ReductionRel(H) is complete and has unique normal form property. Now

\/(‘#

we state the propositions:

(39) Let us consider an element g of H (i), and an element h of H(j). Then
((7, g)) and ({4, h)) are convertible w.r.t. ReductionRel(H) if and only if
g =1g@) and h = 1p; or i = j and g = h. The theorem is a consequence
of (8), (35), (29), (37), and (28).

(40) Let us consider finite sequences p1, p2, q1, g2 of elements of FreeAtoms(G).
Suppose ReductionRel(G) reduces p; to ¢; and ReductionRel(G) reduces
p2 to g2. Then ReductionRel(G) reduces p; ™ pa to ¢1 ~ g2. The theorem
is a consequence of (30) and (24).

(41) Suppose I is trivial. Let us consider a non empty finite sequence p of
elements of FreeAtoms(G). Then there exists an element g of G(i) such
that ReductionRel(G) reduces p to ((i, g)).

PROOF: Define P[natural number| = for every non empty finite sequence
p of elements of FreeAtoms(G) such that lenp = $; + 1 there exists an ele-

49
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ment g of G(47) such that ReductionRel(G) reduces p to ({i, g)). P[0]. For
every natural number k such that P[k] holds P[k + 1]. For every natural
number k, P[k]. Consider k being a natural number such that lenp = 1+k.
O

(42) Let us consider finite sequences p1, pa, g1, g2 of elements of FreeAtoms(H ).
Suppose p; and ¢; are convertible w.r.t. ReductionRel(H) and py and ¢
are convertible w.r.t. ReductionRel(H). Then p; ~ p2 and ¢1 ~ g2 are co-
nvertible w.r.t. ReductionRel(H). The theorem is a consequence of (29)
and (40).

Let I be a set and H be a group-like, associative multiplicative magma
family of I. Observe that EqCl(ReductionRel(H)) is compatible. Now we state
the proposition:

(43) Suppose p " ¢ is a normal form w.r.t. ReductionRel(H) and lenp # 0

and leng # 0. Then (p(lenp))1 # (¢(1))1. The theorem is a consequence
of (6), (8), (2), and (1).

5. FREE ProDUCT OF GROUPS

Let I be aset and H be a group-like, associative multiplicative magma family
of I. The functor *kH yielding a strict multiplicative magma is defined by the
term

(Def. 4) <FreeAtoms(H)*’A’€>/Equ(ReductionRel(H))'

From now on s, t denote elements of kH. Now we state the propositions:
(44) Let us consider a set I, and a group-like, associative multiplicative mag-
ma family I of I. Then 1yp = [0]5,c1(ReductionRel(1))-
(45) Let us consider an empty set I, and a group-like, associative multiplica-
tive magma family H of I. Then the carrier of xH = {14 }. The theorem
is a consequence of (44).
Let I be a set and H be a group-like, associative multiplicative magma family
of I. Let us observe that *kH is group-like and non empty.
Observe that the functor *H yields a strict group. Let I be an empty set.
Let us note that %H is trivial. Now we state the proposition:

(46)  Suppose s = [p|pqci(Reductionrel(rr)) A4 T = [alqciReductionrel(m))- Then

st =[P" dlpgC1(ReductionRel (F))-
Let us consider I, H, i, and g. The functor [i, g] yielding an element of xH
is defined by the term

(Def. 5)  [({i; 9M)gqci(ReductionRel(#))-
Now we state the propositions:
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(47) ({7, g)) € [i, g]. The theorem is a consequence of (8).

(48)  [i,15(;)] = 1y The theorem is a consequence of (8), (28), and (44).

(49) Let us consider an element g of H (i), and an element h of H(j). Then
[i,9] = [j,h] if and only if g = 1(;y) and h = 1) or i = j and g = h.
The theorem is a consequence of (8) and (39).

(50) [i,g] - [i,h] = [i,g - h]. The theorem is a consequence of (8), (26), and
(46).

(51) [i,g]~' = [i, g !]. The theorem is a consequence of (50) and (48).

(52) Let us consider many sorted sets f, g indexed by I.
Then dom(commute(((f,g)))) = I.

(53) Let us consider an element g of G(7). Then ({7, g)) = (commute((((the ca-
rrier of G(i)) — 1,id4))))(g), where « is the carrier of G(7). The theorem
is a consequence of (4).

(54) rngcommute((((the carrier of G(i)) — 14,id,))) = ({i¢} X (the carrier
of G(i)))!, where « is the carrier of G(i). The theorem is a consequence
of (52) and (53).

6. ON THE INJECTION

Let us consider I, H, and i. The functor injection(H, i) yielding a function
from H (i) into *H is defined by the term

(Def. 6) (the projection onto Classes EqCl(ReductionRel(H)))- (commute((((the
carrier of H(i)) — 14,id,)))), where « is the carrier of H (7).
Now we state the proposition:
(55) (injection(H,7))(g) = [i, g]. The theorem is a consequence of (47), (52),
and (53).
Let us consider I, H, and i. One can check that injection(H, ) is multipli-
cative and one-to-one. Now we state the propositions:

(56) If I is trivial, then injection(H,1) is bijective. The theorem is a conse-
quence of (41), (8), (55), (44), and (48).

(57) If I is trivial, then H (i) and *H are isomorphic. The theorem is a con-
sequence of (56).

Let us consider I, H, and s. The functor nf s yielding a finite sequence of
elements of FreeAtoms(H ) is defined by

(Def. 7) it € s and it is a normal form w.r.t. ReductionRel(H).

Now we state the propositions:
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(58) 1If s = [plpqci(Reductionrel(mr))» then nf's = nfrequctionrel(zr) (p)- The the-
orem is a consequence of (29).

(59) If t = [nf s[K]gyci(Reductionrel(r)), then nf & = nf s[k.
PROOF: nf s[k is a normal form w.r.t. ReductionRel(H). O

(60) Ift=[(nf S)Lk}EqCI(ReductionRel(H))’ then nft = (nf s) .
PROOF: (nf s);, is a normal form w.r.t. ReductionRel(H). O

(61) nflyy = 0. The theorem is a consequence of (44), (58), and (36).

(62) Iflennfs =0, then s = 14y. The theorem is a consequence of (44).

(63) If g # 1p(), then nf[i,g] = ({i, g)). The theorem is a consequence of
(37), (8), and (47).

(64) Iflennfs =1, then there exists i and there exists g such that g # 1y,
and s = [4, g]. The theorem is a consequence of (6), (8), and (28).

(65) Suppose ((nf s)(lennfs)); # ((nf¢)(1))1. Then nf s-¢ = nf s~ nft.
ProoF: Consider p being an element of (FreeAtoms(H)*, ™, ¢) such that

Y

$ = [PpqCi(ReductionRel( i) - Consider ¢ being an element of (FreeAtoms(H )",

~ €> such that ¢ = [Q}EqCI(ReductionRel(H))' st= [p - q]Equ(ReductionRel(H))'
nf s ~nft € [p7 glpgciReductionrel(ay)- 1 s 7 nft is a normal form w.r.t.
ReductionRel(H). O

(66) Suppose k < lennfs. Then there exist elements sq, s2 of %H such that
(i) s = s1 -89, and
(ii) nfs = nfs; 7 nf s9, and
(iii) lennfs; = k.
The theorem is a consequence of (46), (59), and (60).

Let us consider I and H. Let G be a group.
A family of homomorphisms from H into G is a function yielding many
sorted set indexed by I defined by
(Def. 8) for every element ¢ of I, it(i) is a homomorphism from H (i) to G.

The functor injection(H) yielding a family of homomorphisms from H into

*H is defined by
(Def. 9) for every element i of I, it(i) = injection(H, ).

Let G be a group and F' be a family of homomorphisms from H into G. Let
us observe that the functor uncurry F yields a function from FreeAtoms(H) into
G. Let p be a finite sequence of elements of FreeAtoms(H) and F' be a function
from FreeAtoms(H) into G. Let us observe that the functor F - p yields a finite
sequence of elements of G.
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7. ON THE FACTORIZATION

Let us consider I, H, and s. The functor factorization(s) yielding a finite
sequence of elements of xH is defined by the term
(Def. 10)  (uncurry injection(H)) - (nf s).
Now we state the propositions:
(67) factorization(1yy) = 0. The theorem is a consequence of (61).
(68) Let us consider an element g of H(i). Suppose g # 1 ;).
Then factorization([i, g]) = ([i, g]).
PROOF: (i, g) € dom(uncurry injection(H)) and (uncurry injection(H)) ({7,
9) = li,gl- O
(69) Suppose ((nfs)(lennfs)); # ((nft)(1))1. Then factorization(s - t) =
factorization(s) " factorization(¢). The theorem is a consequence of (65).
(70) Let us consider an element s of *%H, and a natural number k. Suppose
1 < k < len factorization(s). Then there exists an element ¢ of I and there
exists an element g of H (i) such that (factorization(s))(k) = [i,g]. The
theorem is a consequence of (6) and (8).
(71) [lfactorization(s) = s.
PROOF: Define P[natural number| = for every element s of H such that
lennf s = $; holds [] factorization(s) = s. P|[0]. For every natural number
k such that P[k] holds P[k + 1]. For every natural number k, P[k]. O
Let us consider I and H. Let s be an element of *H.
Note that [] factorization(s) reduces to s.

8. FREE-ABELIAN GROUPS

Let G1, G2 be groups. One can check that (G, Gg) is group-like and asso-
ciative as a multiplicative magma family of 2.
The functor (G1) *(G2) yielding a strict group is defined by
(Def. 11) there exists a group-like, associative multiplicative magma family H of
2 such that H = (G, G2) and it = xH.
Let G be a group. We say that G is free if and only if
(Def. 12) there exists a cardinal number ¢ such that G and skc —— (Z*) are
isomorphic.
Note that every group which is trivial is also free and Z™ is free.
Let ¢ be a cardinal number. Let us note that skc¢ — (Z1) is free as a group.
Now we state the proposition:
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(72) Let us consider groups G, H. If G and H are isomorphic, then G is free

iff H is free.

One can verify that there exists a group which is free.
Let G be a group. We say that G is free-abelian if and only if

(Def. 13) there exists a cardinal number ¢ such that G and sum(c — (Z1)) are

isomorphic.

One can check that every group which is trivial is also free-abelian and Z*

is free-abelian.

Let ¢ be a cardinal number. Note that sum(c — (Z%)) is free-abelian as

a group. Now we state the proposition:

(73) Let us consider groups G, H. If G and H are isomorphic, then G is

[

2]

8]

[4]

[5]

(10]

free-abelian iff H is free-abelian.

Let us observe that there exists a group which is free-abelian.
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