

Higher-Order Differentiation and Inverse Function Theorem in Real Normed Spaces¹

Kazuhisa Nakasho[®] Yamaguchi University Yamaguchi, Japan Yasunari Shidama Karuizawa Hotch 244-1 Nagano, Japan

Summary. This article extends the formalization of the theory of differentiation in real normed spaces in the Mizar system. The focus is on higher-order derivatives and the inverse function theorem. Additionally, we encode the differentiability of the inversion operator on invertible linear operators.

MSC: 46G05 47A07 68V20

Keywords: higher-order derivative; inverse function theorem; real normed space; vector-valued function

MML identifier: NDIFF13, version: 8.1.14 5.87.1483

INTRODUCTION

This article, using the Mizar system [1], [2], extends the theory of differentiation in real normed spaces [5], focusing on higher-order derivatives and the inverse function theorem [7]. The work presents a comprehensive treatment of higher-order derivatives for vector-valued functions and develops theorems on the composition of differentiable functions and their higher-order derivatives [10], [11]. It provides an analysis of partial derivatives for multivariable vector-valued functions and extends the inverse function theorem to higherorder differentiability, including continuity properties [12]. Additionally, the paper formalizes the differentiability of the inversion operator on invertible linear operators [3].

¹This work was supported by JSPS KAKENHI Grant Number 24K14897.

1. Foundations of Differentiation in Real Normed Spaces

From now on E, F, G, S, T, W, Y denote real normed spaces, f, f_1 , f_2 denote partial functions from S to T, Z denotes a subset of S, and i, n denote natural numbers. Now we state the proposition:

(1) Let us consider real normed spaces S, T, a partial function f from S to T, a subset Z of S, and a point x of S. Suppose Z is open and $x \in Z$ and $Z \subseteq \text{dom } f$. Then $f \upharpoonright Z$ is differentiable in x if and only if f is differentiable in x.

Let us consider real normed spaces S, T, a partial function f from S to T, and a subset Z of S. Now we state the propositions:

- (2) $f \upharpoonright Z$ is differentiable on Z if and only if f is differentiable on Z.
- (3) If f is differentiable on Z, then $(f \upharpoonright Z)'_{\upharpoonright Z} = f'_{\upharpoonright Z}$. The theorem is a consequence of (2).

Let us consider real normed spaces S, T, a partial function f from S to T, and subsets X, Z of S. Now we state the propositions:

- (4) If Z is open and $Z \subseteq X$ and f is differentiable on X, then $f'_{\uparrow Z} = f'_{\uparrow X} \upharpoonright Z$. PROOF: For every object x such that $x \in \text{dom}(f'_{\uparrow X} \upharpoonright Z)$ holds $(f'_{\uparrow X} \upharpoonright Z)(x) = f'_{\uparrow Z}(x)$. \Box
- (5) If Z is open and $Z \subseteq X$ and f is differentiable on X and $f'_{\uparrow X}$ is continuous on X, then $f'_{\uparrow Z}$ is continuous on Z. The theorem is a consequence of (4).

Let us consider real normed spaces S, T, a partial function f from S to T, a subset Z of S, and a natural number k. Now we state the propositions:

- (6) Suppose f is differentiable k times on Z. Then
 - (i) $f \upharpoonright Z$ is differentiable k times on Z, and
 - (ii) $\operatorname{diff}_Z(f \upharpoonright Z, k) = \operatorname{diff}_Z(f, k).$

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{if } f \text{ is differentiable } \$_1 \text{ times on } Z$, then $f \upharpoonright Z$ is differentiable $\$_1$ times on Z and $\text{diff}_Z(f \upharpoonright Z, \$_1) = \text{diff}_Z(f, \$_1)$. $\mathcal{P}[0]$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $k, \mathcal{P}[k]$. \Box

- (7) Suppose f is differentiable k times on Z and diff_Z(f, k) is continuous on Z. Then
 - (i) $f \upharpoonright Z$ is differentiable k times on Z, and
 - (ii) diff_Z($f \upharpoonright Z, k$) is continuous on Z.

Let us consider real normed spaces S, T, a partial function f from S to T, subsets X, Z of S, and a natural number i. Now we state the propositions:

- (8) Suppose Z is open and $Z \subseteq X$. Then if f is differentiable i times on X, then f is differentiable i times on Z and $\operatorname{diff}_Z(f,i) = \operatorname{diff}_X(f,i) \upharpoonright Z$. PROOF: Define $\mathcal{P}[\operatorname{natural number}] \equiv \operatorname{if} f$ is differentiable $\$_1$ times on X, then f is differentiable $\$_1$ times on Z and $\operatorname{diff}_Z(f,\$_1) = \operatorname{diff}_X(f,\$_1) \upharpoonright Z$. $\mathcal{P}[0]$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every natural number i, $\mathcal{P}[i]$. \Box
- (9) Suppose Z is open and $Z \subseteq X$. Then suppose f is differentiable i times on X and diff_X(f, i) is continuous on X. Then
 - (i) f is differentiable i times on Z, and
 - (ii) $\operatorname{diff}_Z(f, i)$ is continuous on Z.

The theorem is a consequence of (8).

- (10) Let us consider real normed spaces X, Y, a real number a, Lipschitzian linear operators v_1 , v_2 from X into Y, and points w_1 , w_2 of the real norm space of bounded linear operators from X into Y. Suppose $v_1 = w_1$ and $v_2 = w_2$. Then
 - (i) $v_1 + v_2 = w_1 + w_2$, and
 - (ii) $a \cdot v_1 = a \cdot w_1$.

PROOF: Reconsider $w_{12} = w_1 + w_2$ as a point of the real norm space of bounded linear operators from X into Y. For every object s such that $s \in \operatorname{dom}(v_1 + v_2)$ holds $(v_1 + v_2)(s) = w_{12}(s)$. Reconsider $w_{12} = a \cdot w_1$ as a point of the real norm space of bounded linear operators from X into Y. For every object s such that $s \in \operatorname{dom}(a \cdot v_1)$ holds $(a \cdot v_1)(s) = w_{12}(s)$. \Box

- (11) Let us consider real normed spaces X, Y, Lipschitzian linear operators v_1, v_2, v_3 from X into Y, and real numbers a, b. Then
 - (i) $v_1 + v_2 = v_2 + v_1$, and
 - (ii) $(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$, and
 - (iii) $a \cdot (v_1 + v_2) = a \cdot v_1 + a \cdot v_2$, and
 - (iv) $(a+b) \cdot v_1 = a \cdot v_1 + b \cdot v_1$, and
 - (v) $a \cdot b \cdot v_1 = a \cdot (b \cdot v_1).$

The theorem is a consequence of (10).

(12) Let us consider real normed spaces X, Y, Z, a Lipschitzian linear operator v from X into Y, a Lipschitzian linear operator s from Y into Z, a point p_6 of the real norm space of bounded linear operators from X into Y, and a point p_5 of the real norm space of bounded linear operators from Y into Z. If $v = p_6$ and $s = p_5$, then $s \cdot v = p_5 \cdot p_6$.

(13) Let us consider real normed spaces X, Y, Z, Lipschitzian linear operators v_1, v_2 from X into Y, Lipschitzian linear operators s_1, s_2 from Y into Z, and a real number a. Then

(i)
$$s_1 \cdot (v_1 + v_2) = s_1 \cdot v_1 + s_1 \cdot v_2$$
, and

(ii)
$$(s_1 + s_2) \cdot v_1 = s_1 \cdot v_1 + s_2 \cdot v_1$$
, and

(iii)
$$s_1 \cdot (a \cdot v_1) = a \cdot s_1 \cdot v_1$$

The theorem is a consequence of (10) and (12).

(14) Let us consider real normed spaces S, T, U, a partial function f_1 from S to T, a partial function f_2 from T to U, and a point x_0 of S. Suppose $x_0 \in \text{dom}(f_2 \cdot f_1)$ and f_1 is continuous in x_0 and f_2 is continuous in f_{1/x_0} . Then $f_2 \cdot f_1$ is continuous in x_0 .

PROOF: Set $f = f_2 \cdot f_1$. For every real number r such that 0 < r there exists a real number s such that 0 < s and for every point x_1 of S such that $x_1 \in \text{dom } f$ and $||x_1 - x_0|| < s$ holds $||f_{/x_1} - f_{/x_0}|| < r$. \Box

(15) Let us consider real normed spaces E, F, G, a subset Z of E, a subset T of F, a partial function u from E to F, and a partial function v from F to G. Suppose $u^{\circ}Z \subseteq T$ and u is continuous on Z and v is continuous on T. Then $v \cdot u$ is continuous on Z.

PROOF: Set $f = v \cdot u$. For every point x_0 of E and for every real number r such that $x_0 \in Z$ and 0 < r there exists a real number s such that 0 < s and for every point x_1 of E such that $x_1 \in Z$ and $||x_1 - x_0|| < s$ holds $||f_{/x_1} - f_{/x_0}|| < r$. \Box

- (16) Let us consider real normed spaces X, Y, a point x of X, a point y of Y, and a point z of $X \times Y$. Suppose $z = \langle x, y \rangle$. Then $||z|| \leq ||x|| + ||y||$.
- (17) Let us consider real normed spaces E, F, G, a partial function u from E to F, a Lipschitzian linear operator L from F into G, and a point x of E. Suppose u is differentiable in x. Then
 - (i) $L \cdot u$ is differentiable in x, and

(ii)
$$(L \cdot u)'(x) = L \cdot u'(x)$$
.

- (18) Let us consider real normed spaces E, F, G, a subset Z of E, a subset T of F, a partial function u from E to F, and a partial function v from F to G. Suppose $u^{\circ}Z \subseteq T$ and u is differentiable on Z and v is differentiable on T. Then
 - (i) $v \cdot u$ is differentiable on Z, and
 - (ii) for every point x of E such that $x \in Z$ holds $(v \cdot u)'_{\upharpoonright Z/x} = v'_{\upharpoonright T/u_{/x}} \cdot (u'_{\upharpoonright Z/x})$.

PROOF: For every point x of E such that $x \in Z$ holds $v \cdot u$ is differentiable in x and $(v \cdot u)'(x) = v'(u_{/x}) \cdot u'(x)$. For every point x of E such that $x \in Z$ holds $(v \cdot u)'_{|Z/x} = v'_{|T/u_{/x}} \cdot (u'_{|Z/x})$. \Box

- (19) Let us consider real normed spaces F, G, and a Lipschitzian linear operator L from F into G. Then
 - (i) L is differentiable on Ω_F , and
 - (ii) $L'_{\mid \Omega_F}$ is continuous on Ω_F , and
 - (iii) for every point x of F, $L'_{\mid \Omega_F/x} = L$.
- (20) Let us consider real normed spaces E, F, G, a partial function u from E to F, a subset Z of E, and a Lipschitzian linear operator L from F into G. Suppose u is differentiable on Z. Then
 - (i) $L \cdot u$ is differentiable on Z, and
 - (ii) for every point x of E such that $x \in Z$ holds $(L \cdot u)'_{\upharpoonright Z/x} = L \cdot (u'_{\upharpoonright Z/x})$.

The theorem is a consequence of (19) and (18).

Let E, F, G be real normed spaces and L be a Lipschitzian linear operator from F into G. The functor LTRN(L, E) yielding a function is defined by

(Def. 1) dom $it = \mathbb{N}$ and it(0) = L and for every natural number i, there exists a Lipschitzian linear operator K from diff_{SP} $(E^{(i+1)}, F)$ into diff_{SP} $(E^{(i+1)}, G)$ and there exists a Lipschitzian linear operator M from diff_{SP} (E^i, F) into diff_{SP} (E^i, G) such that it(i+1) = K and $it(i) (\in$ the real norm space of bounded linear operators from diff_{SP} (E^i, F) into diff_{SP} $(E^i, G)) = M$ and for every Lipschitzian linear operator V from E into diff_{SP} (E^i, F) , $K(V) = M \cdot V$.

Let *i* be a natural number. The functor LTRN(i, L, E) yielding a Lipschitzian linear operator from $\text{diff}_{\text{SP}}(E^i, F)$ into $\text{diff}_{\text{SP}}(E^i, G)$ is defined by the term (Def. 2) (LTRN(L, E))(i).

2. Higher-Order Differentiation and Function Composition

Now we state the propositions:

- (21) Let us consider real normed spaces E, F, G, and a Lipschitzian linear operator L from F into G. Then
 - (i) LTRN(0, L, E) = L, and
 - (ii) for every natural number *i* and for every Lipschitzian linear operator V from E into diff_{SP} (E^{i}, F) , (LTRN(i + 1, L, E)) $(V) = (LTRN(i, L, E)) \cdot V$.

- (22) Let us consider real normed spaces E, F, G, a subset Z of E, a subset T of F, a partial function u from E to F, and a partial function v from F to G. Suppose $u^{\circ}Z \subseteq T$ and u is differentiable on Z and $u'_{\uparrow Z}$ is continuous on Z and v is differentiable on T and $v'_{\uparrow T}$ is continuous on T. Then
 - (i) $v \cdot u$ is differentiable on Z, and
 - (ii) $(v \cdot u)'_{\uparrow Z}$ is continuous on Z.

PROOF: $v \cdot u$ is differentiable on Z and for every point x of E such that $x \in Z$ holds $(v \cdot u)'_{|Z/x} = v'_{|T/u_{/x}} \cdot (u'_{|Z/x})$. Set $f = (v \cdot u)'_{|Z}$. For every point x_0 of E and for every real number r such that $x_0 \in Z$ and 0 < r there exists a real number s such that 0 < s and for every point x_1 of E such that $x_1 \in Z$ and $||x_1 - x_0|| < s$ holds $||f_{/x_1} - f_{/x_0}|| < r$. \Box

- (23) Let us consider real normed spaces E, F, G, a subset Z of E, a partial function u from E to F, and a Lipschitzian linear operator L from F into G. Suppose u is differentiable on Z and u'_{1Z} is continuous on Z. Then
 - (i) $L \cdot u$ is differentiable on Z, and
 - (ii) $(L \cdot u)'_{\uparrow Z}$ is continuous on Z.
 - The theorem is a consequence of (19) and (22).

Let us consider real normed spaces E, F, G, a subset Z of E, a partial function u from E to F, a Lipschitzian linear operator L from F into G, and a natural number i. Now we state the propositions:

- (24) Suppose u is differentiable i times on Z. Then
 - (i) $L \cdot u$ is differentiable *i* times on *Z*, and
 - (ii) $\operatorname{diff}_Z(L \cdot u, i) = (\operatorname{LTRN}(i, L, E)) \cdot \operatorname{diff}_Z(u, i).$

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{if } u \text{ is differentiable } \$_1 \text{ times on } Z$, then $L \cdot u$ is differentiable $\$_1$ times on Z and $\text{diff}_Z(L \cdot u, \$_1) = (\text{LTRN}(\$_1, L, E)) \cdot \text{diff}_Z(u, \$_1)$. $\mathcal{P}[0]$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every natural number i, $\mathcal{P}[i]$. \Box

- (25) Suppose u is differentiable i times on Z and diff_Z(u, i) is continuous on Z. Then
 - (i) $L \cdot u$ is differentiable *i* times on *Z*, and
 - (ii) $\operatorname{diff}_Z(L \cdot u, i)$ is continuous on Z.

The theorem is a consequence of (24) and (15).

(26) Let us consider real normed spaces S, T, U, a point x of S, a partial function u from S to T, a partial function v from S to U, and a partial function w from S to $T \times U$. Suppose u is differentiable in x and v is differentiable in x and $w = \langle u, v \rangle$. Then

- (i) w is differentiable in x, and
- (ii) $w'(x) = \langle u'(x), v'(x) \rangle$, and
- (iii) for every point d_2 of S, $w'(x)(d_2) = \langle u'(x)(d_2), v'(x)(d_2) \rangle$.

PROOF: For every point t of S such that $t \in \text{dom } w$ holds $w_{/t} = \langle f_{1/t}, f_{2/t} \rangle$. Consider N_1 being a neighbourhood of x_0 such that $N_1 \subseteq \text{dom } f_1$ and there exists a point L of the real norm space of bounded linear operators from S into T and there exists a rest R of S, T such that for every point x of S such that $x \in N_1$ holds $f_{1/x} - f_{1/x_0} = L(x - x_0) + R_{/x-x_0}$. Consider L_1 being a point of the real norm space of bounded linear operators from S into T, R_1 being a rest of S, T such that for every point x of S such that $x \in N_1$ holds $f_{1/x} - f_{1/x_0} = L_1(x - x_0) + R_{1/x - x_0}$. Consider N_2 being a neighbourhood of x_0 such that $N_2 \subseteq \text{dom } f_2$ and there exists a point L of the real norm space of bounded linear operators from S into U and there exists a rest R of S, U such that for every point x of S such that $x \in N_2$ holds $f_{2/x} - f_{2/x_0} = L(x - x_0) + R_{/x - x_0}$. Consider L_2 being a point of the real norm space of bounded linear operators from S into U, R_2 being a rest of S, U such that for every point x of S such that $x \in N_2$ holds $f_{2/x} - f_{2/x_0} = L_2(x - x_0) + R_{2/x - x_0}$. Define $\mathcal{O}(\text{object}) = \langle R_{1/\$_1},$ $R_{2/\$_1}$). Consider R being a function from S into $T \times U$ such that for every object d_2 such that $d_2 \in$ the carrier of S holds $R(d_2) = \mathcal{O}(d_2)$. For every real number r such that r > 0 there exists a real number d such that d > 0 and for every point z of S such that $z \neq 0_S$ and ||z|| < d holds $||z||^{-1} \cdot ||R_{/z}|| < r$. Define $\mathcal{O}(\text{object}) = \langle L_1(\mathfrak{F}_1), L_2(\mathfrak{F}_1) \rangle$. For every object xsuch that $x \in$ the carrier of S holds $\mathcal{O}(x) \in$ the carrier of $T \times U$. Consider L being a function from S into $T \times U$ such that for every object d_2 such that $d_2 \in$ the carrier of S holds $L(d_2) = \mathcal{O}(d_2)$. For every elements x, y of S, L(x+y) = L(x) + L(y). For every vector x of S and for every real number a, $L(a \cdot x) = a \cdot L(x)$. Set $K = ||L_1|| + ||L_2||$. For every vector w of $S, ||L(w)|| \leq K \cdot ||w||$. Consider N being a neighbourhood of x_0 such that $N \subseteq N_1$ and $N \subseteq N_2$. \Box

Let us consider real normed spaces S, T, U, a subset Z of S, a partial function u from S to T, a partial function v from S to U, and a partial function w from S to $T \times U$. Now we state the propositions:

- (27) Suppose u is differentiable on Z and v is differentiable on Z and $w = \langle u, v \rangle$. Then
 - (i) w is differentiable on Z, and
 - (ii) for every point x of S such that $x \in Z$ holds $w'_{\upharpoonright Z/x} = \langle u'_{\upharpoonright Z/x}, v'_{\upharpoonright Z/x} \rangle$, and

(iii) for every point x of S such that $x \in Z$ for every point d_2 of S, $(w'_{\upharpoonright Z/x})(d_2) = \langle (u'_{\upharpoonright Z/x})(d_2), (v'_{\upharpoonright Z/x})(d_2) \rangle.$

PROOF: For every point x of S such that $x \in Z$ holds w is differentiable in x. For every point x of S such that $x \in Z$ holds $w'_{\upharpoonright Z/x} = \langle u'_{\upharpoonright Z/x}, v'_{\upharpoonright Z/x} \rangle$. For every point x of S such that $x \in Z$ for every point d_2 of S, $(w'_{\upharpoonright Z/x})(d_2) = \langle (u'_{\upharpoonright Z/x})(d_2), (v'_{\upharpoonright Z/x})(d_2) \rangle$. \Box

- (28) Suppose u is differentiable on Z and $u'_{\uparrow Z}$ is continuous on Z and v is differentiable on Z and $v'_{\uparrow Z}$ is continuous on Z and $w = \langle u, v \rangle$. Then
 - (i) w is differentiable on Z, and
 - (ii) $w'_{\restriction Z}$ is continuous on Z.

natural number $i, \mathcal{P}[i]$. \Box

PROOF: w is differentiable on Z and for every point x of S such that $x \in Z$ holds $w'_{\upharpoonright Z/x} = \langle u'_{\upharpoonright Z/x}, v'_{\upharpoonright Z/x} \rangle$ and for every point x of S such that $x \in Z$ for every point d_2 of S, $(w'_{\upharpoonright Z/x})(d_2) = \langle (u'_{\upharpoonright Z/x})(d_2), (v'_{\upharpoonright Z/x})(d_2) \rangle$. Set $f = w'_{\upharpoonright Z}$. For every point x_0 of S and for every real number r such that $x_0 \in Z$ and 0 < r there exists a real number s such that 0 < s and for every point x_1 of S such that $x_1 \in Z$ and $||x_1 - x_0|| < s$ holds $||f_{/x_1} - f_{/x_0}|| < r$. \Box

- (29) Let us consider real normed spaces E, F, and a natural number i. Then $\operatorname{diff}_{\mathrm{SP}}(E^{(i+1)}, F) = \operatorname{diff}_{\mathrm{SP}}(E^{i}, (\text{the real norm space of bounded linear}))$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \operatorname{diff}_{\mathrm{SP}}(E^{(\$_{1}+1)}, F) = \operatorname{diff}_{\mathrm{SP}}(E^{\$_{1}}, (\text{the real norm space of bounded linear operators from <math>E$ into F)). For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$ by [4, (10)]. For every
- (30) Let us consider real normed spaces E, F, a subset Z of E, a partial function g from E to F, and a partial function f from E to the real norm space of bounded linear operators from E into F. Suppose $(g \upharpoonright Z)'_{\upharpoonright Z} = f \upharpoonright Z$. Let us consider a natural number i. Then $\operatorname{diff}_Z(g, i+1) = \operatorname{diff}_Z(f, i)$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \operatorname{diff}_Z(g, \$_1 + 1) = \operatorname{diff}_Z(f, \$_1)$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every natural

number $i, \mathcal{P}[i]. \square$

Let us consider real normed spaces E, F, a natural number n, a subset Z of E, and a partial function g from E to F. Now we state the propositions:

(31) If $g'_{\restriction Z}$ is differentiable *n* times on *Z* and *g* is differentiable on *Z*, then *g* is differentiable n + 1 times on *Z*.

PROOF: Set $f = g'_{\uparrow Z}$. $f \upharpoonright Z = (g \upharpoonright Z)'_{\upharpoonright Z}$. For every natural number *i* such that $i \leq n + 1 - 1$ holds diff_Z(g, *i*) is differentiable on Z. \Box

- (32) Suppose $g'_{|Z|}$ is differentiable *n* times on *Z* and *g* is differentiable on *Z* and diff_{*Z*}($g'_{|Z|}$, *n*) is continuous on *Z*. Then
 - (i) g is differentiable n + 1 times on Z, and
 - (ii) $\operatorname{diff}_Z(g, n+1)$ is continuous on Z.

The theorem is a consequence of (31), (3), (30), and (29).

- (33) Let us consider real normed spaces S, E, F, G, a Lipschitzian bilinear operator B from $E \times F$ into G, a partial function W from S to G, a partial function w from S to $E \times F$, a partial function u from S to E, a partial function v from S to F, and a point x of S. Suppose u is differentiable in x and v is differentiable in x and $x \in \text{dom } w$ and $W = B \cdot w$ and $w = \langle u, v \rangle$. Then
 - (i) W is differentiable in x, and
 - (ii) w is differentiable in x, and
 - (iii) $W'(x) = B'(\langle u_{/x}, v_{/x} \rangle) \cdot w'(x)$, and
 - (iv) $w'(x) = \langle u'(x), v'(x) \rangle$, and
 - (v) for every point d_1 of S, $W'(x)(d_1) = B(u'(x)(d_1), v_{/x}) + B(u_{/x}, v'(x)(d_1)).$

The theorem is a consequence of (26).

- (34) Let us consider real normed spaces S, E, F, G, a subset Z of S, a Lipschitzian bilinear operator B from $E \times F$ into G, a partial function W from S to G, a partial function w from S to $E \times F$, a partial function u from S to E, and a partial function v from S to F. Suppose u is differentiable on Z and v is differentiable on Z and $W = B \cdot w$ and $w = \langle u, v \rangle$. Then
 - (i) W is differentiable on Z, and
 - (ii) for every point x of S such that $x \in Z$ for every point d_1 of S, $(W'_{\lfloor Z/x})(d_1) = B((u'_{\lfloor Z/x})(d_1), v_{/x}) + B(u_{/x}, (v'_{\lfloor Z/x})(d_1)).$

PROOF: w is differentiable on Z and for every point x of S such that $x \in Z$ holds $w'_{\upharpoonright Z/x} = \langle u'_{\upharpoonright Z/x}, v'_{\upharpoonright Z/x} \rangle$ and for every point x of S such that $x \in Z$ for every point d_2 of S, $(w'_{\upharpoonright Z/x})(d_2) = \langle (u'_{\upharpoonright Z/x})(d_2), (v'_{\upharpoonright Z/x})(d_2) \rangle$. For every point x of S such that $x \in Z$ for every point d_1 of S, $(W'_{\upharpoonright Z/x})(d_1) = B((u'_{\upharpoonright Z/x})(d_1), v_{/x}) + B(u_{/x}, (v'_{\upharpoonright Z/x})(d_1))$. \Box

Let us consider real normed spaces S, E, a subset Z of S, a partial function u from S to E, and a natural number i. Now we state the propositions:

(35) If u is differentiable i + 1 times on Z, then $u'_{\uparrow Z}$ is differentiable i times on Z.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{if } u \text{ is differentiable } \$_1 + 1 \text{ times on } Z$, then $u'_{\restriction Z}$ is differentiable $\$_1$ times on Z. $\mathcal{P}[0]$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every natural number i, $\mathcal{P}[i]$. \Box

- (36) Suppose u is differentiable i+1 times on Z and diff_Z(u, i+1) is continuous on Z. Then
 - (i) $u'_{\upharpoonright Z}$ is differentiable *i* times on *Z*, and
 - (ii) diff_Z $(u'_{\uparrow Z}, i)$ is continuous on Z.

The theorem is a consequence of (35), (29), (3), and (30).

(37) Let us consider real normed spaces E, F, G. Then there exists a Lipschitzian bilinear operator B from the real norm space of bounded linear operators from E into $F \times$ the real norm space of bounded linear operators from F into G into the real norm space of bounded linear operators from E into G such that for every point u of the real norm space of bounded linear operators from E into F for every point v of the real norm space of bounded linear operators from E into F for every point v of the real norm space of bounded linear operators from E into F for every point v of the real norm space of bounded linear operators from E into F for every point v of the real norm space of bounded linear operators from F into $G, B(u, v) = v \cdot u$.

PROOF: Set E_3 = the carrier of the real norm space of bounded linear operators from E into F. Set F_2 = the carrier of the real norm space of bounded linear operators from F into G. Set E_4 = the carrier of the real norm space of bounded linear operators from E into G. Define \mathcal{P} [element] of E_3 , element of F_2 , object] \equiv $\$_3 = \$_2 \cdot \$_1$. Consider L being a function from $E_3 \times F_2$ into E_4 such that for every element x of E_3 and for every element y of F_2 , $\mathcal{P}[x, y, L(x, y)]$. Set L_4 = the real norm space of bounded linear operators from E into F. Set L_5 = the real norm space of bounded linear operators from F into G. For every points x_1, x_2 of L_4 and for every point y of L_5 , $L(x_1 + x_2, y) = L(x_1, y) + L(x_2, y)$. For every point x of L_4 and for every point y of L_5 and for every real number a, $L(a \cdot x, y) =$ $a \cdot L(x, y)$. For every point x of L_4 and for every points y_1, y_2 of L_5 , $L(x, y_1 + y_2) = L(x, y_1) + L(x, y_2)$. For every point x of L_4 and for every point y of L_5 and for every real number $a, L(x, a \cdot y) = a \cdot L(x, y)$. Set K = 1. For every vector x of L_4 and for every vector y of L_5 , $||L(x, y)|| \leq 1$ $K \cdot \|x\| \cdot \|y\|$. \Box

(38) Let us consider a natural number *i*, real normed spaces *S*, *E*, *F*, *G*, a subset *Z* of *S*, a Lipschitzian bilinear operator *B* from $E \times F$ into *G*, a partial function *u* from *S* to *E*, a partial function *v* from *S* to *F*, a partial function *w* from *S* to $E \times F$, and a partial function *W* from *S* to *G*. Suppose $W = B \cdot w$ and $w = \langle u, v \rangle$ and *u* is differentiable *i* times on *Z* and *v* is differentiable *i* times on *Z*. Then *W* is differentiable *i* times on *Z*.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every real normed spaces } S, E$,

F, G for every subset Z of S for every Lipschitzian bilinear operator B from $E \times F$ into G for every partial function u from S to E for every partial function v from S to F for every partial function w from S to $E \times$ F for every partial function W from S to G such that $W = B \cdot w$ and $w = \langle u, v \rangle$ and u is differentiable $\$_1$ times on Z and v is differentiable $\$_1$ times on Z holds W is differentiable $\$_1$ times on Z. $\mathcal{P}[0]$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every natural number i, $\mathcal{P}[i]$. \Box

- (39) Let us consider real normed spaces S, E, F, G, a subset Z of S, a Lipschitzian bilinear operator B from $E \times F$ into G, a partial function W from S to G, a partial function w from S to $E \times F$, a partial function u from S to E, and a partial function v from S to F. Suppose u is differentiable on Z and $u'_{\uparrow Z}$ is continuous on Z and v is differentiable on Z and $w'_{\uparrow Z}$ is continuous on Z and $w = \langle u, v \rangle$. Then
 - (i) W is differentiable on Z, and
 - (ii) $W'_{\uparrow Z}$ is continuous on Z.

The theorem is a consequence of (28) and (22).

- (40) Let us consider real normed spaces S, E, F, G, a subset Z of S, a partial function u from S to E, a partial function v from S to F, and a partial function w from S to $E \times F$. Suppose $w = \langle u, v \rangle$ and u is continuous on Z and v is continuous on Z. Then w is continuous on Z. PROOF: For every point x_0 of S and for every real number r such that $x_0 \in Z$ and 0 < r there exists a real number s such that 0 < s and for every point x_1 of S such that $x_1 \in Z$ and $||x_1 - x_0|| < s$ holds $||w_{/x_1} - w_{/x_0}|| < r$
- by [9, (18)], (16). \Box (41) Let us consider a natural number *i*, real normed spaces *S*, *E*, *F*, *G*, a subset *Z* of *S*, a Lipschitzian bilinear operator *B* from $E \times F$ into *G*, a partial function *u* from *S* to *E*, a partial function *v* from *S* to *F*, a partial function *w* from *S* to $E \times F$, and a partial function *W* from *S* to *G*. Suppose $W = B \cdot w$ and $w = \langle u, v \rangle$ and *u* is differentiable *i* times on *Z* and diff_{*Z*}(*u*, *i*) is continuous on *Z* and *v* is differentiable *i* times on
 - Z and diff_Z(v, i) is continuous on Z. Then (i) W is differentiable *i* times on Z, and
 - (ii) $\operatorname{diff}_Z(W, i)$ is continuous on Z.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every real normed spaces } S, E, F, G \text{ for every subset } Z \text{ of } S \text{ for every Lipschitzian bilinear operator } B \text{ from } E \times F \text{ into } G \text{ for every partial function } u \text{ from } S \text{ to } E \text{ for every partial function } w \text{ from } S \text{ to } F$

 $E \times F$ for every partial function W from S to G such that $W = B \cdot w$ and $w = \langle u, v \rangle$ and u is differentiable $\$_1$ times on Z and diff_Z $(u, \$_1)$ is continuous on Z and v is differentiable $\$_1$ times on Z and diff_Z $(v, \$_1)$ is continuous on Z holds W is differentiable $\$_1$ times on Z and diff_Z $(W, \$_1)$ is continuous on Z. $\mathcal{P}[0]$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every natural number $i, \mathcal{P}[i]$. \Box

Let us consider a natural number i, real normed spaces E, F, G, a subset Z of E, a subset T of F, a partial function u from E to F, and a partial function v from F to G. Now we state the propositions:

- (42) If $u^{\circ}Z \subseteq T$ and u is differentiable i times on Z and v is differentiable i times on T, then $v \cdot u$ is differentiable i times on Z. PROOF: Define $\mathcal{P}[$ natural number $] \equiv$ for every real normed spaces E, F, G for every subset Z of E for every subset T of F for every partial function u from E to F for every partial function v from F to G such that $u^{\circ}Z \subseteq T$ and u is differentiable $\$_1$ times on Z and v is differentiable $\$_1$ times on T. holds $v \cdot u$ is differentiable $\$_1$ times on Z. $\mathcal{P}[0]$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every natural number $i, \mathcal{P}[i]$. \Box
- (43) Suppose $u^{\circ}Z \subseteq T$ and u is differentiable i times on Z and $\dim_{Z}(u,i)$ is continuous on Z and v is differentiable i times on T and $\dim_{T}(v,i)$ is continuous on T. Then
 - (i) $v \cdot u$ is differentiable *i* times on *Z*, and
 - (ii) diff_Z $(v \cdot u, i)$ is continuous on Z.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every real normed spaces } E, F, G$ for every subset Z of E for every subset T of F for every partial function u from E to F for every partial function v from F to G such that $u^{\circ}Z \subseteq T$ and u is differentiable $\$_1$ times on Z and diff_Z(u, $\$_1$) is continuous on Z and v is differentiable $\$_1$ times on T and diff_T(v, $\$_1$) is continuous on T holds $v \cdot u$ is differentiable $\$_1$ times on Z and diff_Z(v \cdot u, $\$_1$) is continuous on Z. $\mathcal{P}[0]$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every natural number $i, \mathcal{P}[i]$. \Box

3. PARTIAL DIFFERENTIATION OF VECTOR-VALUED FUNCTIONS

Now we state the proposition:

- (44) Let us consider real normed spaces E, F, G, a subset Z of $E \times F$, and a partial function f from $E \times F$ to G. Suppose f is differentiable on Z. Then
 - (i) f is partially differentiable on Z w.r.t. 1, and

- (ii) f is partially differentiable on Z w.r.t. 2, and
- (iii) for every point z of $E \times F$ such that $z \in Z$ holds for every point d_2 of E, $((f \upharpoonright^1 Z)_{/z})(d_2) = f'_{\upharpoonright Z/z}(d_2, 0_F)$ and for every point d_4 of F, $((f \upharpoonright^2 Z)_{/z})(d_4) = f'_{\upharpoonright Z/z}(0_E, d_4).$

PROOF: For every point z of $E \times F$ such that $z \in Z$ holds f is partially differentiable in z w.r.t. 1. For every point z of $E \times F$ such that $z \in Z$ holds f is partially differentiable in z w.r.t. 2. For every point d_2 of E, $((f \upharpoonright^2 Z)_{/z})(d_2) = f'_{|Z/z}(d_2, 0_F)$. For every point d_4 of F, $((f \upharpoonright^2 Z)_{/z})(d_4) = f'_{|Z/z}(0_E, d_4)$. \Box

Let us consider real normed spaces E, F. Now we state the propositions:

- (45) There exists a Lipschitzian linear operator L_{10} from E into $E \times F$ such that for every point d_2 of E, $L_{10}(d_2) = \langle d_2, 0_F \rangle$. PROOF: Define $\mathcal{P}[\text{object}, \text{object}] \equiv$ there exists a point d_2 of E such that $d_2 = \$_1$ and $\$_2 = \langle d_2, 0_F \rangle$. For every object x such that $x \in$ the carrier of E there exists an object y such that $y \in$ the carrier of $E \times F$ and $\mathcal{P}[x, y]$. Consider L_1 being a function from the carrier of E into the carrier of $E \times F$ such that for every object x such that $x \in$ the carrier of E holds $\mathcal{P}[x, L_1(x)]$. For every point d_2 of E, $L_1(d_2) = \langle d_2, 0_F \rangle$. For every elements x, y of E, $L_1(x+y) = L_1(x) + L_1(y)$. For every vector x of E and for every real number $a, L_1(a \cdot x) = a \cdot L_1(x)$. Set K = 1. For every vector xof $E, \|L_1(x)\| \leq K \cdot \|x\|$. \Box
- (46) There exists a Lipschitzian linear operator L_{20} from F into $E \times F$ such that for every point d_4 of F, $L_{20}(d_4) = \langle 0_E, d_4 \rangle$. PROOF: Define $\mathcal{P}[\text{object}, \text{object}] \equiv$ there exists a point d_2 of F such that $d_2 = \$_1$ and $\$_2 = \langle 0_E, d_2 \rangle$. For every object x such that $x \in$ the carrier of F there exists an object y such that $y \in$ the carrier of $E \times F$ and $\mathcal{P}[x, y]$. Consider L_1 being a function from the carrier of F into the carrier of $E \times F$ such that for every object x such that $x \in$ the carrier of F holds $\mathcal{P}[x, L_1(x)]$. For every point d_2 of F, $L_1(d_2) = \langle 0_E, d_2 \rangle$. For every elements x, y of F, $L_1(x+y) = L_1(x) + L_1(y)$. For every vector x of F and for every real number $a, L_1(a \cdot x) = a \cdot L_1(x)$. Set K = 1. For every vector xof $F, ||L_1(x)|| \leq K \cdot ||x||$. \Box
- (47) Let us consider real normed spaces E, F, a non empty subset Z of E, a partial function L_1 from E to F, and a point L_0 of F. Suppose Z is open and $L_1 = Z \mapsto L_0$. Then
 - (i) L_1 is differentiable on Z, and
 - (ii) $L_{1 \upharpoonright Z}$ is continuous on Z, and
 - (iii) $L_1'_{\upharpoonright Z} = Z \longmapsto 0_{\alpha},$

where α is the real norm space of bounded linear operators from E into F.

PROOF: For every object z such that $z \in \text{dom } L_1'_{\restriction Z}$ holds $L_1'_{\restriction Z}(z) = 0_{\alpha}$, where α is the real norm space of bounded linear operators from E into F. \Box

- (48) Let us consider real normed spaces E, F, a non empty subset Z of E, a partial function L_1 from E to F, and a point L_0 of F. Suppose Z is open and $L_1 = Z \mapsto L_0$. Let us consider a natural number i. Then
 - (i) there exists a point P of diff_{SP}(E^i, F) such that diff_Z(L_1, i) = Z $\mapsto P$, and
 - (ii) $\operatorname{diff}_Z(L_1, i)$ is differentiable on Z, and
 - (iii) diff_Z(L_1, i)'_{$\uparrow Z$} is continuous on Z.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{there exists a point } P \text{ of diff}_{SP}(E^{\$_1}, F)$ such that $\text{diff}_Z(L_1, \$_1) = Z \longmapsto P$ and $\text{diff}_Z(L_1, \$_1)$ is differentiable on Zand $\text{diff}_Z(L_1, \$_1)'_{\uparrow Z}$ is continuous on Z. $\mathcal{P}[0]$. For every natural number isuch that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every natural number i, $\mathcal{P}[i]$. \Box

- (49) Let us consider a natural number i, real normed spaces E, F, a non empty subset Z of E, a partial function L_1 from E to F, and a point L_0 of F. Suppose Z is open and $L_1 = Z \mapsto L_0$. Then
 - (i) L_1 is differentiable *i* times on *Z*, and
 - (ii) diff_Z(L_1, i)'_{LZ} is continuous on Z.

The theorem is a consequence of (48).

- (50) Let us consider a natural number n, a real normed space S, a subset Z of S, and a partial function f from S to S. Suppose Z is open and $f = id_{\Omega_S}$. Then
 - (i) f is differentiable n times on Z, and
 - (ii) $\operatorname{diff}_Z(f, n)$ is continuous on Z.

The theorem is a consequence of (9).

Let us consider a natural number *i*, real normed spaces E, F, G, a non empty subset Z of $E \times F$, and a partial function f from $E \times F$ to G. Now we state the propositions:

(51) If f is differentiable i + 1 times on Z, then $f \upharpoonright^1 Z$ is differentiable i times on Z and $f \upharpoonright^2 Z$ is differentiable i times on Z. PROOF: f is differentiable on Z. f is partially differentiable on Z w.r.t. 1 and f is partially differentiable on Z w.r.t. 2 and for every point z of $E \times F$ such that $z \in Z$ holds for every point d_2 of E, $((f \upharpoonright^1 Z)_{/z})(d_2) =$ $f'_{|Z|/z}(d_2, 0_F)$ and for every point d_4 of F, $((f \upharpoonright^2 Z)_{/z})(d_4) = f'_{|Z|/z}(0_E, d_4)$. Set $P_1 = f \upharpoonright^1 Z$. Set $P_2 = f \upharpoonright^2 Z$. Consider L_{10} being a Lipschitzian linear operator from E into $E \times F$ such that for every point d_2 of E, $L_{10}(d_2) = \langle d_2, 0_F \rangle$. Consider L_{20} being a Lipschitzian linear operator from F into $E \times F$ such that for every point d_4 of F, $L_{20}(d_4) = \langle 0_E, d_4 \rangle$. Set B_3 = the real norm space of bounded linear operators from E into $E \times F$. Set B_2 = the real norm space of bounded linear operators from F into $E \times F$. Reconsider $L_1 = Z \longmapsto L_{10}$ as a partial function from $E \times$ F to B_3 . L_1 is differentiable *i* times on Z. For every point z of $E \times F$ such that $z \in Z$ holds $(f \upharpoonright^1 Z)_{/z} = f'_{\upharpoonright Z/z} \cdot (L_{1/z})$. $f'_{\upharpoonright Z}$ is differentiable i times on Z. Consider B being a Lipschitzian bilinear operator from the real norm space of bounded linear operators from E into $E \times F \times$ the real norm space of bounded linear operators from $E \times F$ into G into the real norm space of bounded linear operators from E into G such that for every point u of the real norm space of bounded linear operators from E into $E \times F$ and for every point v of the real norm space of bounded linear operators from $E \times F$ into G, $B(u, v) = v \cdot u$. Set $w_2 = \langle L_1, f'_{\upharpoonright Z} \rangle$. Reconsider $W = B \cdot w_2$ as a partial function from $E \times F$ to the real norm space of bounded linear operators from E into G. W is differentiable i times on Z. For every object x_0 such that $x_0 \in \text{dom } P_1$ holds $P_1(x_0) = W(x_0)$. Reconsider $L_2 = Z \longmapsto L_{20}$ as a partial function from $E \times F$ to B_2 . L_2 is differentiable *i* times on Z. For every point z of $E \times F$ such that $z \in Z$ holds $(f \upharpoonright^2 Z)_{/z} = f'_{\upharpoonright Z/z} \cdot (L_{2/z})$. $f'_{\upharpoonright Z}$ is differentiable *i* times on Z. Consider B being a Lipschitzian bilinear operator from the real norm space of bounded linear operators from F into $E \times F \times$ the real norm space of bounded linear operators from $E \times F$ into G into the real norm space of bounded linear operators from F into G such that for every point u of the real norm space of bounded linear operators from F into $E \times F$ and for every point v of the real norm space of bounded linear operators from $E \times F$ into G, $B(u, v) = v \cdot u$. Set $w_2 = \langle L_2, f'_{\uparrow Z} \rangle$. Reconsider $W = B \cdot w_2$ as a partial function from $E \times F$ to the real norm space of bounded linear operators from F into G. For every object x_0 such that $x_0 \in \text{dom } P_2$ holds $P_2(x_0) = W(x_0).$

- (52) Suppose f is differentiable i+1 times on Z and diff_Z(f, i+1) is continuous on Z. Then
 - (i) $f \upharpoonright^1 Z$ is differentiable *i* times on *Z*, and
 - (ii) diff_Z $(f \upharpoonright^1 Z, i)$ is continuous on Z, and
 - (iii) $f \upharpoonright^2 Z$ is differentiable *i* times on *Z*, and
 - (iv) diff_Z($f \upharpoonright^2 Z, i$) is continuous on Z.

PROOF: f is differentiable on Z. f is partially differentiable on Z w.r.t.

1 and f is partially differentiable on Z w.r.t. 2 and for every point z of $E \times F$ such that $z \in Z$ holds for every point d_2 of E, $((f \upharpoonright Z)_{/z})(d_2) =$ $f'_{\upharpoonright Z/z}(d_2, 0_F)$ and for every point d_4 of F, $((f \upharpoonright^2 Z)_{/z})(d_4) = f'_{\upharpoonright Z/z}(0_E, d_4)$. Set $P_1 = f \upharpoonright^1 Z$. Set $P_2 = f \upharpoonright^2 Z$. Consider L_{10} being a Lipschitzian linear operator from E into $E \times F$ such that for every point d_2 of E, $L_{10}(d_2) = \langle d_2, 0_F \rangle$. Consider L_{20} being a Lipschitzian linear operator from F into $E \times F$ such that for every point d_4 of F, $L_{20}(d_4) = \langle 0_E,$ d_4 . Set B_3 = the real norm space of bounded linear operators from E into $E \times F$. Set B_2 = the real norm space of bounded linear operators from F into $E \times F$. Reconsider $L_1 = Z \longmapsto L_{10}$ as a partial function from $E \times F$ to B_3 . L_1 is differentiable *i* times on Z. L_1 is differentiable i+1 times on Z. For every point z of $E \times F$ such that $z \in Z$ holds $(f \upharpoonright^1$ $Z)_{/z} = f'_{\uparrow Z/z} \cdot (L_{1/z})$. $f'_{\uparrow Z}$ is differentiable *i* times on Z and diff_Z(f'_{\uparrow Z}, i) is continuous on Z. Consider B being a Lipschitzian bilinear operator from the real norm space of bounded linear operators from E into $E \times F \times$ the real norm space of bounded linear operators from $E \times F$ into G into the real norm space of bounded linear operators from E into G such that for every point u of the real norm space of bounded linear operators from E into $E \times F$ and for every point v of the real norm space of bounded linear operators from $E \times F$ into G, $B(u, v) = v \cdot u$. Set $w_2 = \langle L_1, f'_{\uparrow Z} \rangle$. Reconsider $W = B \cdot w_2$ as a partial function from $E \times F$ to the real norm space of bounded linear operators from E into G. W is differentiable itimes on Z and diff_Z(W, i) is continuous on Z. For every object x_0 such that $x_0 \in \text{dom } P_1$ holds $P_1(x_0) = W(x_0)$. Reconsider $L_2 = Z \longmapsto L_{20}$ as a partial function from $E \times F$ to B_2 . L_2 is differentiable *i* times on Z. L_2 is differentiable i + 1 times on Z. For every point z of $E \times F$ such that $z \in Z$ holds $(f \upharpoonright^2 Z)_{/z} = f'_{\upharpoonright Z/z} \cdot (L_{2/z})$. $f'_{\upharpoonright Z}$ is differentiable *i* times on Z and $\operatorname{diff}_Z(f'_{\uparrow Z}, i)$ is continuous on Z. Consider B being a Lipschitzian bilinear operator from the real norm space of bounded linear operators from Finto $E \times F \times$ the real norm space of bounded linear operators from $E \times$ F into G into the real norm space of bounded linear operators from Finto G such that for every point u of the real norm space of bounded linear operators from F into $E \times F$ and for every point v of the real norm space of bounded linear operators from $E \times F$ into $G, B(u, v) = v \cdot u$. Set $w_2 = \langle L_2, f'_{\uparrow Z} \rangle$. Reconsider $W = B \cdot w_2$ as a partial function from $E \times F$ to the real norm space of bounded linear operators from F into G. W is differentiable i times on Z and $\operatorname{diff}_Z(W,i)$ is continuous on Z. For every object x_0 such that $x_0 \in \text{dom } P_2$ holds $P_2(x_0) = W(x_0)$. \Box

(53) Let us consider real normed spaces S, E, F, a partial function u from S to E, a partial function v from S to F, a partial function w from S to

 $E \times F$, and a point x of S. Suppose $w = \langle u, v \rangle$ and u is differentiable in x and v is differentiable in x. Then

- (i) w is differentiable in x, and
- (ii) $w'(x) = \langle u'(x), v'(x) \rangle.$

PROOF: Consider N_3 being a neighbourhood of x_0 such that $N_3 \subseteq \operatorname{dom} u$ and there exists a rest R_3 of S, E such that for every point x of S such that $x \in N_3$ holds $u_{/x} - u_{/x_0} = u'(x_0)(x - x_0) + R_{3/x - x_0}$. Consider R_3 being a rest of S, E such that for every point x of S such that $x \in N_3$ holds $u_{/x} - u_{/x_0} = u'(x_0)(x - x_0) + R_{3/x - x_0}$. Consider N₄ being a neighbourhood of x_0 such that $N_4 \subseteq \operatorname{dom} v$ and there exists a rest R_4 of S, F such that for every point x of S such that $x \in N_4$ holds $v_{/x} - v_{/x_0} = v'(x_0)(x - x_0) + v'(x - x_0) + v'$ $R_{4/x-x_0}$. Consider R_4 being a rest of S, F such that for every point x of S such that $x \in N_4$ holds $v_{/x} - v_{/x_0} = v'(x_0)(x - x_0) + R_{4/x - x_0}$. Consider N being a neighbourhood of x_0 such that $N \subseteq N_3$ and $N \subseteq N_4$. Set $L = \langle u'(x_0), v'(x_0) \rangle$. For every elements x, y of S, L(x+y) = L(x) + L(y). For every vector x of S and for every real number $a, L(a \cdot x) = a \cdot L(x)$. Set $K = ||u'(x_0)|| + ||v'(x_0)||$. For every vector x of S, $||L(x)|| \le K \cdot ||x||$. Set $R = \langle R_3, R_4 \rangle$. For every point d_2 of S, $R_{/d_2} = \langle R_{3/d_2}, R_{4/d_2} \rangle$. For every real number r such that r > 0 there exists a real number d such that d > 0 and for every point z of S such that $z \neq 0_S$ and ||z|| < dholds $||z||^{-1} \cdot ||R_{/z}|| < r$. For every point x of S such that $x \in N$ holds $w_{/x} - w_{/x_0} = L(x - x_0) + R_{/x - x_0}.$

- (54) Let us consider real normed spaces S, E, F, a partial function u from S to E, a partial function v from S to F, a partial function w from S to $E \times F$, and a subset Z of S. Suppose $w = \langle u, v \rangle$ and u is differentiable on Z and v is differentiable on Z. Then
 - (i) w is differentiable on Z, and

(ii) for every point x of S such that $x \in Z$ holds $w'_{\upharpoonright Z/x} = \langle u'_{\upharpoonright Z/x}, v'_{\upharpoonright Z/x} \rangle$.

PROOF: For every point x of S such that $x \in Z$ holds w is differentiable in x and $w'(x) = \langle u'(x), v'(x) \rangle$. For every point x of S such that $x \in Z$ holds $w'_{\uparrow Z/x} = \langle u'_{\uparrow Z/x}, v'_{\uparrow Z/x} \rangle$. \Box

Let S, E, F be real normed spaces. The functor CTP(S, E, F) yielding a Lipschitzian linear operator from (the real norm space of bounded linear operators from S into E) × (the real norm space of bounded linear operators from S into F) into the real norm space of bounded linear operators from S into $E \times F$ is defined by

(Def. 3) for every Lipschitzian linear operator f from S into E and for every Lipschitzian linear operator g from S into F, $it(f,g) = \langle f,g \rangle$.

Now we state the proposition:

(55) Let us consider real normed spaces S, E, F, and a natural number i. Then $\operatorname{CTP}(S, \operatorname{diff}_{\operatorname{SP}}(S^i, E), \operatorname{diff}_{\operatorname{SP}}(S^i, F))$ is a Lipschitzian linear operator from $\operatorname{diff}_{\operatorname{SP}}(S^{(i+1)}, E) \times \operatorname{diff}_{\operatorname{SP}}(S^{(i+1)}, F)$ into the real norm space of bounded linear operators from S into $\operatorname{diff}_{\operatorname{SP}}(S^i, E) \times \operatorname{diff}_{\operatorname{SP}}(S^i, F)$.

Let us consider real normed spaces S, E, F, a partial function u from S to E, a partial function v from S to F, a partial function w from S to $E \times F$, and a subset Z of S. Now we state the propositions:

- (56) Suppose $w = \langle u, v \rangle$ and u is differentiable on Z and v is differentiable on Z. Then
 - (i) w is differentiable on Z, and
 - (ii) $w'_{\uparrow Z} = (\operatorname{CTP}(S, \operatorname{diff}_{\operatorname{SP}}(S^0, E), \operatorname{diff}_{\operatorname{SP}}(S^0, F))) \cdot \langle u'_{\uparrow Z}, v'_{\uparrow Z} \rangle.$

PROOF: w is differentiable on Z and for every point x of S such that $x \in Z$ holds $w'_{\uparrow Z/x} = \langle u'_{\uparrow Z/x}, v'_{\uparrow Z/x} \rangle$. CTP $(S, \operatorname{diff}_{\operatorname{SP}}(S^0, E), \operatorname{diff}_{\operatorname{SP}}(S^0, F))$ is a Lipschitzian linear operator from $\operatorname{diff}_{\operatorname{SP}}(S^{(0+1)}, E) \times \operatorname{diff}_{\operatorname{SP}}(S^{(0+1)}, F)$ into the real norm space of bounded linear operators from S into $\operatorname{diff}_{\operatorname{SP}}(S^0, E) \times \operatorname{diff}_{\operatorname{SP}}(S^0, F)$. For every object x_0 such that $x_0 \in \operatorname{dom} w'_{\uparrow Z}$ holds $w'_{\uparrow Z}(x_0) = ((\operatorname{CTP}(S, \operatorname{diff}_{\operatorname{SP}}(S^0, E), \operatorname{diff}_{\operatorname{SP}}(S^0, F))) \cdot \langle u'_{\uparrow Z}, v'_{\uparrow Z} \rangle)(x_0)$. \Box

- (57) Suppose $w = \langle u, v \rangle$ and u is differentiable on Z and v is differentiable on Z. Then
 - (i) $\operatorname{diff}_Z(w,0)$ is differentiable on Z, and
 - (ii) there exists a Lipschitzian linear operator T from diff_{SP} $(S^1, E) \times$ diff_{SP} (S^1, F) into diff_{SP} $(S^1, (E \times F))$ such that $T = \text{CTP}(S, \text{diff}_{\text{SP}}(S^0, E), \text{diff}_{\text{SP}}(S^0, F))$ and diff_Z $(w, 1) = T \cdot \langle \text{diff}_Z(u, 1), \text{diff}_Z(v, 1) \rangle$.

The theorem is a consequence of (56), (3), (55), and (2).

- (58) Suppose $w = \langle u, v \rangle$ and u is differentiable 2 times on Z and v is differentiable 2 times on Z. Then
 - (i) w is differentiable 2 times on Z, and
 - (ii) there exists a Lipschitzian linear operator L_1 from diff_{SP} $(S^1, E) \times$ diff_{SP} (S^1, F) into diff_{SP} $(S^1, (E \times F))$ and there exists a Lipschitzian linear operator L_2 from diff_{SP} $(S^2, E) \times$ diff_{SP} (S^2, F) into diff_{SP} $(S^1, (diff_{SP}(S^1, E) \times diff_{SP}(S^1, F)))$ and there exists a Lipschitzian linear operator T from diff_{SP} $(S^2, E) \times$ diff_{SP} (S^2, F) into diff_{SP} $(S^2, (E \times F))$ such that $L_1 = \text{CTP}(S, \text{diff}_{SP}(S^0, E), \text{diff}_{SP}(S^0, F))$ and $L_2 =$ CTP $(S, \text{diff}_{SP}(S^1, E), \text{diff}_{SP}(S^1, F))$ and $T = (\text{LTRN}(1, L_1, S)) \cdot L_2$ and diff_Z $(w, 2) = T \cdot \langle \text{diff}_Z(u, 2), \text{diff}_Z(v, 2) \rangle$.

The theorem is a consequence of (2), (57), (3), (55), and (24).

- (59) Let us consider a natural number i, real normed spaces S, E, F, a partial function u from S to E, a partial function v from S to F, a partial function w from S to $E \times F$, and a subset Z of S. Suppose $w = \langle u, v \rangle$ and u is differentiable i + 1 times on Z and v is differentiable i + 1 times on Z. Then
 - (i) w is differentiable i + 1 times on Z, and
 - (ii) there exists a Lipschitzian linear operator T from $\operatorname{diff}_{\operatorname{SP}}(S^{(i+1)}, E) \times \operatorname{diff}_{\operatorname{SP}}(S^{(i+1)}, F)$ into $\operatorname{diff}_{\operatorname{SP}}(S^{(i+1)}, (E \times F))$ such that $\operatorname{diff}_Z(w, i + 1) = T \cdot \langle \operatorname{diff}_Z(u, i + 1), \operatorname{diff}_Z(v, i + 1) \rangle$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every real normed spaces } S, E, F$ for every partial function u from S to E for every partial function v from S to F for every partial function w from S to $E \times F$ for every subset Z of S such that $w = \langle u, v \rangle$ and u is differentiable $\$_1 + 1$ times on Z and v is differentiable $\$_1 + 1$ times on Z holds w is differentiable $\$_1 + 1$ times on Z and there exists a Lipschitzian linear operator T from $\dim_{SP}(S^{(\$_1+1)}, E) \times \dim_{SP}(S^{(\$_1+1)}, F)$ into $\dim_{SP}(S^{(\$_1+1)}, (E \times F))$ such that $\dim_Z(w, \$_1 + 1) = T \cdot \langle \dim_Z(u, \$_1 + 1), \dim_Z(v, \$_1 + 1) \rangle$. $\mathcal{P}[0]$. For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every natural number i, $\mathcal{P}[i]$. \Box

- (60) Let us consider real normed spaces S, E, F, a partial function u from S to E, a partial function v from S to F, a partial function w from S to $E \times F$, a subset Z of S, and a natural number i. Suppose $w = \langle u, v \rangle$ and u is differentiable i + 1 times on Z and diff_Z(u, i + 1) is continuous on Z and v is differentiable i + 1 times on Z and diff_Z(v, i + 1) is continuous on Z. Then
 - (i) w is differentiable i + 1 times on Z, and
 - (ii) $\operatorname{diff}_Z(w, i+1)$ is continuous on Z.

PROOF: Consider T being a Lipschitzian linear operator from diff $_{SP}(S^{(i+1)}, E) \times diff_{SP}(S^{(i+1)}, F)$ into $diff_{SP}(S^{(i+1)}, (E \times F))$ such that $diff_Z(w, i + 1) = T \cdot \langle diff_Z(u, i + 1), diff_Z(v, i + 1) \rangle$. Set $u_1 = diff_Z(u, i + 1)$. Set $v_1 = diff_Z(v, i + 1)$. Set $G = \langle u_1, v_1 \rangle$. For every point x_0 of S and for every real number r such that $x_0 \in Z$ and 0 < r there exists a real number s such that 0 < s and for every point x_1 of S such that $x_1 \in Z$ and $||x_1 - x_0|| < s$ holds $||G_{/x_1} - G_{/x_0}|| < r$. T is continuous on $\Omega_{diff_{SP}(S^{(i+1)},E) \times diff_{SP}(S^{(i+1)},F)}$. \Box

(61) Let us consider real normed spaces X, Y, a subset V of $X \times Y$, a subset D of X, and a subset E of Y. Suppose D is open and E is open and $V = D \times E$. Then V is open.

PROOF: For every point x of X and for every point y of Y such that $\langle x, y \rangle \in V$ there exist real numbers r_1 , r_2 such that $0 < r_1$ and $0 < r_2$ and $\text{Ball}(x, r_1) \times \text{Ball}(y, r_2) \subseteq V$. \Box

4. Higher-Order Differentiability of Inverse Function Theorem

Now we state the propositions:

(62) Let us consider real normed spaces E, F, G, a point x of the real norm space of bounded linear operators from E into F, and a point L of the real norm space of bounded linear operators from the real norm space of bounded linear operators from F into E into the real norm space of bounded linear operators from E into E. Suppose x is invertible and for every point y of the real norm space of bounded linear operators from F into E, $L(y) = y \cdot x$. Then L is invertible.

PROOF: Set F_4 = the real norm space of bounded linear operators from Finto E. Set E_2 = the real norm space of bounded linear operators from Einto E. Reconsider $L_1 = L$ as a Lipschitzian linear operator from F_4 into E_2 . Reconsider $d_2 = x^{-1}$ as a point of the real norm space of bounded linear operators from F into E. For every objects x_1 , x_2 such that x_1 , $x_2 \in \Omega_{F_4}$ and $L_1(x_1) = L_1(x_2)$ holds $x_1 = x_2$. For every object y such that $y \in \Omega_{E_2}$ there exists an object z such that $z \in \Omega_{F_4}$ and $y = L_1(z)$. Define $\mathcal{P}[\text{object}, \text{object}] \equiv$ there exists a point y of E_2 such that $y = \$_1$ and $\$_2 = y \cdot d_2$. For every object y such that $y \in$ the carrier of E_2 there exists an object z such that $z \in$ the carrier of F_4 and $\mathcal{P}[y, z]$. Consider Rbeing a function from the carrier of E_2 into the carrier of F_4 such that for every object y such that $y \in$ the carrier of E_2 holds $\mathcal{P}[y, R(y)]$. For every point y of E_2 , $R(y) = y \cdot d_2$. For every element y of F_4 , $(R \cdot L_1)(y) = y$. Set $K = ||d_2||$. For every vector y of E_2 , $||R(y)|| \leq K \cdot ||y||$. \Box

- (63) Let us consider a non trivial real Banach space F. Then the real norm space of bounded linear operators from F into F is a non trivial real Banach space.
- (64) Let us consider a real Banach space E, non trivial real Banach spaces F, G, a non empty subset Z of $E \times F$, a point c of G, a subset A of E, and a subset B of F. Suppose Z is open and A is open and B is open and $A \times B \subseteq Z$. Let us consider a natural number i, a partial function f from $E \times F$ to G, and a partial function g from E to F. Suppose dom f = Z and f is differentiable i+1 times on Z and diff_Z(f, i+1) is continuous on Z and dom g = A and rng $g \subseteq B$ and g is continuous on A and for every point x of E such that $x \in A$ holds f(x, g(x)) = c and for every point x

of E and for every point z of $E \times F$ such that $x \in A$ and $z = \langle x, g(x) \rangle$ holds partdiff(f, z) w.r.t. 2 is invertible. Then

- (i) g is differentiable i + 1 times on A, and
- (ii) $\operatorname{diff}_A(g, i+1)$ is continuous on A, and
- (iii) for every point x of E and for every point z of $E \times F$ such that $x \in A$ and $z = \langle x, g(x) \rangle$ holds $g'(x) = -(\text{Inv partdiff}(f, z) \text{ w.r.t. } 2) \cdot (\text{partdiff}(f, z) \text{ w.r.t. } 1).$

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{for every real Banach space } E$ for every non trivial real Banach spaces F, G for every non empty subset Z of $E \times F$ for every point c of G for every subset A of E for every subset B of F such that Z is open and A is open and B is open and $A \times B \subseteq Z$ for every partial function f from $E \times F$ to G for every partial function g from E to F such that dom f = Z and f is differentiable $\$_1 + 1$ times on Z and diff_Z(f, $\$_1 + 1$) is continuous on Z and dom g = Aand rng $q \subseteq B$ and q is continuous on A and for every point x of E such that $x \in A$ holds f(x, g(x)) = c and for every point x of E and for every point z of $E \times F$ such that $x \in A$ and $z = \langle x, q(x) \rangle$ holds partdiff(f, z) w.r.t. 2 is invertible holds q is differentiable $_1 + 1$ times on A and diff_A $(q, \$_1 + 1)$ is continuous on A and for every point x of E and for every point z of $E \times F$ such that $x \in A$ and $z = \langle x, g(x) \rangle$ holds $g'(x) = -(\text{Inv partdiff}(f, z) \text{ w.r.t. } 2) \cdot (\text{partdiff}(f, z) \text{ w.r.t. } 1). \mathcal{P}[0].$ For every natural number i such that $\mathcal{P}[i]$ holds $\mathcal{P}[i+1]$. For every natural number $i, \mathcal{P}[i]. \square$

- (65) Let us consider non trivial real Banach spaces F, G. Then there exists a partial function I from the real norm space of bounded linear operators from F into G to the real norm space of bounded linear operators from Ginto F such that
 - (i) dom I = InvertOpers(F, G), and
 - (ii) $\operatorname{rng} I = \operatorname{InvertOpers}(G, F)$, and
 - (iii) I is one-to-one and continuous on InvertOpers(F, G), and
 - (iv) there exists a partial function J from the real norm space of bounded linear operators from G into F to the real norm space of bounded linear operators from F into G such that $J = I^{-1}$ and J is one-to-one and dom J = InvertOpers(G, F) and rng J = InvertOpers(F, G) and J is continuous on InvertOpers(G, F), and
 - (v) for every point u of the real norm space of bounded linear operators from F into G such that $u \in \text{InvertOpers}(F, G)$ holds I(u) = Inv u, and

(vi) for every natural number n, I is differentiable n+1 times on InvertOpers(F, G) and diff_{InvertOpers(F,G)}(I, n+1) is continuous on InvertOpers(F, G).

PROOF: Set E_1 = the real norm space of bounded linear operators from Finto G. Set F_1 = the real norm space of bounded linear operators from G into F. Set G_1 = the real norm space of bounded linear operators from F into F. G_1 is a non trivial real Banach space. Set $A_1 = \text{InvertOpers}(F, G)$. Set $B_1 = \text{InvertOpers}(G, F)$. Consider g_1 being a partial function from E_1 to F_1 such that dom $g_1 = A_1$ and rng $g_1 = B_1$ and g_1 is one-to-one and continuous on A_1 and there exists a partial function J from F_1 to E_1 such that $J = g_1^{-1}$ and J is one-to-one and dom $J = B_1$ and rng $J = A_1$ and J is continuous on B_1 and for every point u of E_1 such that $u \in A_1$ holds $g_1(u) = \text{Inv } u$. Set $Z_1 = \Omega_{E_1 \times F_1}$. Reconsider $a = \text{id}_{\Omega_F}$ as a Lipschitzian linear operator from F into F. Consider f_0 being a Lipschitzian bilinear operator from $E_1 \times F_1$ into G_1 such that for every point u of E_1 and for every point v of F_1 , $f_0(u, v) = v \cdot u$. Reconsider $f_1 = f_0 \upharpoonright Z_1$ as a partial function from $E_1 \times F_1$ to G_1 . For every point x of E_1 such that $x \in A_1$ holds $f_1(x, g_1(x)) = a$ by [6, (22)]. For every point x of E_1 and for every point z of $E_1 \times F_1$ such that $x \in A_1$ and $z = \langle x, g_1(x) \rangle$ for every point y of F_1 , $(\text{partdiff}(f_1, z) \text{ w.r.t. } 2)(y) = y \cdot x$ by [8, (4)]. For every point x of E_1 and for every point z of $E_1 \times F_1$ such that $x \in A_1$ and $z = \langle x, g_1(x) \rangle$ holds partdiff (f_1, z) w.r.t. 2 is invertible. g_1 is differentiable i + 1 times on A_1 and diff_{A_1}(g_1, i+1) is continuous on A_1 .

(66) Let us consider non trivial real Banach spaces E, F, a subset Z of E, a partial function f from E to F, a point a of E, a point b of F, and a natural number n. Suppose Z is open and dom f = Z and f is differentiable n + 1 times on Z and diff_Z(f, n + 1) is continuous on Z and $a \in Z$ and f(a) = b and f'(a) is invertible. Then there exists a subset A of E and there exists a subset B of F and there exists a partial function g from F to E such that A is open and B is open and $A \subseteq \text{dom } f$ and $a \in A$ and $b \in B$ and $f^{\circ}A = B$ and dom g = B and rng g = A and dom $(f \upharpoonright A) = A$ and $\operatorname{rng}(f \upharpoonright A) = B$ and $f \upharpoonright A$ is one-to-one and g is one-to-one and $g = (f \upharpoonright A)^{-1}$ and $f \upharpoonright A = g^{-1}$ and g(b) = a and for every point y of F such that $y \in B$ holds $f'(g_{/y})$ is invertible and for every point y of F such that $y \in B$ holds $g'(y) = \operatorname{Inv} f'(g_{/y})$ and f is differentiable n + 1 times on A and diff_A(f, n + 1) is continuous on A and g is differentiable n + 1 times on Band diff_B(g, n + 1) is continuous on B.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \text{if } Z \text{ is open and dom } f = Z \text{ and } f$ is differentiable $\mathfrak{s}_1 + 1$ times on Z and diff_Z(f, $\mathfrak{s}_1 + 1$) is continuous on Z and $a \in Z$ and f(a) = b and f'(a) is invertible, then there exists a subset A of E and there exists a subset B of F and there exists a partial function g from F to E such that A is open and B is open and $A \subseteq \text{dom } f$ and $a \in A$ and $b \in B$ and $f^{\circ}A = B$ and dom g = B and rng g = A and $\text{dom } (f \upharpoonright A) = A$ and $\text{rng}(f \upharpoonright A) = B$ and $f \upharpoonright A$ is one-to-one and g is one-to-one and $g = (f \upharpoonright A)^{-1}$ and $f \upharpoonright A = g^{-1}$ and g(b) = a and for every point y of F such that $y \in B$ holds $f'(g_{/y})$ is invertible and for every point y of F such that $y \in B$ holds $g'(y) = \text{Inv } f'(g_{/y})$ and f is differentiable $\$_1 + 1$ times on A and $\text{diff}_A(f, \$_1 + 1)$ is continuous on A and g is differentiable $\$_1 + 1$ times on B and $\text{diff}_B(g, \$_1 + 1)$ is continuous on B. $\mathcal{P}[0]$. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$. For every natural number n, $\mathcal{P}[n]$. \Box

References

- [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [3] Nelson Dunford and Jacob T. Schwartz. Linear operators I. Interscience Publ., 1958.
- [4] Noboru Endou and Yasunari Shidama. Differentiation in normed spaces. Formalized Mathematics, 21(2):95–102, 2013. doi:10.2478/forma-2013-0011.
- [5] Isao Miyadera. Functional Analysis. Riko-Gaku-Sya, 1972.
- Kazuhisa Nakasho. Invertible operators on Banach spaces. Formalized Mathematics, 27 (2):107–115, 2019. doi:10.2478/forma-2019-0012.
- [7] Kazuhisa Nakasho and Yasunari Shidama. On implicit and inverse function theorems on Euclidean spaces. Formalized Mathematics, 30(3):159–168, 2022. doi:10.2478/forma-2022-0012.
- [8] Kazuhisa Nakasho and Yasunari Shidama. Differentiability properties of Lipschitzian bilinear operators in real normed spaces. *Formalized Mathematics*, 32(1):165–172, 2024. doi:10.2478/forma-2024-0013.
- Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family of real linear spaces. *Formalized Mathematics*, 19(1):51–59, 2011. doi:10.2478/v10037-011-0009-2.
- [10] Laurent Schwartz. Théorie des ensembles et topologie, tome 1. Analyse. Hermann, 1997.
- [11] Laurent Schwartz. Calcul différentiel, tome 2. Analyse. Hermann, 1997.
- [12] Kôsaku Yosida. Functional Analysis. Springer, 1980.

Accepted December 24, 2024