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Abstract: According to data from the World Health Organization (WHO), cancer is considered to be
one of the leading causes of death worldwide, and new therapeutic approaches, especially improved
novel cancer treatment regimens, are in high demand. Considering that many chemotherapeutic
drugs tend to have poor pharmacokinetic profiles, including rapid clearance and limited on-site
accumulation, a combined approach with tumor-homing peptide (THP)-functionalized magnetic
nanoparticles could lead to remarkable improvements. This is confirmed by an increasing number of
papers in this field, showing that the on-target peptide functionalization of magnetic nanoparticles
improves their penetration properties and ensures tumor-specific binding, which results in an
increased clinical response. This review aims to highlight the potential applications of THPs in
combination with magnetic carriers across various fields, including a pharmacoeconomic perspective.

Keywords: tumor-homing peptides; targeted delivery; targeting ligands; delivery systems; anticancer
therapy; pharmacoeconomics; clinical analysis; cost-effectiveness analysis

1. Introduction

Nowadays, the use of peptides in cancer therapy has received increasing attention.
On this basis, tumor-homing peptides (THPs) are now widely recognized as targeting
molecules in drug delivery systems. With the advancements in phage display technology,
many peptides that specifically adhere to cancer cells have been identified. These peptides
are highly correlated with a specific type of receptor or marker that is frequently present in
a number of tumors and tumor vasculature. In some cases, several of these receptors or
markers were found to be overexpressed in tumors compared to their expression in normal
tissues [1–3].

Furthermore, the ongoing development of drug delivery systems in nanomedicine,
which could lead to effective cancer targeting connected with a high level of cellular in-
ternalization, is an essential goal for anticancer therapy. The combined use of therapeutic
agents in nanoscale scenarios ensures an additive effect and enables the additional modifica-
tion of the nanoparticle surface with targeting ligands for specific therapy of malignancies.
To achieve this goal, there is a desire to develop a form of drug delivery to tumor cells with
minimal side effects as compared to conventional chemotherapy [4–9]. Among many forms
of carriers proposed in drug delivery systems (DDSs), iron oxide magnetic nanoparticles
show great potential [10,11]. Magnetic core nanoparticles are highly attractive candidates
in the biomedicine field, especially for targeting therapy, due to their high biocompatibility,
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ease of preparation, and ability to be surface-modified with various kinds of shells (metal-
lic/polymeric/lipid) and functionalization (targeting molecules/fluorescent probes) as
well as their optimal magnetic properties [12,13].

Worth noting is the fact that the economic burden of cancer treatment is a global
problem. To minimize this effect, innovative approaches should be considered instead
of standard chemotherapy, which has several side effects. To overcome these drawbacks,
large-scale research has been conducted on the discovery, production, and optimization
process of peptide drug conjugates [14].

From a pharmacoeconomic point of view, combining traditional peptide discovery
techniques with cutting-edge technologies, such as rational design and phage display,
ensures a fool-proof approach to designing effective and highly selective leading peptides
in a short period of time. This modern therapy is undoubtedly important in the subsequent
diagnosis and treatment of cancer by inhibiting tumor growth through drug accumulation
in the affected area, resulting in lower direct and indirect costs of the process. Targeted
and more efficient drug delivery is also essential for improving patient compliance and
increasing the quality of life for patients with cancer [14–16].

This review summarizes the unique features and wide range of biomedical appli-
cations of nanoparticles combined with THPs, with special attention given to magnetic
counterparts [16–21]. This review begins by discussing targeted receptors found on cancer
membranes. The next section describes THPs in detail. Furthermore, theranostic aspects of
tumor-targeting peptides will be discussed in this text, including drug delivery strategies
and diagnostic applications, especially regarding magnetic nanoparticles. As numerous
review articles have been published on the subject of targeted therapy using nanomaterials
and homing peptides, this review will focus on the clinical and cost-effectiveness analysis of
nanocarrier applications. At the end, future perspectives and conclusions will be presented.

2. Cancer Membrane—Targeting Receptors

The plasma membrane plays an essential role in many physiological processes, includ-
ing drug transport. Its dynamics is crucial in the regulation of cell survival via all phases of
the cell.

The basic structure of cell membranes, the lipid bilayer, is a substantial component
of eukaryotic cell function, regulating loads of processes such as intracellular signaling,
redox balance, and cell death [22,23]. These properties are due to the lipids’ aggregation
capacity, forming highly dynamic and heterogeneous regions, known as lipid rafts. Lipid
rafts are membrane microdomains (<200 nm) enriched in cholesterol and sphingolipids
that selectively enroll specific protein receptors [24]. Alterations in the arrangement or
composition of lipids result in various effects on cellular functions, affecting signal trans-
duction, membrane movement, and its plasticity. Cytoplasmatic cholesterol is one of the
most significant regulators of lipid organization, accounting for up to 90% of total cellular
cholesterol [25].

Cell membranes in cancer and healthy cells exhibit distinct properties (Figure 1). Mem-
brane attributes favor or inhibit drug penetration, conformation, and location, thus affecting
therapeutic targets. Healthy cell membranes possess the asymmetric distribution of sphin-
gomyelin and phosphatidylcholine in the outer leaflets and anionic phosphatidylserine and
phosphatidylethanolamine in the inner leaflets [26], whereas in the cancer cell membrane,
this asymmetric distribution and alterations in membrane fluidity are lost, which results in
negative-charge phosphatidylserine exposure on the surface of the membrane, with the lo-
cation of phosphatidylethanolamine on the outer leaflet [27,28]. Moreover, sphingomyelin
is reduced in the cancer cell membrane, which is also associated with tumorigenesis [29].
Different lipid composition affects membrane fluidity, impacting drug penetration and
biological action [30–32].
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Figure 1. Differences between the membranes of healthy and neoplastic cells determine nanocar-
rier internalization.

Extracellular acidity, with or without exosome release, can affect the pH level, which
changes from 7.4 to 6.5, a characteristic pH level in cancer, and can contribute to the forma-
tion of the malignant tumor phenotype [33]. The acidic extracellular pH in the surrounding
environment possibly promotes cancer invasiveness [34]. For rapid accommodation, can-
cer cells can reorganize their plasma membranes in order to retain proliferation, evade
apoptosis, and maintain resistance against anticancer treatments [35].

It is expected that membrane–lipid therapy provides new treatments for various
diseases, such as oncological and neurodegenerative diseases, stroke, and diabetes [25,36].

The majority of peptides with anticancer properties disturb cancer cells through apop-
tosis or necrosis [37–39]. Cholesterol, especially in high levels, is essential to prevent or
inhibit lytic activity via the modification of membrane fluidity of eukaryotic cell mem-
branes [40]. Membrane fluidity was noted to be higher in cancer cells in comparison to
healthy cells. Moreover, cancer cells may have an increased surface area for absorption due
to more plenteous microvilli.

In addition, healthy cells are electrically neutral, while cancer cells are negatively
charged by their components on the surface, which promotes cytotoxicity, apoptosis, and
the destabilization of the membrane after treatment by THP [41]. The interaction between
peptides and the cell membrane is another difference. A healthy cell membrane and
peptides make contact through hydrophobic interactions, while electrostatic interactions
are involved in the interaction between peptides and the cancer cell membrane [32,42].

Targeted cancer therapy is a challenge in the development of novel anticancer drugs.
Selective tumor targeting requires drug delivery strictly to the tumor site while sparing
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healthy tissue. Cell surface receptors provide the desired properties, such as ectopical
overexpression in a high number on the malignant tissue in order to enable adequate
selectivity. Therefore, the desired ratio of tumor to normal cell expression is 3:1 or higher.
The number of overexpressed receptors should be sufficient to provide appropriate drug
supply and achieve a suitable therapeutic effect [43]. Many proteins have been identified
that are abundant on cancer cells compared to normal cells, including receptors such
as integrins, epidermal growth factor receptor (EGFR), and G protein-coupled receptors
(GPCRs). Schematic illustrations of the aforementioned receptors are presented in Figure 2.
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Figure 2. Schematic representation of main receptors interacting with tumor-homing peptides.

Integrins are heterodimeric transmembrane receptors composed of two non-covalently
connected transmembrane glycoprotein subunits, α and β. Integrins are significantly im-
portant as they are the main receptor proteins used by cells to bind to as well as to respond
to the extracellular matrix (ECM). The linkage between the intracellular cytoskeleton and
ECM allows for mediating the migration, proliferation, and adhesion of cells. Because all
the aforementioned processes are crucial for carcinogenesis, from many different integrins,
αvβ3 appears to be the most important target for anti-angiogenic cancer therapy, due to its
association with angiogenesis and tumor metastasis. Integrin αvβ3 is overexpressed on
activated endothelial cells, new-born vessels, and tumor cells, but is not found in resting
endothelial cells and most adult epithelial cells [43–45].

Another transmembrane protein worth mentioning is the epidermal growth factor
(EGFR), which belongs to the ErbB tyrosine kinase family. It is overexpressed especially
in various cancer types, such as lung, ovarian, or breast cancer, and it is also linked to
increased cancer cell proliferation. Therefore, the inhibition of EGFR and suppression of
tumor growth is the target in clinical use of monoclonal antibodies and small-molecule
inhibitors [46].

The largest class of transmembrane proteins comprising about 800 receptors is the G
protein-coupled receptors (GPCRs). They possess an extreme pharmacological potency
with about 15% of receptors targeted by FDA-approved drugs [47]. Proteins from this family
mediate most cellular responses to hormones and neurotransmitters, and are responsible
for vision, olfaction, and taste. GPCRs are often overexpressed in carcinogenesis, which
allows the precise targeting of tumor cells with peptide conjugates [43]. These receptors
also serve as attractive drug targets due to their significance in the treatment of other
various diseases, like inflammatory and cardiac disorders, and metabolic imbalances [48].

Additionally, several other peptide receptors have been investigated as targets for
antitumor drug delivery, and these include gonadotropin-releasing hormone receptor
(GnRH-R), vasoactive intestinal peptide (VIP) receptors 1 and 2, melanocortin receptor 1
(MC1R), and neurotensin receptor 1 (NTSR1) [43].

3. Tumor-Homing Peptides (THPs)—Characteristics

An increasing number of researchers have focused on EGFR mutations, which are
among the most commonly identified. Therefore, the safe and effective management of can-
cer treatment requires the implementation of some standard procedures, such as screening
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for predictive and prognostic biomarkers with targeted agents. Aforementioned tools could
help predict sensitivity to targeted therapy and estimate survival rates for patients with car-
cinoma. Rationally designed tumor-homing peptides and/or cell-penetrating peptides with
targeting ligands could be helpful in many areas, starting with the inhibition of particular
mutations, leading to a more efficient and cost-effective clinical trial process [49,50].

THPs are classified as short peptides, consisting of 3–15 amino acids, that specifically
identify and attach to cancer cells or tumor blood vessels. Since the introduction of the
tumor-homing approach in 1998, various THPs have been identified using phage display
techniques, both in in vitro and in vivo assessment. They can attract specific phenotypes of
cancer cells and their environment due to their specificity. THPs contain several typical
motifs like arginine–glycine–aspartic acid (RGD) and asparagine–glycine–arginine (NGR)
peptides, which specifically bind to the molecules on the surface of cancer cells or tumor
blood vessels [51].

The first peptide (RGD) is one of the most studied tumor vasculatures targeting ligands,
while NGR is the second one. Both of them have potential applications in antitumor therapy
and drug delivery [52].

3.1. RGD Peptides—Characteristics

The RGD peptide targets tumor vessels that exhibit a selective expression of αvβ3
and αvβ5 integrins [51,53]. These integrins are known to be overexpressed in tumor-
associated blood vessels and glioma cells, and their activation initiates pathways that are
associated with cell proliferation and tumor-induced angiogenesis [53]. Integrins play a
crucial role in regulating intracellular signaling pathways that protect cancer cells from the
antiproliferative effects of anticancer drugs. The distortion of this protein could be useful
in sensitizing tumor cells to antitumor agents [53].

3.2. Cyclic RGD—Characteristics

These integrins are known for their specific properties, and they are expressed on
tumor cells and are responsible for activating endothelial cells in tumor neovascularization.
The correlation levels of the αvβ3 integrin with tumor growth progression and aggres-
siveness make an attractive biological candidate for the development of antiangiogenic
drugs and molecular imaging for early cancer diagnoses. The cyclic RGD peptide can be
mono-, di-, or multimeric and is commonly used as a radiotracer or targeted biomolecule
to transport the αvβ3 and αvβ5 isotope integrins. The radiolabeled properties of cyclic
RGD are especially useful for radiotracking while imaging with PET/SPECT methods. The
radiolabeled cyclic RGD peptides are also able to bind to other integrins, for instance, αvβ5,
α5β1, α6β4, α4β1, and αvβ6, which lead to an increase in the tumors’ uptake by enhancing
the receptor population [54–56].

3.3. iRGD—Characteristics

The iRGD peptide, recently discovered through phage display, is a new peptide that
can be used for tumor targeting. It has a short amino acid sequence (Arg-Gly-Asp) and it is
used to monitor tumor cell permeability, regulate cell internalization and extravasation,
and promote further tissue penetration to enhance imaging sensitivity and therapeutic
effectiveness [57–59].

The iRGD peptide possesses many advantages. Similar to the conventional RGD
peptide, iRGD (CRGDK/RGPD/EC) can bind to αv integrins after i.v. administration,
which are specifically expressed on the surface of tumor vessels. The iRGD is then cleaved
to CRGDK/R through a protease. Since iRGD has a functional sequence, it shows affinity
for NRP-1, particularly the active C-end Rule (CendR) motif (R/KXXR/K) exhibited at
the C-terminus [57,60–62]. The penetration of tumor tissue is induced by binding of
the peptide to integrins via CendR motif interaction with NRP-1. This binding process
enables the extravasation and permeation of imaging agents or drugs that are conjugated
to the iRGD peptide or administered together with iRGD into target tissues and tumor
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cells [57,59,63,64]. Moreover, iRGD exhibits better biological homing properties, probably
due to the specific homing of the intact peptide by RGD. Furthermore, the iRGD recruitment
to the cell surface via iRGD–integrin interaction is presumably required for proteolytic
cleavage, which triggers the subsequent tumor penetration, as protease inhibitors are
typically nonviable at cell surfaces but can block proteolysis elsewhere [57,60]. It should
also be emphasized that the ability of iRGD to penetrate cells is much better compared
to conventional RGD peptides, probably due to the fact that integrins move between the
cell surface and intracellular compartments, and several viral pathogens can penetrate
cells using this mechanism [65]. Higher tumor apoptosis and anticancer efficiency were
observed due to the concomitant effect of EPR (enhanced permeability and retention)
and the mediating effect of active targeting of iRGD [66]. Conclusively, published results
indicate that iRGD does not show negative effects or cytotoxicity against healthy cells,
which increases its potential as a homing molecule [67].

3.4. NGR Peptides—Characteristics

The NGR motif is a homing tripeptide that binds to Aminopeptidase N (APN or
CD13), which is overexpressed on the surface of many cancer cells [51,53]. In effect,
these sequences recognize and bind CD13 on tumor endothelial cells. Moreover, the
deamidation of the NGR motif provides an additional recognition moiety called Iso-DGR,
which specifically targets αvβ3 integrins expressed on tumor neovasculature [68]. The
receptors mentioned above are known as integral parts of angiogenesis regulators and
are overexpressed on the endothelium of solid tumors where they are responsible for the
promotion of tumor vascularization [69]. Other reports indicated that αvβ3 integrins play a
key role in metastasis. Interesting is the fact that these receptors are only expressed in newly
formed vessels [70]. Recent studies have shown excellent properties for inhibiting cancer
growth. The NGR peptide could also be used as a vehicle for delivering nanoparticles,
chemotherapeutics, and radioisotopes to tumors [70]. An in vivo and in vitro assessment
showed that an NGR peptide radiolabeled with 99mTc demonstrated great potential as
a diagnostic agent, especially in the visualization of lung tumors [53,70]. In effect, NGR
targeting properties are crucial for developing a method for non-invasive imaging of CD13
receptor levels in living individuals, which may help to identify treatment-responsive
patients, monitor therapy, and assess prognoses. Molecular radiological imaging based
on NGR is the most effective method to assess CD13 receptor expression in vivo in a
non-invasive and accurate manner [70].

3.5. Cell-Penetrating Peptides (CPPs)—Characteristics

Cancer cells can be differentiated from healthy cells by their higher concentration of
negatively charged cell surface compounds, including negatively charged head groups
of the lipid bilayer that forms phospholipids. This favors them to interact with cation-
ically charged peptides and is partially responsible for the relative selectivity of cancer
cells [32,71,72].

CPPs are classified as short peptides that have the ability to penetrate tissues and
cell membranes in an energy-dependent or energy-independent manner. They are used to
transport a diverse range of bioactive conjugates (cargoes) inside cells, including peptides,
proteins, DNA, siRNAs, small drugs, NPs, fluorescent agents, and more. CPPs are highly
advantageous due to their biocompatibility and the ability to modify peptide sequences to
fine-tune hydrophobicity, charge, affinity, stability, and also solubility. Additionally, they
can be easily synthesized in adequate quantities [18,73,74].

CPPs can be categorized based on their origin, role, or sequence, or due to their
mechanism of uptake. According to their physicochemical properties, they can be classified
as amphiphilic, cationic, or hydrophobic [73].

At physiological pH, cationic CPPs have a high positive net charge. They are derived
from basic short-chain arginines and lysines, such as TAT48-60 (GRKKRRQRRPPQ) or
DPV1047 (VKRGLKLRHVRPRVTRMDV). Hydrophobic CPPs are primarily composed of
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apolar moieties that contain amino acid groups important for cellular uptake, combined
with a low net charge, for instance, C105Y (CSIPPEVKFNKPFVYLI). The amphiphilic
CPPs are the third class of CPPs. They contain both hydrophilic and hydrophobic regions
of amino acid sequences. The typical examples are pVEC (LLIILRRRIRKQAHAHSK)
and Pep1 (KETWWETWWTEWSQPKKRKV). According to their origin, peptides can be
categorized as chimeric CPPs, CPP derivatives, and synthetic CPPs [73,75].

Cell-penetrating peptides (CPPs) are highly promising ligands, drawing the attention
of researchers based on their efficiency in transporting bioactive molecules intracellularly.
However, the lack of specificity and their in vivo degradation have led to the development
of more recent types of CPPs. Currently, activated CPPs and modified tumor-targeting
peptides (TTPs) show much better specific cellular uptake, cytotoxicity, and inhibition of
tumor growth [43,73].

Although CPPs have huge potential as carriers for specific drug delivery into tumors,
the majority of conventional CPPs have several limitations, including a deficiency of cell
specificity and in vivo instability, which are leading barriers to their future therapeutic
development. There are limited in vivo applications of CPPs due to their non-specific
tissue/cell penetration. Several approaches have been proposed so far to selectively target
tumor cells with CPPs. In order for CPPs to be useful as vectors for delivering therapeutic
agents, their in vivo stability must be considered. Due to their peptide nature, CPPs are
susceptible to degradation by proteases both extracellularly and intracellularly. The stability
of CPPs in vivo is determined by various factors that affect proteolytic cleavage, such as
the amino acid sequence, conformation, chemistry, administration routes, conjugate cargo
type, and method of CPP—cargo conjugation [73].

3.6. Machine Learning Approaches for Designing THP

In general, for designing new drug targeting devices, three main routes are imple-
mented: 1. the structure-based drug design (SBDD), 2. the ligand-based drug design
(LBDD), and, if the protein structure is not known, 3. computational methods are used
(amongst them are those based on machine learning) [76]. Although experimental ap-
proaches can facilitate the precise identification of THPs, they are usually labor-intensive,
time-consuming, and expensive. For those reasons, nowadays, more and more compu-
tational methods (including machine learning ones) are used to predict the structure of
THP. To date, three webservers based on machine learning models are currently active,
the TumorHPD and the THPep, and more recently the SCMTHP. The TumorHPD not only
facilitates the THP prediction but is also able to design THPs with better tumor-homing
properties. This system firstly generates all possible single substitution derivatives of
an original peptide; then, it predicts if the original peptide and the derivative is THP or
non-THP [77]. The THPep is a sequence-based approach for the prediction and analyzing
of THPs by using an interpretable random forest classifier in accordance with amino acid
composition, dipeptide composition, and pseudo-amino acid composition. The authors
pointed out that the precise identification and efficient characterization of tumor-homing
peptides based on a computational model is crucial to understand their role in the drug
development process and also to reduce the time and cost of tumor-homing peptide-based
therapy [78]. After conducting a range of tests, including rigorous cross-validation using
5-fold cross-validation, it was found that the proposed model of THPep is incredibly pow-
erful and holds great promise for use in basic research and drug development. Based on
aforementioned research, a free webserver was built to provide an efficient and useful tool
for THP prediction: http://codes.bio/thpep/ (accessed on 23 May 2024) [78]. The SCMTHP
approach is a simple and easily interpretable computational system, which is using the
scoring card method (SCM) for identifying and analyzing tumor-homing activities of pep-
tides [79]. Another novel example of a machine learning-based framework is StackTHPred
that predicts THPs using optimal features and a stacking architecture, and facilitates the
identification of THPs from complex samples [80]. Next, machine learning-based methods
distinguish THPs from non-THPs by encoding peptides, selecting optimal features, and

http://codes.bio/thpep/


Int. J. Mol. Sci. 2024, 25, 6219 8 of 31

finally identifying THPs by a support vector machine (SVM) [81]. A novel computational
approach for THP named NEPTUNE was presented by Charoenkwan et al. It facilitates the
accurate and large-scale identification of THPs from sequence information. This approach
includes six popular machine learning algorithms from which information is fed into an
SVM-based classifier (meta-predictor NEPTUNE) [82]. Another method based on network
science and similarity searching implemented in the starPep toolbox was described by
M. Romero et al. This method employs Chemical Space Networks for extracting the most
relevant and non-redundant THP sequences, which are used in multi-query similarity
searching models (SSMs) [83].

4. Homing Peptides for Drug Delivery
4.1. THPs for Drug Delivery

Drug-targeting peptides have been widely examined as homing molecules in drug
delivery systems due to their specific binding properties and ability to efficiently accumulate
drugs at the site of action. However, they still pose a challenge for large-scale chemotherapy-
related research in cancer treatment. Indeed, through the chemical linking of the ligand
of interest to drug-loaded nanocarriers, active targeting systems could be developed.
Peptide-functionalized nanostructures have found broad application in various biomedical
fields, encompassing drug delivery, bioimaging, fluid biopsy, and target-based anticancer
therapies. They are well recognized as potential new therapeutic candidates, owing to their
high specificity, excellent biocompatibility, and ease of delivery [84,85].

Biomolecules including tumor-homing peptides can be conjugated with the drug
delivery system’s core in two general ways: by non-covalent and covalent bonding. Non-
covalent bindings are represented mainly by π–π stacking forces, hydrophobic interactions,
electrostatic interactions, and hydrogen bonds. Preparing the delivery system based on
non-covalent interactions does not demand the application of complicated and tough
synthetic methods. However, they are weaker and less stable in their nature than covalent
bonds, which can limit their application. The most popular covalent bonds applied for
THP’s conjugation are amide and ester bond preparation (using variety of bond activation
strategies—e.g., NHS ester formation) and the Michael reaction of an amine group (mainly
by maleimide derivative preparation), though such binding may affect the bioactivity of
peptides. The examples of the bonding strategies are presented in Table 1 below:

Table 1. Bonding strategies of THP to nanoparticles.

Core Type Av. Diameter Interaction with THP Application Interaction with the
Drug Ref.

PEG polymer
nanoparticles 20–50 nm covalent; conjugation

by NHS ester siRNA delivery non-covalent
interactions [49]

chemical complex - covalent; conjugation
by maleimide siRNA delivery non-covalent

interactions [50]

PEG polymer
nanoparticles nd covalent; conjugation

by maleimide
adenovirus

vector carrier

covalent (by
maleimide or

NHS ester)
[86–91]

PEG polymer
nanoparticles 141–160 nm covalent;

Michael reaction paclitaxel delivery non-covalent
interactions [92]

PEG-PEI polymer
nanoparticles 100 nm covalent; conjugation

by NHS ester siRNA delivery non-covalent
interactions [93]

PEG micelles 32 nm covalent; reaction
with acetal siRNA delivery

covalent (by
maleimide or

NHS ester)
[94]

PEG-PLA
nanoparticles 120 nm covalent; conjugation

by maleimide siRNA delivery non-covalent
interactions [96]
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Table 1. Cont.

Core Type Av. Diameter Interaction with THP Application Interaction with the
Drug Ref.

chitosan–PEG micelles 260 nm covalent;
esterification reaction siRNA delivery non-covalent

interactions [95]

mesoporous silica
nanoparticles 51.2 nm non-covalent

interactions
doxorubicin
and siRNA

non-covalent
interactions [97]

cationic liposome and
PAA hybrid

nanoparticles
93 nm non-covalent

interactions siRNA delivery non-covalent
interactions [98]

cyclodextrin nd non-covalent
interactions siRNA delivery non-covalent

interactions [99]

pHPMA polyplexes 90–100 nm covalent; amide
bond formation DNA delivery non-covalent

interactions [100]

biomimetic magnetic
nanoparticles@PLGA

copolymer
220 nm covalent;

esterification reaction drug delivery nd [101]

Abbreviations: PEG—Poly(ethylene glycol); pHPMA—Poly(N-(2-hydroxypropyl)methacrylamide); PEG-
PLA—Polylactide-block-poly(ethylene glycol); PLGA—Poly (D, L-lactide-co-glycolide); PAA—Poly(acrylic acid);
PEG-PEI—Poly(ethylene glycol)-block-polyethyleneimine.

It has been a goal of many researchers to target specific cell types to achieve an
optimal biodistribution of therapeutic agents in affected tissues, while reducing potential
side effects.

Many papers have discussed the use of peptide-specific tissue biomarkers that enable
peptides to act as homing devices for targeting specific tissues or organs. Such properties
are especially characterized by homing peptides and cell-penetrating homing peptides. In
addition to enhancing cellular uptake, these peptides can also act as homing ligands for
various carriers and compounds, such as nanoparticles or drugs, to enter cells [68,69].

With reference to the above, we have focused on the advantages of using various types
of nanoparticles functionalized with targeting ligands (Table 2).

Summarizing this part, it should be emphasized that the targeting of tumor cells or
tumor blood vasculature using THPs has received considerable attention in the past few
years. The most commonly used homing peptides for drug delivery to cancer tumors
include RGD and NGR. There are THPs that precisely adhere to receptors overexpressed
on cancer cells, both through phage display methods and an appropriate design and modi-
fication of natural peptide ligands [100–103]. Nanomedicines can be targeted to particular
tissues using homing peptides in order to improve exposure to therapeutic agents. Indeed,
these large targeting nanopeptides can accumulate in the targeted tissues to a greater extent
than small conjugates, hence improving therapeutic efficacy and minimizing side effects.
Furthermore, some groups have coupled tumor-homing peptides with imaging particles,
including fluorescent probes and positron emission tomography or magnetic resonance
imaging (PET or MRI) molecules, to enable migration to disease sites, as presented in
Table 1 of this paper [18,52,104].

Nanoforms, such as polymers, micelles, and liposomes, may serve as drug carriers
to improve targeting efficacy by increasing circulation time. Clinically, the application of
nanoparticles based on albumin, liposomes, or polymers encapsulated with anticancer
drugs has been demonstrated to have superior therapeutic efficacy, improved stabil-
ity, enhanced solubility, and reduced toxicity compared to each of the individual free
drugs. The benefits of using nanoparticles are also reported in numerous scientific
papers [105–110].
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Table 2. Peptide-conjugated nanocarriers and their benefits of use.

Core Ligand/Vector Agent Effect Ref.

Atelocollagen Aptamer APT A10-3.2 miR15a,
miR-16-1

reduction in damage to the bone tissue
improvement in the therapeutic effect [50]

PEG
Ac-

YGGRGDTP(beta)A)(2)K-
PEG-(beta)AC

Ads modified adenovirus exhibited high gene
expression even in a CAR-negative cell [86]

PEG RGD-Ads dnIkappaB gene therapy/tool in rheumatoid arthritis
and in IBD therapy [87]

Pluronic
P85/PEI/TPGS iRGD PTX and

survivin shRNA
powerful approach for the reversal and
therapy of lung cancer resistance [92]

PEG-b-PLL(2IT) cRGD SiRNAs antiangiogenic therapy—suppression of
angiogenesis and tumor growth rate [94]

Chitosan–PEG CP15 peptide PLK1-siRNA lack of systemic toxicity/potential
approach for cancer therapy [95]

Multi-layered
nanocomplexes

MNS/PAH-Cit/GTC
TAT peptide DOX/VEGF-

siRNA strong anticancer effect [97]

PLGA/lipid iRGD ICG/TPZ delivery platform for PDT and
hypoxia-activated chemotherapy [63]

Abbreviations: PEG—poly(ethylene glycol); CP15—cell-targeting peptide; PLK1—serine/threonine-protein
kinase; PAH-Cit—poly(allylamine hydrochloride)-citraconic anhydride; GTC—galactose-modified trimethyl
chitosan–cysteine; VEGF—vascular endothelial growth factor; ICG—photosensitizer indocyanine green;
TPZ—hypoxia-activated prodrug tirapazamine; PLGA—poly(D, L-lactide-co-glycolide); PEG-b-PLL(2IT)—poly(-
b-PLL- poly(ethylene glycol)-block-poly(L-lysine) comprising lysine amines modified with 2-iminothiolane
(2IT); cRGD—Cyclo-Arg-Gly-Asp peptide; PEI—polyethylenimine; TPGS—d-α-tocopheryl polyethylene glycol
1000 succinate; PTX—paclitaxel; DOX—doxorubicin;

Nanoparticle conjugation with various ligands has exhibited promising possible thera-
peutic effectiveness in targeted drug delivery. Achieving the additional vacation and deep
penetration of antitumor nanoparticles into the tumor mass seems to remain a challenge
that could possibly be avoided through the use of tumor-penetrating peptides [111]. It
should also be noted that in all approaches, the decoration of NPs with CPPs and/or
targeting peptides led to an improved cellular uptake, indicating an effective combination
of these units [101,112].

Thus, it was proved that the addition of a tumor-penetrating peptide to the surface
of nanoparticles can enhance their specific properties such as cancer selectivity, tissue
penetration, and potency [113,114].

4.2. THPs for Blood–Brain Barrier (BBB) Delivery

Theranostics, defined as an integrated system for a diagnosis, targeted therapy, and re-
sponse monitoring, may be an attractive strategy for brain cancers. Despite the blood–brain
barrier (BBB) representing a significant challenge to drug delivery, the field of nanomedicine
has identified promising avenues for the efficient delivery of chemotherapeutics across the
BBB and into brain cancer sites, while simultaneously reducing adverse effects on healthy
tissue. In recent years, peptides have emerged as excellent candidates both for crossing
the BBB and for homing in on specific targets in brain tumors. They are small and very
specific, exhibiting remarkable sequence flexibility and genetic/chemical conjugation to
other molecules, such as nanoparticles of diverse origins. These conjugates can then be
employed as drug delivery vehicles for specific chemotherapeutic applications [115,116].

Three stages of brain tumors have been identified as relevant when designing drug
delivery systems. In the first stadium, when tumor formation has occurred but the BBB
is intact, it is important to target nanoparticles that can cross the integrity of the BBB and
transport the cargo to the tumor site. In the second stage, tumor cells are dividing rapidly
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and have already induced the secretion of EGF and the expression of VEGFR and EGFR
receptors, which promote angiogenesis. This results in a permeable or defective BBB,
allowing the passage of higher-molecular-weight molecules. The third stage is when a
blood–brain tumor barrier (BBTB) is created. In such cases, strategies to target angiogenesis
via peptides such as RGD or nanocarriers with a size of less than 12 nm that can pass
through negatively charged pores on the BBTB should be applied [117,118]. Consequently,
the treatment of brain cancer (such as glioblastoma) presents a challenge to the use of
peptides that address issues such as BBB crossing, cell penetration, and specific glioma
homing. Guiding peptides can be conjugated directly to a drug or serve as the directing
component of a complex therapeutic system that contains a drug encapsulated in a carrier.
Carriers that have been applied in the treatment of tumors located in the brain include
liposome or polymeric-based systems such as methoxy-PEG and PEG-PLA. Examples of
peptides along with carriers and ligands in the treatment of glioblastoma are summarized
in Table 3.

Table 3. THPs for blood–brain barrier (BBB) delivery.

Peptide Target Agent Ref.

Interleukin 13 peptide (IL-13p) IL13Rα2 docetaxel [119]

Tuftsin (TKPR) Neuropilin-1 (NRP-1) anthracyclines
salicylanilides [120–122]

tLyP-1 Neuropilin-1 (NRP-1) 5–carboxyfluorescein (FAM),
18F–fluoride [123–125]

Azurin (Paz) TKR - [126]

TGN BBB
AS1411 aptamer docetaxel [127,128]

Angiopep-2 LRP1 doxorubicin [128]

Trans-activating transcriptional
activator (TAT peptide) Nucleus siRNA expression plasmid,

docetaxel, paclitaxel [129,130]

Chlorotoxin (CTX) Tumor cell surface receptor; MMP-2 platinum [131,132]

BTP-7 dg-Bcan protein camptothecin [133]

5. Homing Peptides for Imaging

THPs could be adapted as diagnostic tools with greater efficiency, providing entirely
new opportunities in tumor detection. Moreover, due to their properties and simplicity of
modification with functional groups, THPs could be applied as multifunctional imaging
platforms, especially including radionuclide, optical, ultrasound, and magnetic resonance
imaging techniques [134].

Appropriate and early cancer detection, as well as effective prevention, is one of
the main goals of effective anticancer therapy. Nowadays, computed tomography (CT)
and magnetic resonance imaging (MRI), which are classified as conventional imaging
techniques, can detect cancer when the tumor is larger than one centimeter in diameter.
Therefore, it is clear that more responsive imaging modalities are required for the early
detection and improved efficiency of tumor identification. Conventional imaging tech-
niques are based on the structure of anatomical organs, while molecular-based imaging
can recognize site-specific molecular probes and use certain receptors uniquely in cancer
management. Molecular imaging is claimed to be a potentially promising approach for the
early screening and identification of changes in crucial morphological behaviors and local
host responses associated with the early stages of specific incidents in the disease spectrum,
including progression at the cellular level [135,136].
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Therefore, tumor-specific homing peptides with high binding affinity are a promising
diagnostic technique for targeted cancer imaging in a specific way. THPs have been
examined in several imaging modalities such as molecular imaging inquires. Both RGD and
NGR peptides have been commonly applied to transport various imaging agents [137,138].

A recently published paper [52] demonstrated several examples of peptide-conjugated
nanocarriers used for in vivo cancer diagnostics. The author assessed 13 targeting peptides
and their conjugated nanocarriers and showed their imaging properties. In most cases,
peptide-conjugated nanocarriers presented MRI and optical features. The author also
pointed out the advantages of using peptide-directed nanomedicine. First of all, an in vivo
assessment revealed that an activated tumor endothelium could be imaged using both
methods; however, only the optical technique can visualize angiogenic blood vessels
and lymphatic vessels in tumors. Secondly, MRI imaging showed that nanoparticles can
penetrate blood vessels and accumulate in tumor vessels in cases of breast cancer. What
is more, this technique is also helpful in the in vivo assessment of HER2-overexpressing
ovarian cancer cells.

The circulation time or half-life (T1/2) of nanostructured agents is a parameter of great
importance for in vivo experiments and other clinical procedures [139–141]. Monitoring
of biodistribution and clearance in vivo is also essential in this field [142]. Discussed
properties are mostly controlled by the intrinsic properties of NPs, including the surface
charge, shell material, size, and core, which directly affect the circulation time and the
target area [142,143].

6. Magnetic Nanoparticles as a Platform for Tumor-Homing Peptides
6.1. Methods of Preparation and Functionalization of Magnetic Nanoparticles

The most commonly synthesized magnetic nanoparticles for biomedical applications
are iron oxide nanoparticles (IONPs) consisting of magnetite (Fe3O4), maghemite (γ-Fe2O3),
hematite (α-Fe2O3), or mixed ferrites [144]. The popularity of IONPs as drug carriers comes
from their biocompatibility, non-toxicity, ease of preparation, and stability [145–147].

The synthetic routes for IONPs can be divided into three categories: chemical synthesis,
biosynthesis, and physical methods. The most commonly used methods are the chemical
ones, which represent around 90% of methods described in the literature [148]. The most
efficient chemical methods are co-precipitation, sol–gel, thermal decomposition, and micro-
emulsion [149,150].

In the literature, several THP conjugation approaches to magnetic nanoparticles are
implemented (Figure 3). Most of them are based on MNP coating with a biocompatible
shell (PEGs, polysaccharides), followed by a reaction with the peptide or peptide derivative.
The reactions most commonly used to anchor THPs onto nanoparticle surfaces are

- The esterification reaction of a carbodiimide THP derivative [151,152];
- The formation of an amide (on free NH2 [153] groups or –COOH [154] groups pre-

sented on the surface of MNP);
- The Michael reaction of a peptide’s SH group with meleimido-modified MNP [155–158];
- Copper Catalyzed Azide Alkyne Cycloaddition (reaction of alkyne-modified MNP

with azido derivative of polypeptide) [159];
- Schiff base formation between a carbonyl group presented on the surface of MNP and

an amino group of the THP [160].

Also, a different approach is implemented when using a THP-modified coating agent
to build the active shell around MNP. Usually, polysaccharides are used as effective coating
agents and good materials for THP derivative synthesis [161,162].

Gaining insight through the complex interactions between homing ligands and NPs
and identifying appropriate coupling mechanisms to ensure adequate stability and biocom-
patibility with no degradation of peptide functionality are major challenges for successful
clinical application. However, while many efforts have been undertaken to design smart
multi-modal signal generating vectors, the growing complexity of the prepared nanoforms
presents a challenging and in many cases labor-intensive assignment. Therefore, a key



Int. J. Mol. Sci. 2024, 25, 6219 13 of 31

challenge is to establish reproducible synthetic protocols. Accordingly, there is a great need
for straight single-pot synthetic pathways providing functional delivery of nanoplatforms
that could be associated with new and smart linking methods to ensure colloidal stability
under physiological conditions [163–166].
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6.2. Biomedical Application of Magnetic Nanoparticles

Magnetic nanoparticles (MNPs) are widely known for their multifunctional properties
in many areas of application. In particular, in terms of biomedical applications, they have
been used for the detection and separation of cells, especially in stem cell tracking and
signaling. In addition, they are used as therapeutic agents for imaging and hyperthermia
and also as drug delivery systems. This wide range of capabilities is a very unique factor
that enables their application in terms of diagnoses and therapy as well, resulting in a
variety of application possibilities [150] (Tables 4–7).

6.2.1. MNPs in Cancer Imaging

Table 4 presents a few examples of peptide-conjugated magnetic-based nanocarriers
used for cancer imaging.
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Table 4. Peptide-conjugated magnetic-based nanocarriers for cancer imaging.

Imaging
Method

Targeting
Peptide Nanocarrier Advantages Ref.

MRI

LTVSPWY
LTVSPWY-

PEG-CS
MNPs

• In vivo assessment of HER2-overexpressing SKOV-3
carcinoma cells

• Effective ability to target and internalize cells, resulting in
enhanced contrast images that are highly informative

[161]

A54
A54-GFP-

coated MNPs

• Superparamagnetic properties at room temperature
• In vitro bioassay showed that coating with a homing peptide gives

MNPs a specific affinity for cancer cells
• Possesses magnetic, cancer cell-specific, and fluorescent properties
• Promising tool in magnetic cell separation and purification

[151]

A54-Dex-
PLGA/

DOX/SPIO

• Both in vitro and in vivo assays showed the antitumor efficacy to
BEL-7402 hepatoma cell line

• Less toxic in comparison to thypical adriamycin injections
• Promising tool in cancer binding and targeting

[162]

iRGD iRGD-SPIO

• Improvement in the sensitivity of pancreatic cancer imaging
• Enhancement in the positive labeling rate of cells and the

SPIO absorption
• Promising tool in cancer targeting and tissue penetration

[67]

CKAAKN

CKAAKN–
HA–

VES@USPIO
NPs

• Improvement in tumor-targeting delivery of MRI contrast agents
• Superior specificity in the detection of pancreatic cancer
• Exquisite biosafety
• Over 80% of cell viability in BxPC-3 and HPDE6-C7 cell lines

[167]

Abbreviations: A54—AGKGTPSLETTP peptide, A54-Dex-PLGA—A54 peptide-functionalized poly(lactic-
co-glycolic acid)-grafted dextran with encapsulated doxorubicin, CKAAKN–HA–VES@USPIO—peptide-
functionalized amphiphilic hyaluronic acid–vitamin E succinate polymer (CKAAKN–HA–VES) for delivering
ultra-small superparamagnetic iron oxides, iRGD—9-amino acid cyclic peptide (sequence: CRGDKGPDC),
MNPs—magnetic nanoparticles, MRI—magnetic resonance imaging, NPs—nanoparticles, PEG-CS—PEGylated
chitosan, SPIO—superparamagnetic iron oxide. Furthermore, peptide-conjugated magnetic-based nanocarriers
have been successfully applied as other imaging methods.

Luo and coauthors [168] described various types of magnetic nanoparticles used in
stem cell therapy. For instance, optical methods using luciferase substrates, fluorescent
protein tags, fluorescent dyes, and near-infrared fluorophores enable the simultaneous assay
of multiple cell lines and can be used in combination with other imaging modalities. Whole-
body 3D scanning is a promising method that enables single-cell detection and is known for
no ionizing radiation effects. PET and SPECT are two other diagnostic methods, and PET
is known for its high-energy positron emitters, while SPECT enables high-energy gamma
emitters with high detail. Ultrasound provides single-cell detection without ionizing
radiation and soft tissue imaging. This method is also relatively inexpensive and fast.
Table 5 presents a few examples of peptide-conjugated magnetic-based nanocarriers used
for cancer diagnoses.

Table 5. Peptide-conjugated magnetic-based nanocarriers for cancer diagnostics.

Diagnostic
Method

Targeting
Peptide Nanocarrier Advantages Ref.

Magnetic field YSA
MNPs-YSA

peptide
conjugates

• Extensive removal of spreading ovarian cancer cells from
the abdomen can lead to a reduction in the number of
malignant cells and decreased chances of metastatic spread

• Promising tool in cancer targeting and removal

[169]
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Table 5. Cont.

Diagnostic
Method

Targeting
Peptide Nanocarrier Advantages Ref.

Whole-body
imaging CREKA CREKA-SPIO

• Depletion of RES macrophages in the liver with
liposomal clodronate

• The i.v. injection of Ni-liposomes prolonged the half-life of
the nanocarrier

• Induction of blood clotting in tumor vessels
• Clotting amplification to tumor targeting
• Promising tool in improving the tumor detection by

microscopic and whole-body imaging methods

[170]

Sensitive
monitoring of the

magnetic
relaxation of

IONPs with the
use of MPS

IONPs-
N/IONPs-N-

P/IONPs-N-P
with protease

• Helpful method in detecting specific proteases
• Promising tool in diagnosis and treatment of cancers,

Alzheimer’s disease, and vascular diseases
[171]

MRI A54 Dex-PLGA/
DOX/SPIO

• Specific binding ability of A54-Dex-PLGA/DOX/SPIO
micelles to hepatoma cell BEL-7402

• Better therapeutic effects and reduced toxicity
compared with commercial adriamycin injection

[162]

MRI - MNPs

• The in vivo imaging of cells is an essential point in tracking
and monitoring the treatment process, distribution of
immune cells in the body, time of diffusion, proliferation,
and migration rates

• MRI for in vivo imaging studies is an excellent method
used for high-resolution soft tissue penetration

• MRI is used to show the exact internal structure of the body
due to the magnetic field, radio waves, and electric fields

• MNPs lower the relaxation period of surrounding protons,
making them good candidates for MRI contrast agents

[172]

Abbreviations: IONPs—iron oxide nanoparticles; IONPs-N—iron oxide nanoparticles–neutravidin; IONPs-
N-P—iron oxide nanoparticles–neutravidin-peptide; MPS—magnetic particle spectrometer; MNPs—magnetic
nanoparticles; MRI—magnetic resonance imaging; NPs—nanoparticles; i.v.—intravenously; PLGA—poly(lactic-
co-glycolic acid); Dex—dextran; DOX—doxorubicin.

6.2.2. MNPs in Hyperthermia Treatment

Hyperthermia is classified as an adjuvant therapy for cancer that uses temperatures
higher than the physiologically optimal range, typically 40–43 ◦C. The duration of the
treatment is approximately one hour [173]. Hyperthermia therapy can be successfully
applied as a sensitizer before radio- and chemotherapy or as a component of a synergis-
tic treatment [174]. To date, hyperthermia methods have demonstrated efficacy in the
treatment of various types of cancer, including soft tissue sarcoma, melanoma, head and
neck cancer, bladder cancer, and breast and cervical carcinoma [175]. During hyperther-
mia therapy, stability, function, and properties of cellular components, as well as cellular
responses, including DNA repair pathways and systemic immune responses, have been
altered. Moreover, hyperthermia may further help in the mitigation of chemo-resistance to
doxorubicin in certain cancer cells [176].

From a historical perspective, the experiment conducted by Roizin-Towle et al. demon-
strated that the survival of normal and neoplastic human cells exposed to a specific thermal
dose could be decreased [177]. Nevertheless, tumor cells did not exhibit significant sensi-
tivity to the treatment compared to healthy cells. This study suggests that the therapeutic
success of hyperthermia will be contingent upon the ability to localize heat specifically in
tumor cells. To achieve the aforementioned approach, the use of magnetic nanoparticles
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(MNPs), which are characterized by unique physicochemical properties and morphology,
will be justified as hyperthermia agents [178]. The specific size range (10–150 nm) and the
possibility of the surface functionalization of MNPs via homing molecules, in addition to
the presence of leaky vasculatures around the cancer environment and the molecular profile
of cancer cells, facilitate the delivery of nanomaterials to the tumor site. Magnetic nanopar-
ticles may be employed to induce hyperthermia, specifically in cancer cells, through the
application of alternating magnetic fields. Moreover, the incorporation of temperature-
sensitive structures with a magnetic core can enhance the distribution and concentration of
drugs in tumors, thereby facilitating the development of combined therapies. The examples
of magnetically induced hyperthermia in cancer therapy are presented in Table 6.

Table 6. Peptide-conjugated magnetic-based nanocarriers for hyperthermia treatment.

Carrier Ligand Agent/
Tag Tumor Result Ref.

Magneto-liposome cRGD DOX/ICG

In vitro: lung, breast, skin,
brain, and liver cancer
In vivo: BALB/c mice murine
immuno-competent
fibrosarcoma tumor model

Combinatorial tumor therapy
(chemo-radio-hyperthermia)
Insignificant cardiac toxicity

[179]

Fe3O4@PMAO-PEG RGD ND
In vitro compatibility assay:
Vero cells

Prototype system for further
in vivo evaluation

[180]

Fe3O4@PMAO RGD ND
In vivo: rats bearing hepatic
implants of
colon adenocarcinoma

Therapeutic approach for
poorly vascularized

liver tumors
[181]

Fe3O4

EGFR—
targeted peptide

(YHWYGYT-
PQNVI)

ND
In vitro: lung cancer (NSCLC)
In vivo: mouse orthotopic
lung tumor model

Effective anticancer treatment
modality for the treatment of

NSCLC based on targeted
magnetic hyperthermia

[182]

TMNPs, i.e., Fe3O4@
Mn0.5Zn0.5Fe2O4@

CoFe2O4

LN1 CPP ND In vitro: prostate cancer
Reduction in cancer
cell aggressiveness

[183]

SPIONs-PEG
membranotropic
peptide gH625

Cyanine 5.5 In vitro: breast cancer cells

Prototype of nanoplatform for
cancer theranostics involving
magnetic resonance imaging,

optical imaging (infrared),
drug delivery, and

hyperthermia

[184]

Abbreviations: PMAO—poly(maleic anhydride-alt-1-octadecene); NSCLC—non-small cell lung cancer;
TMNPs—trimagnetic nanoparticles; ICG—indocyanine green; ND—not determined.

6.2.3. Different Biomedical Applications of MNPs

Table 7 presents a few examples of biomedical applications of peptide-conjugated
magnetic-based nanocarriers, which are used for treatment of life-threatening diseases such
as cancer or bacterial infection.

Table 7. Different biomedical applications of peptide-conjugated magnetic-based nanocarriers.

Condition Targeting
Peptide Nanocarrier Advantages Ref.

Conditions
associated with

Gram(+)/
Gram(−)
bacteria

Gly-Ala-Phe-
Pro-His-Arg

Silica-coated
iron oxide NPs

• Internalization into E. coli and S. aureus bacterial cells
• Great improvement in the antibacterial effect with low doses of VAN
• Rapid process of targeted drug delivery
• Reduction in drug dose
• Equal effectiveness against both Gram(+) and Gram(−) bacteria

[185]
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Table 7. Cont.

Condition Targeting
Peptide Nanocarrier Advantages Ref.

GBM NFL peptide pSiNRs

• Effective administration
• Improvement in treatment
• Facilitated targeting
• Enhanced internalization
• Preferential uptake
• Promising tool in the treatment of brain tumors

[186]

ALI
iNOS PNAs

and CPPs
SCKs • Promising tool in the design of hierarchical nanostructures with

great potential to become antisense imaging agents and therapeutics
[187]

LC
TAT-

functionalized
IONPs

Fe3O4 + TAT

• Increased cellular uptake
• Lysosomal destabilization following internalization
• Increased cellular ROS generation upon exposure to an alternating

magnetic field
• Mitochondrial integrity in cell lines
• Increased cell apoptosis

[188]

UTIs
rGO/MPND

with
pyrene–PEG

rGO

• Rapid capture and efficient elimination of E. coli
• Total ablation of E. coli after irradiation of the loaded nanocomposite

with a near-infrared laser
• Promising method for capturing any other pathogen and bacteria

[189]

BC Fe-Arg-MTX IOMNPs

• No side effects
• MRI contrast agent
• Effective and appropriate DDS for cancer cells
• Biocompatibility

[190]

Abbreviations: ALI—acute lung injury, BC—breast cancer, CPPs—cell-penetrating peptides, DDS—drug delivery
system, Fe3O4 + TAT—TAT peptide conjugation to iron oxide NPs, Fe-Arg-MTX—arginine-coated Fe MNPs,
GBM—glioblastoma multiforme, iNOS—inducible nitric oxide synthase, IOMNPs—iron oxide magnetic nanopar-
ticles, IONPs—iron oxide nanoparticles, MRI—magnetic resonance imaging, NPs—nanoparticles, PNAs—peptide
nucleic acids, pSiNRs—porous silicon nanorods, rGO—reduced graphene oxide, ROS—reactive oxygen species,
SCKs—shell cross-linked knedel-like polymer nanoparticles, UTIs—urinary tract infections, VAN—vancomycin.

7. Clinical and Cost-Effectiveness Analysis of Application THPs with MNPs

To evaluate the clinical safety and cost-effectiveness of tumor-homing peptides func-
tionalized with magnetic nanoparticles, we conducted research using two study registries:
ClinicalTrials.gov [191] and the International Clinical Trials Registry Platform Search Por-
tal [192]. The search strategy was prepared and conducted on March 24, 2024 according to
the methodology outlined by the NIH—U.S. National Library of Medicine. We used the
keywords “neoplasm”, “cancer”, “carcinoma”, “malignance”, “tumor”, and “tumour”, in
collocations with “magnetic nanoparticles”, “MNPs”, “tumor homing peptides”, “THPs”,
“cell penetrating peptides”, and “CPPs”. We adopted the following inclusion criteria: the
research on the study topic, clinical trials with the “completed” status, and only specifying
cancer cases related to the topic of the research, with results available. The cohort studies
on the selected topic were excluded from the overall analysis. Based on the adopted inclu-
sion and exclusion criteria, a total of four studies were eligible for a further clinical and
cost-effectiveness analysis (Table 8).

Among four analyzed studies, only in one case [193] adverse events have been
identified. The patients reported events in the following categories: cardiac disorder—
palpitations (1); gastrointestinal disorders—vomiting (1); general disorder—catheter site
rash (1); injury, poisoning, and procedural complications—thermal burn (1); musculoskele-
tal and connective tissue disorders—arthralgia (1); nervous system disorders—syncope,
dizziness, sensory loss (3); psychiatric disorders—confusional state (1); skin and subcuta-
neous tissue disorders—pruritis (1). Additionally, no dose limiting toxicity was defined in
this study.
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Table 8. The clinical and cost-effectiveness benefits discussed in relation to THPs with MNPs.

I. 68Ga-THP-PSMA PET/CT Imaging in High-Risk Primary Prostate Cancer or Biochemical Recurrence of Prostate Cancer (PRONOUNCED) [193]
(49 Participants)

Condition or Disease: Prostate Cancer

Selected Study
Details Arms and Interventions Brief Description Clinical Analysis Cost-Effectiveness Analysis

Official Study Title:
A Phase II, Open-label Study to
Assess Safety and Clinical Utility of
68Ga-THP-PSMA PET/CT in
Patients With High Risk Primary
Prostate Cancer or Biochemical
Recurrence After Radical Treatment
(PRONOUNCED Study)
Study Phase:
2
Study
Objectives:
Diagnostic
Study
Design:
Interventional (Single Group
Assignment), Open Label
Study Status: Completed
(June, 2019)

Arm:
1. Experimental:
Single i.v. administration of
Gallium-68 THP-PSMA
Intervention/treatment:
1. Drug: Gallium-68 THP-PSMA
(other name: THG-001)

Brief Summary:

• Open-labelled, single-center study in
the UK

• The study group of 60 patients was
divided into 3 smaller groups:

- Group A: 20 patients newly
diagnosed with primary high-risk
prostate cancer and are scheduled
for radical prostatectomy surgery

- Group B: 20 patients with a
diagnosis of BCR with previous
radical prostatectomy, and are
being considered for radical
salvage therapy

- Group C: 20 patients with a
diagnosis of BCR with previous
radical radiotherapy (no surgery)
and are being considered for
radical salvage therapy

- From group A, B, and C, the actual
enrollment was 49 patients

Primary Outcome Measures:
1. Change in Patient
Management—Measured as % of
patients who had a change in
management plan as a result of
68Ga-THP-PSMA PET/CT
documented after scan, compared
with their pre-scan management plan
Results:

• No change (0% of 49 patients
who underwent a technically
successful post-baseline scan; the
full analysis set and per protocol
populations were the same)

Secondary Outcome Measures:
1. Safety—Treatment of Emergent AEs
Safety was assessed by

• Physical examination
• Vital signs
• Cardiovascular profile
• Performance status
• Laboratory tests
• (hematology, biochemistry,

urinary analysis, PSA)
• Recording of concurrent

illness/therapy
• AEs

Results:

• Mortality—0%
• SAEs—0%
• AEs—20%

Increase in

• LYG
• QALYs
• Five-year survival rate
• Progression-free time

Decrease in

• DALYs
• No. of reported AEs
• No. of reported incidences of

prostate cancer after
implementation of
68Ga-THP-PSMA
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Table 8. Cont.

II. Pre-Operative Nodal Staging of Thyroid Cancer Using USPIO MRI: Preliminary Study
(12 Participants) [194]

Condition or Disease: Thyroid Cancer

Selected Study
Details Arms and Interventions Brief Description Clinical Analysis Cost-Effectiveness Analysis

Official Study
Title:
Pre-Operative Nodal Staging of
Thyroid Cancer Using Ultra-Small
Superparamagnetic Iron Oxide
Magnetic Resonance Imaging (USPIO
MRI): Preliminary Study
Study Phase:
N/A
Study
Objectives:
Diagnostic
Study
Design:
Interventional (Single Group
Assignment, Open Label)
Study Status: Completed (April, 2016)

Arm:
1. Experimental: Nanoparticle MRI
Within 48–72 h after ferumoxytol
infusion, a scan will be performed
Intervention/treatment:
1. Drug:
Ferumoxytol
i.v. administration at dose of 6 mg/kg
of body weight, up to a maximum
dose of 510 mg, delivered at a rate of
up to 1 mL/s (other name: iron
oxide-ferumoxytol)
2. Device: Nanoparticle MRI
within 48–72 h after i.v. ferumoxytol
infusion, and a scan will be performed

Brief Summary:

• Open-labelled, single-center
study in the USA
(Massachusetts)

• Evaluation of the ability of
USPIO MRI and ferumoxytol as
experimental contrast agents to
detect cancer in very small
metastases in the thyroid
lymph nodes

Primary Outcome Measures:

1. Sensitivity of LSN MRI
2. Specificity of LSN MRI

Results:

• Mortality—0%
• SAEs—0%
• AEs—0%

Increase in

• No. of early detected cancer
metastases
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Table 8. Cont.

III. Clinical and Technical Feasibility of an Ultrasuperparamagnetic Nanoparticle Iron Oxide (USPIO)-Enhanced
Magnetic Resonance Lymph Node Imaging [195]

(10 Participants)
Condition or Disease: Cancer of Lymph Nodes

Selected Study
Details Arms and Interventions Brief Description Clinical Analysis Cost-Effectiveness Analysis

Official Study Title:
Clinical and Technical Feasibility of a
Ultrasuperparamagnetic Nanoparticle
Iron Oxide (USPIO)-Enhanced
Magnetic Resonance Lymph
Node Imaging
Study Phase:
N/A
Study
Objectives:
Diagnostic
Study Design:
Interventional
(Single Group Assignment),
Open Label
Study Status: Completed
(July 2019)

Arm:
1. Experimental: Feraheme
MRI within 48–72 h after i.v.
administration of Feraheme®

Intervention/treatment:
1. Drug: Feraheme
i.v. administration at dose of 6 mg of
iron/kg (maximum: 510 mg/dose) at
a rate of 1 mL/s (30 mg/s) or slower
after initial MRI (other
name: ferumoxytole)
2. Procedure: MRI
MRI scan performed:

• Before i.v. administration
of Feraheme;

• After i.v. administration of
Feraheme, MRI scan performed
2 days later, and then again the
following day.

Brief Summary:

• Open-labelled, single-center
study in the USA (Texas)

• Evaluation of the ability of
USPIO MRI and Feraheme®
(ferumoxytole) as experimental
contrast agents to detect cancer
in very small metastases in the
cancer of lymph nodes as well as
in liver imaging

Primary Outcome Measures:
1. No. of patients with SI
change in a lymph node—comparison
between the pre- and post-contrast
Results:

• Mortality—0%
• SAEs—0%
• AEs—0%

Increase in

• No. of early detected cancer
metastases

Change in

• Optimum scan time due to SI
changes in a lymph node
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Table 8. Cont.

IV. Pre-Operative Staging of Pancreatic Cancer Using Superparamagnetic Iron Oxide Magnetic Resonance Imaging (SPIO MRI) [196]
(35 Participants)

Condition or Disease: Pancreatic Cancer

Selected Study
Details Arms and Interventions Brief Description Clinical Analysis Cost-Effectiveness Analysis

Official Study Title:
Improved Pre-Operative Staging of
Pancreatic Cancer Using
Superparamagnetic Iron Oxide
Magnetic Resonance Imaging
(SPIO MRI)
Study Phase:
4
Study
Objectives:
Diagnostic
Study Design:
Interventional (Single Group
Assignment), Open Label
Study Status: Completed
(February 2013)

Arm:
1. Experimental: SPIO MRI
Intervention/treatment:
1. Drug: SPIO MRI
Two MRIs will be performed over a
2-day period. The second scan will be
performed 48 h after i.v.
administration of ferumoxytol
(other names: SPIO MRI,
USPIO, feruoxytol)

Brief Summary:

• Open-labelled, single-center
study in the USA
(Massachusetts)

• Evaluation of the ability of
USPIO MRI and ferumoxytol as
experimental contrast agents to
identify small and otherwise
undetectable lymph node
metastases in patients with
pancreatic cancer who are
scheduled for surgical resection

Primary Outcome Measures:

1. Sensitivity of LSN MRI
2. Specificity of LSN MRI

Results:

• Mortality—0%
• SAEs—0%
• AEs—0%

Increase in

• No. of early detected cancer
metastases

Abbreviations: AEs—Adverse events, BCR—Breakpoint cluster region; type of gene, DALYs—Disability-adjusted life years, Gallium-68 THP-PSMA = THG-001—Name of drug,
LSN MRI—Magnetic resonance imaging with lymphotrophic superparamagnetic nanoparticles, LYG—Life years gained, MRI—Magnetic resonance imaging, N/A—Not applicable,
No.—Number, PET/CT—Positron emission tomography/computed tomography, SAEs—Serious adverse events, SI—Signal intensity, SPIO MRI—Superparamagnetic iron oxide
magnetic resonance imaging, UK—The United Kingdom, QALYs—Quality-adjusted life years.
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8. Future Perspectives

Chemotherapy remains the most commonly used cancer treatment. Nevertheless,
poor selectivity is an ongoing problem, which might be improved by using peptides with
antitumor properties.

There is no doubt that tumor-homing peptides are attractive tools in cancer therapy,
especially with carriers of therapeutic agents [197,198]. Furthermore, there has been an
increasing focus on the identification of new peptide-based drug delivery systems with
diverse payloads. The application of combined anticancer drugs can provide benefits such
as improved therapeutic efficacy, enhanced chemical parameters like solubility and stability,
reduced side effects, and lower costs of treatment [107,199,200].

Nowadays, there is a comprehensive research effort focused on the discovery of novel
forms, such as peptides, peptoids, and peptidomimetics, that specifically target tumor cell
surface receptors. These carriers, upon radiolabeling, can guide research into targeted
diagnostics and therapeutics. Conclusively, modifying the surface of nanomaterials with
different antitumor agents and peptides can increase cytotoxicity and selectivity against a
growing number of malignancies [4,201].

Furthermore, the peptides discussed in this paper may be attractive as optimal drugs
owing to their reduced production costs (peptide synthesis reagents that can support large
amounts of reaction material for solid-phase peptide synthesis, greatly reducing costs),
ability to be easily chemically modified, and high-tissue-penetration properties [202,203].

9. Conclusions

Recent decades indicated the great potential of functionalized magnetic nanomaterials
for biomedical purposes and healthcare. A lot of studies demonstrated that magnetic
nanoparticles have attracted attention in modern medicine and pharmacology owing to
their potential usefulness as contrast agents for MRI, as colloidal mediators for cancer
magnetic hyperthermia, or as active constituents of drug-delivery platforms. NPs have
been shown to improve the pharmacokinetic profile of bio-molecular therapeutics by
shielding them from rapid blood clearance or fast enzymatic destruction, resulting in
safe drug delivery to the therapeutic area. In combination with CPPs, permeation into
targeted cells is simplified, leading to greater intracellular carrier accumulation. Over
the past few years, immense efforts have been devoted to develop and modify novel
CPP sequences, demonstrating enhanced membrane permeability and improved targeted
specificity. Additionally, the identification of shorter sequences is particularly valuable
due to simplified synthesis pathways and reduced costs of production. Significantly,
computational techniques are drawing much more attention to predict new CPP sequences.

Significant efforts have been made in the design of nanoplatforms decorated by
homing molecules, which follow fundamental rules for therapeutic applications. These
efforts have led to substantial developments in the field of nanomedicine, enabling the
transport of therapeutic and/or diagnostic carriers across nearly impossible barriers such
as the blood–brain barrier (BBB). Another challenge is to identify appropriate engineering
methods to strictly control size and morphology to achieve better specificity and selectivity,
and to gain an overview of the structural and environmental parameters relevant to their
activity under physiological conditions. Furthermore, even though MNPs have found their
way into clinics and the number of homing peptide-based clinical trials is growing, there
are also some disadvantages of these conjugates. Among them are no long-term studies
with the assessment of toxicity profiles of many nanomaterials, and the poor selectivity of
many nano-based therapies can only be overcome by the functionalization of nanoparticles
by homing peptides to enhance the targeting properties and improve the tumor penetration
of these constructs.

The aging and mortality of the population as well as the need to introduce new
medical technologies have economic implications, which result in increased spending on
healthcare. These health-related expenditures are rising at an accelerated rate around
the world, not only affecting governments but especially patients. There is no doubt
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that the introduction of new diagnostic and therapeutic solutions such as multifunctional
nanoplatforms decorated by THPs, enabling a faster detection of cancer and its more
effective treatment, will be reflected in the pharmacoeconomic aspect.

The examples from this paper about the use of THPs clearly indicated that the co-
administration of anticancer drugs with the functionalized nanoforms could lead to remark-
able improvement in anticancer treatment and its economic implications. The presented
variety of strategies showed that the receptor specificity of drug-loaded nanoparticles
can be enhanced using peptide-targeting ligands associated with cancer receptors. The
synergism of nanoparticles with receptor-targeting peptides could result in the enrichment
of their biofunctionality. All of the solutions discussed have an impact on the pharma-
coeconomic aspect. Tumor growth inhibition through drug accumulation at the site of the
lesion reduces direct needs (medical and non-medical) including hospitalization, adverse
event management, non-medical services, and indirect costs of treatment processes such
as reduced productivity at work, premature death, etc. Targeted and more efficient drug
delivery leads to improvements in patient compliance as well as patients’ faster recovery,
resulting in increased time and quality of life.
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