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Introduction

Binary relations are interesting for the study of simple (di)graphs and in
their own right (cf. [3], [8], [9]). The relationship between binary relations and
graphs [7] has been formalized in [6]. Here some simple binary relations are in-
troduced to the Mizar Mathematical Library (cf. [1], [2]): the successor relation,
an additive and multiplicative relation and the modulo relation. These can be
used in the future for e.g. canonical (directed) path or cycle graphs (where the
vertices are just numbers) including the ray and double-ray graph [5]. More
complicated structures [4] can be obtained by combining some of these binary
relations, although that is out of scope for this article.

1. Preliminaries

One can verify that every natural number is natural-membered.
From now on X, Y denote sets and A denotes an ordinal number.
Let us consider X. The functor succRel(X) yielding a binary relation on X

is defined by
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(Def. 1) for every sets x, y, 〈〈x, y〉〉 ∈ it iff x, y ∈ X and y = succx.

One can verify that succRel(X) is asymmetric and succRel(∅) is empty.
Let X be a trivial set. Note that succRel(X) is empty.
Now we state the propositions:

(1) If X ⊆ Y, then succRel(X) ⊆ succRel(Y ).

(2) succRel(X ∩ Y ) = succRel(X) ∩ succRel(Y ).

(3) succRel(X) ∪ succRel(Y ) ⊆ succRel(X ∪ Y ). The theorem is a consequ-
ence of (1).

(4) Let us consider ordinal numbers B, C. Then 〈〈B, C〉〉 ∈ succRel(A) if and
only if succB ∈ A and C = succB.

(5) Let us consider an ordinal number B. Suppose succB ∈ A. Then 〈〈B,
succB〉〉 ∈ succRel(A).

(6) succRel(2) = {〈〈0, 1〉〉}. The theorem is a consequence of (4).

(7) succRel(3) = {〈〈0, 1〉〉, 〈〈1, 2〉〉}. The theorem is a consequence of (5).

(8) succRel(4) = {〈〈0, 1〉〉, 〈〈1, 2〉〉, 〈〈2, 3〉〉}. The theorem is a consequence of
(5).

(9) succRel(5) = {〈〈0, 1〉〉, 〈〈1, 2〉〉, 〈〈2, 3〉〉, 〈〈3, 4〉〉}. The theorem is a consequen-
ce of (4).

(10) succRel(ω) = the set of all 〈〈n, n+ 1〉〉 where n is a natural number.

2. Successor Relation

From now on z, z1, z2 denote complex numbers, r, r1, r2 denote real numbers,
q, q1, q2 denote rational numbers, i, i1, i2 denote integers, and n, n1, n2 denote
natural numbers.

Let us consider z. Let us note that (curry +C)(z) is function-like and relation-
like.

Let X be a complex-membered set. The functor addRel(X, z) yielding a bi-
nary relation on X is defined by the term

(Def. 2) (curry +C)(z) |2 X.

Let us observe that addRel(∅, z) is empty.
Let us consider a complex-membered set X. Now we state the propositions:

(11) 〈〈z1, z2〉〉 ∈ addRel(X, z) if and only if z1, z2 ∈ X and z2 = z + z1.

(12) addRel(X, 0) = idX . The theorem is a consequence of (11).

Let X be a complex-membered set and z be a non zero complex number.
Observe that addRel(X, z) is asymmetric.

Let us consider complex-membered setsX, Y. Now we state the propositions:
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(13) If X ⊆ Y, then addRel(X, z) ⊆ addRel(Y, z). The theorem is a consequ-
ence of (11).

(14) addRel(X ∩ Y, z) = addRel(X, z) ∩ addRel(Y, z). The theorem is a con-
sequence of (11).

(15) addRel(X, z) ∪ addRel(Y, z) ⊆ addRel(X ∪ Y, z). The theorem is a con-
sequence of (13).

Let us consider a complex-membered set X. Now we state the propositions:

(16) (addRel(X, z))` = addRel(X,−z). The theorem is a consequence of
(11).

(17) (addRel(X, z1)) · (addRel(X, z2)) ⊆ addRel(X, z1 + z2). The theorem is
a consequence of (11).

(18) (addRel(C, z1)) · (addRel(C, z2)) = addRel(C, z1 + z2). The theorem is
a consequence of (17) and (11).

(19) 〈〈z1, z1 + z〉〉 ∈ addRel(C, z). The theorem is a consequence of (11).

(20) addRel(C, z) = the set of all 〈〈z1, z1+ z〉〉 where z1 is a complex number.
The theorem is a consequence of (11).

Let us consider r. Let us note that (curry +R)(r) is function-like and relation-
like. Let us consider a real-membered set X. Now we state the propositions:

(21) addRel(X, r) = (curry +R)(r)|2X. The theorem is a consequence of (11).

(22) 〈〈r1, r2〉〉 ∈ addRel(X, r) if and only if r1, r2 ∈ X and r2 = r + r1.

(23) (addRel(R, r1)) · (addRel(R, r2)) = addRel(R, r1 + r2). The theorem is
a consequence of (17) and (11).

(24) 〈〈r1, r1 + r〉〉 ∈ addRel(R, r). The theorem is a consequence of (11).

(25) addRel(R, r) = the set of all 〈〈r1, r1+ r〉〉 where r1 is a real number. The
theorem is a consequence of (11).

Let us consider q. Observe that (curry +Q)(q) is function-like and relation-
like. Let us consider a rational-membered set X. Now we state the propositions:

(26) addRel(X, q) = (curry +Q)(q)|2X. The theorem is a consequence of (11).

(27) 〈〈q1, q2〉〉 ∈ addRel(X, q) if and only if q1, q2 ∈ X and q2 = q + q1.

(28) (addRel(Q, q1)) · (addRel(Q, q2)) = addRel(Q, q1 + q2). The theorem is
a consequence of (17) and (11).

(29) 〈〈q1, q1 + q〉〉 ∈ addRel(Q, q). The theorem is a consequence of (11).

(30) addRel(Q, q) = the set of all 〈〈q1, q1 + q〉〉 where q1 is a rational number.
The theorem is a consequence of (11).

Let us consider i. Let us observe that (curry(+Z))(i) is function-like and
relation-like.

Let us consider an integer-membered set X. Now we state the propositions:
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(31) addRel(X, i) = (curry(+Z))(i) |2 X. The theorem is a consequence of
(11).

(32) 〈〈i1, i2〉〉 ∈ addRel(X, i) if and only if i1, i2 ∈ X and i2 = i+ i1.

(33) (addRel(Z, i1)) · (addRel(Z, i2)) = addRel(Z, i1 + i2). The theorem is
a consequence of (17) and (11).

(34) 〈〈i1, i1 + i〉〉 ∈ addRel(Z, i). The theorem is a consequence of (11).

(35) addRel(Z, i) = the set of all 〈〈i1, i1 + i〉〉 where i1 is an integer. The the-
orem is a consequence of (11).

Let us consider n. One can verify that (curry +N)(n) is function-like and
relation-like.

Let us consider a natural-membered set X. Now we state the propositions:

(36) addRel(X,n) = (curry +N)(n) |2 X. The theorem is a consequence of
(11).

(37) 〈〈n1, n2〉〉 ∈ addRel(X,n) if and only if n1, n2 ∈ X and n2 = n+ n1.

(38) (addRel(N, n1)) · (addRel(N, n2)) = addRel(N, n1 + n2). The theorem is
a consequence of (17) and (11).

(39) 〈〈n1, n1 + n〉〉 ∈ addRel(N, n). The theorem is a consequence of (11).

(40) addRel(N, n) = the set of all 〈〈n1, n1+n〉〉 where n1 is a natural number.
The theorem is a consequence of (11).

(41) Let us consider a natural-membered set X.
Then addRel(X, 1) = succRel(X). The theorem is a consequence of (11).

3. Additive Relation

Let us consider z. Note that (curry ·C)(z) is function-like and relation-like.
Let X be a complex-membered set. The functor multRel(X, z) yielding a bi-

nary relation on X is defined by the term

(Def. 3) (curry ·C)(z) |2 X.

One can verify that multRel(∅, z) is empty.
Let us consider a complex-membered set X. Now we state the propositions:

(42) 〈〈z1, z2〉〉 ∈ multRel(X, z) if and only if z1, z2 ∈ X and z2 = z · z1.
(43) If 0 ∈ X, then multRel(X, 0) = X × {0}. The theorem is a consequence

of (42).

(44) multRel(X, 1) = idX . The theorem is a consequence of (42).

(45) If z 6= 1 and z 6= −1 and 0 /∈ X, then multRel(X, z) is asymmetric. The
theorem is a consequence of (42).

Let us consider complex-membered setsX, Y. Now we state the propositions:
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(46) If X ⊆ Y, then multRel(X, z) ⊆ multRel(Y, z). The theorem is a conse-
quence of (42).

(47) multRel(X∩Y, z) = multRel(X, z)∩multRel(Y, z). The theorem is a con-
sequence of (42).

(48) multRel(X, z)∪multRel(Y, z) ⊆ multRel(X∪Y, z). The theorem is a con-
sequence of (46).

Let us consider a complex-membered set X. Now we state the propositions:

(49) If z 6= 0, then (multRel(X, z))` = multRel(X, z−1). The theorem is
a consequence of (42).

(50) (multRel(X, z1)) · (multRel(X, z2)) ⊆ multRel(X, z1 · z2). The theorem
is a consequence of (42).

(51) (multRel(C, z1)) · (multRel(C, z2)) = multRel(C, z1 · z2). The theorem is
a consequence of (50) and (42).

(52) 〈〈z1, z1 · z〉〉 ∈ multRel(C, z). The theorem is a consequence of (42).

(53) multRel(C, z) = the set of all 〈〈z1, z1 · z〉〉 where z1 is a complex number.
The theorem is a consequence of (42).

Let us consider r. One can check that (curry ·R)(r) is function-like and
relation-like. Let us consider a real-membered set X. Now we state the pro-
positions:

(54) multRel(X, r) = (curry ·R)(r)|2X. The theorem is a consequence of (42).

(55) 〈〈r1, r2〉〉 ∈ multRel(X, r) if and only if r1, r2 ∈ X and r2 = r · r1.
(56) (multRel(R, r1)) · (multRel(R, r2)) = multRel(R, r1 · r2). The theorem is

a consequence of (50) and (42).

(57) 〈〈r1, r1 · r〉〉 ∈ multRel(R, r). The theorem is a consequence of (42).

(58) multRel(R, r) = the set of all 〈〈r1, r1 · r〉〉 where r1 is a real number. The
theorem is a consequence of (42).

Let us consider q. Note that (curry ·Q)(q) is function-like and relation-like.
Let us consider a rational-membered set X. Now we state the propositions:

(59) multRel(X, q) = (curry ·Q)(q)|2X. The theorem is a consequence of (42).

(60) 〈〈q1, q2〉〉 ∈ multRel(X, q) if and only if q1, q2 ∈ X and q2 = q · q1.
(61) (multRel(Q, q1)) · (multRel(Q, q2)) = multRel(Q, q1 · q2). The theorem is

a consequence of (50) and (42).

(62) 〈〈q1, q1 · q〉〉 ∈ multRel(Q, q). The theorem is a consequence of (42).

(63) multRel(Q, q) = the set of all 〈〈q1, q1 · q〉〉 where q1 is a rational number.
The theorem is a consequence of (42).

Let us consider i. Let us note that (curry ·Z)(i) is function-like and relation-
like. Let us consider an integer-membered set X. Now we state the propositions:
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(64) multRel(X, i) = (curry ·Z)(i) |2X. The theorem is a consequence of (42).

(65) 〈〈i1, i2〉〉 ∈ multRel(X, i) if and only if i1, i2 ∈ X and i2 = i · i1.
(66) (multRel(Z, i1)) · (multRel(Z, i2)) = multRel(Z, i1 · i2). The theorem is

a consequence of (50) and (42).

(67) 〈〈i1, i1 · i〉〉 ∈ multRel(Z, i). The theorem is a consequence of (42).

(68) multRel(Z, i) = the set of all 〈〈i1, i1 · i〉〉 where i1 is an integer. The the-
orem is a consequence of (42).

Let us consider n. Observe that (curry ·N)(n) is function-like and relation-
like. Let us consider a natural-membered set X. Now we state the propositions:

(69) multRel(X,n) = (curry ·N)(n) |2 X. The theorem is a consequence of
(42).

(70) 〈〈n1, n2〉〉 ∈ multRel(X,n) if and only if n1, n2 ∈ X and n2 = n · n1.
(71) (multRel(N, n1)) · (multRel(N, n2)) = multRel(N, n1 · n2). The theorem

is a consequence of (50) and (42).

(72) 〈〈n1, n1 · n〉〉 ∈ multRel(N, n). The theorem is a consequence of (42).

(73) multRel(N, n) = the set of all 〈〈n1, n1 ·n〉〉 where n1 is a natural number.
The theorem is a consequence of (42).

4. Multiplicative Relation

Let n be a non zero natural number. The functor modRel(n) yielding a binary
relation on n is defined by the term

(Def. 4) addRel(n, 1) ∪ {〈〈n− 1, 0〉〉}.
Now we state the propositions:

(74) modRel(1) = {〈〈0, 0〉〉}. The theorem is a consequence of (41).

(75) modRel(2) = {〈〈0, 1〉〉, 〈〈1, 0〉〉}. The theorem is a consequence of (41) and
(6).

(76) modRel(3) = {〈〈0, 1〉〉, 〈〈1, 2〉〉, 〈〈2, 0〉〉}. The theorem is a consequence of
(41) and (7).

(77) modRel(4) = {〈〈0, 1〉〉, 〈〈1, 2〉〉, 〈〈2, 3〉〉, 〈〈3, 0〉〉}. The theorem is a consequen-
ce of (41) and (8).

(78) modRel(5) = {〈〈0, 1〉〉, 〈〈1, 2〉〉, 〈〈2, 3〉〉, 〈〈3, 4〉〉, 〈〈4, 0〉〉}. The theorem is a con-
sequence of (41) and (9).
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