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Summary. This article extends the formalization of the theory of differen-
tiation in real normed spaces in the Mizar system. The focus is on higher-order
derivatives and the inverse function theorem. Additionally, we encode the diffe-
rentiability of the inversion operator on invertible linear operators.
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INTRODUCTION

This article, using the Mizar system [1], [2], extends the theory of diffe-
rentiation in real normed spaces [5], focusing on higher-order derivatives and
the inverse function theorem [7]. The work presents a comprehensive treatment
of higher-order derivatives for vector-valued functions and develops theorems
on the composition of differentiable functions and their higher-order deriva-
tives [10], [II]. It provides an analysis of partial derivatives for multivariable
vector-valued functions and extends the inverse function theorem to higher-
order differentiability, including continuity properties [12]. Additionally, the pa-
per formalizes the differentiability of the inversion operator on invertible linear
operators [3].
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1. FOUNDATIONS OF DIFFERENTIATION IN REAL NORMED SPACES

From now on E, F', G, S, T, W, Y denote real normed spaces, f, fi, fo
denote partial functions from S to T', Z denotes a subset of S, and i, n denote
natural numbers. Now we state the proposition:

(1) Let us consider real normed spaces S, T, a partial function f from S to
T, a subset Z of S, and a point x of S. Suppose Z is open and z € Z and
Z C dom f. Then f[Z is differentiable in x if and only if f is differentiable
in x.

Let us consider real normed spaces S, T', a partial function f from S to T,
and a subset Z of S. Now we state the propositions:

(2) fIZ is differentiable on Z if and only if f is differentiable on Z.

(3) If fis differentiable on Z, then (f[Z)}; = f{;. The theorem is a conse-
quence of (2).

Let us consider real normed spaces S, T, a partial function f from S to T,
and subsets X, Z of S. Now we state the propositions:

(4) If Zis open and Z C X and f is differentiable on X, then f{, = fix[Z.
PROOF: For every object x such that x € dom(f{x[Z) holds (f{x[Z)(z) =
ffz(x) O

(5) IfZisopenand Z C X and f is differentiable on X and f{y is continuous
on X, then ff » is continuous on Z. The theorem is a consequence of (4).

Let us consider real normed spaces S, T', a partial function f from S to T,
a subset Z of S, and a natural number k. Now we state the propositions:

(6) Suppose f is differentiable k times on Z. Then
(i) f1Z is differentiable k times on Z, and
(ii) diffz(f1Z, k) = diff z(f, k).
PROOF: Define P[natural number| = if f is differentiable $; times on Z,
then f[Z is differentiable $; times on Z and diff z(f[Z, $1) = diff z(f, $1).

P[0]. For every natural number k such that P[k] holds P[k + 1]. For every
natural number k, P[k]. O

(7) Suppose f is differentiable k times on Z and diff z( f, k) is continuous on
Z. Then

(i) fIZ is differentiable k times on Z, and
(i) diffz(f[Z, k) is continuous on Z.

Let us consider real normed spaces S, T, a partial function f from S to T,
subsets X, Z of S, and a natural number ¢. Now we state the propositions:
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(8) Suppose Z is open and Z C X. Then if f is differentiable 7 times on X,
then f is differentiable ¢ times on Z and diff z(f,i) = diff x (f,7)[Z.
PROOF: Define P[natural number| = if f is differentiable $; times on X,
then f is differentiable $; times on Z and diffz(f,$;1) = diffx(f,$1)[Z.
P[0]. For every natural number ¢ such that P[i] holds P[i + 1]. For every
natural number 4, P[i]. O

(9) Suppose Z is open and Z C X. Then suppose f is differentiable i times
on X and diff x (f,4) is continuous on X. Then

(i) f is differentiable ¢ times on Z, and
(ii) diffz(f,) is continuous on Z.

The theorem is a consequence of (8).

(10) Let us consider real normed spaces X, Y, a real number a, Lipschitzian
linear operators v1, vo from X into Y, and points wq, ws of the real norm
space of bounded linear operators from X into Y. Suppose v; = w; and
vy = wg. Then

(i) v1 4+ v2 = wy + we, and

(i) a-v1 =a-w.
PROOF: Reconsider wis = wy + we as a point of the real norm space of
bounded linear operators from X into Y. For every object s such that
s € dom(vy + v2) holds (v1 + v2)(s) = wi2(s). Reconsider wis = a - wy as
a point of the real norm space of bounded linear operators from X into Y.
For every object s such that s € dom(a - v;y) holds (a - v1)(s) = wia(s). O

(11) Let us consider real normed spaces X, Y, Lipschitzian linear operators
v1, V2, vg from X into Y, and real numbers a, b. Then
(i) vi +v2 = v2 + v1, and
(ii) (v1 + vg) +v3 = v1 + (v2 + v3), and
(iii) a-(vi +v2) =a-vi +a- vy, and
(iv) (a+b)-v1=a-v1+b- vy, and
(v) a-b-vi=a-(b-v1).
The theorem is a consequence of (10).

(12) Let us consider real normed spaces X, Y, Z, a Lipschitzian linear ope-
rator v from X into Y, a Lipschitzian linear operator s from Y into Z,
a point pg of the real norm space of bounded linear operators from X into
Y, and a point ps of the real norm space of bounded linear operators from
Y into Z. If v = pg and s = ps, then s-v = ps - pg.
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(13) Let us consider real normed spaces X, Y, Z, Lipschitzian linear operators
v1, vo from X into Y, Lipschitzian linear operators s1, so from Y into Z,
and a real number a. Then

(i) s1-(v1 +v2) =81 v + 8109, and
(i1) (s1+ s2)-v1 = s1-v1 + s2-v1, and
(iii) s1-(a-v1) =a-sy-vy.
The theorem is a consequence of (10) and (12).

(14) Let us consider real normed spaces S, T, U, a partial function f; from
S to T, a partial function fs from T to U, and a point xg of S. Suppose
xo € dom(fo - f1) and f is continuous in xg and fo is continuous in f1 /a0
Then fs5 - f1 is continuous in zg.

PRrROOF: Set f = fo - f1. For every real number r such that 0 < r there
exists a real number s such that 0 < s and for every point x; of S such
that x1 € dom f and ||z1 — zol| < s holds ||f/z, — f/a,ll < 7. O

(15) Let us consider real normed spaces E, F, G, a subset Z of E, a subset

T of F, a partial function v from E to F', and a partial function v from
F to G. Suppose u°Z C T and u is continuous on Z and v is continuous
on 7. Then v - u is continuous on Z.
PROOF: Set f = v - u. For every point xg of F and for every real number
r such that g € Z and 0 < r there exists a real number s such that 0 < s
and for every point x; of E such that 1 € Z and ||x1 — z¢]| < s holds
Hf/zl - f/:I:o” <r.0

(16) Let us consider real normed spaces X, Y, a point = of X, a point y of Y,
and a point z of X x Y. Suppose z = (x, y). Then ||z|| < ||z + |ly]|-

(17) Let us consider real normed spaces E, F, G, a partial function u from
FE to F, a Lipschitzian linear operator L from F' into G, and a point x of
E. Suppose u is differentiable in z. Then

(i) L - wu is differentiable in z, and
(i) (L-u)(x)=L- /().

(18) Let us consider real normed spaces E, F, G, a subset Z of E, a subset
T of F', a partial function u from F to F', and a partial function v from F’
to G. Suppose ©u°Z C T and u is differentiable on Z and v is differentiable
on T'. Then

(i) v-u is differentiable on Z, and

(ii) f(’os eve)ry point x of £ such that x € Z holds (v - )|,/ = U/rT/U/x .
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PRrROOF: For every point x of FE such that x € Z holds v - u is differentiable
in z and (v-u)'(z) = v'(u/,)-u'(x). For every point x of E such that x € Z
holds (v - “)lrz/x = v’[T/u/z . (“/rz/x)~ O
(19) Let us consider real normed spaces F', G, and a Lipschitzian linear ope-
rator L from F into G. Then
(i) L is differentiable on Qp, and
(i) Ljg, is continuous on Qp, and
(iif) for every point z of F, L}/, = L.
(20) Let us consider real normed spaces E, F', G, a partial function u from E

to F, a subset Z of F/, and a Lipschitzian linear operator L from F into
G. Suppose u is differentiable on Z. Then

(i) L - wu is differentiable on Z, and
(ii) for every point z of E' such that z € Z holds (L u)z/, = L~ (4} z/2)-
The theorem is a consequence of (19) and (18).

Let E, F', G be real normed spaces and L be a Lipschitzian linear operator
from F' into G. The functor LTRN(L, E) yielding a function is defined by

(Def. 1) dom it = N and 4¢(0) = L and for every natural number i, there exists

a Lipschitzian linear operator K from diffgp(E(+Y), F) into diffgp (E(+Y),

G) and there exists a Lipschitzian linear operator M from diffsp(E?, F)

into diffsp(E?, G) such that it(i+1) = K and it(i)(€ the real norm space

of bounded linear operators from diffsp(E?, F') into diffsp(E?, G)) = M

and for every Lipschitzian linear operator V from E into diffsp(E‘, F),
K(V)=M-V.

Let i be a natural number. The functor LTRN(i, L, E) yielding a Lipschitzian

linear operator from diffsp(E?, F) into diffsp(E?, G) is defined by the term

(Det. 2) (LTRN(L, E))(i).

2. HIGHER-ORDER DIFFERENTIATION AND FUNCTION COMPOSITION

Now we state the propositions:
(21) Let us consider real normed spaces F, F, G, and a Lipschitzian linear
operator L from F' into GG. Then
(i) LTRN(0,L,E) = L, and
(ii) for every natural number i and for every Lipschitzian linear operator
V from E into diffsp(E?, F), (LTRN(i + 1, L, E))(V) =
(LTRN(:, L, E)) - V.



252 KAZUHISA NAKASHO AND YASUNARI SHIDAMA

(22) Let us consider real normed spaces E, F, G, a subset Z of E, a subset
T of F', a partial function u from F to F, and a partial function v from F
to G. Suppose ©u°Z C T and w is differentiable on Z and u/rz is continuous
on Z and v is differentiable on 7" and U/TT is continuous on 7. Then

(i) v-w is differentiable on Z, and

(i) (v-u)}y is continuous on Z.
PROOF: v - u is differentiable on Z and for every point x of E such that
x € Z holds (v~ u)iz/e = Vipju, - (Ujz/z)- Set f = (v-u)|,. For every
point xg of E and for every real number r such that zg € Z and 0 < r

there exists a real number s such that 0 < s and for every point z; of E
such that 1 € Z and ||z1 — zol| < s holds ||f/z, — f/a,ll < 7. O

(23) Let us consider real normed spaces E, F, G, a subset Z of E, a partial
function u from E to F', and a Lipschitzian linear operator L from F into
G. Suppose u is differentiable on Z and u/rZ is continuous on Z. Then

(i) L - wu is differentiable on Z, and
(ii) (L -u)}z is continuous on Z.
The theorem is a consequence of (19) and (22).

Let us consider real normed spaces E, F, G, a subset Z of E, a partial
function u from E to F, a Lipschitzian linear operator L from F' into G, and
a natural number ¢. Now we state the propositions:

(24) Suppose u is differentiable i times on Z. Then
(i) L -u is differentiable i times on Z, and
(i) diff z(L - u,4) = (LTRN(i, L, E)) - diff z (u, 7).

PROOF: Define P[natural number| = if v is differentiable $; times on Z,
then L-u is differentiable $; times on Z and diff 7 (L-u, $;) = (LTRN($4, L,
E)) - diff z(u, $1). P[0]. For every natural number ¢ such that P[i] holds
P[i + 1]. For every natural number i, P[i]. O

(25) Suppose u is differentiable i times on Z and diff z(u, %) is continuous on
Z. Then

(i) L - wu is differentiable ¢ times on Z, and
(ii) diffz(L - u,4) is continuous on Z.
The theorem is a consequence of (24) and (15).

(26) Let us consider real normed spaces S, T', U, a point = of S, a partial
function u from S to T, a partial function v from S to U, and a partial
function w from S to T x U. Suppose u is differentiable in x and v is
differentiable in = and w = (u,v). Then
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(i) w is differentiable in z, and
(i) w/(z) = (/(z), o(x)), and
(iii) for every point dg of S, w'(x)(ds2) = (u'(x)(d2), v'(z)(d2)).

PROOF: For every point ¢ of S such that ¢ € dom w holds w, = (fl/t, f2/t).
Consider Ny being a neighbourhood of xg such that Ny C dom f; and there
exists a point L of the real norm space of bounded linear operators from
S into T and there exists a rest R of S, T" such that for every point x of
S such that x € Ny holds f1,, — fi5, = L(z — x0) + Ry, Consider
L1 being a point of the real norm space of bounded linear operators from
S into T, R; being a rest of S, T such that for every point x of S such
that x € Ny holds fi1/, — f1 /5, = L1(% —20) + R /34, Consider N being
a neighbourhood of xy such that Ny C dom fy and there exists a point
L of the real norm space of bounded linear operators from .S into U and
there exists a rest R of S, U such that for every point z of S such that
x € Np holds fa/, — f2/yy = L(x—x0) + R34, Consider Ly being a point
of the real norm space of bounded linear operators from S into U, Rs
being a rest of S, U such that for every point x of S such that x € Na
holds f2/x — fQ/Io = Lg(aj - l‘o) + RQ/m_xO. Define O(object) = (R1/$1,
Rz /g,). Consider R being a function from S into 7" x U such that for
every object da such that dy € the carrier of S holds R(d2) = O(dz). For
every real number r such that » > 0 there exists a real number d such
that d > 0 and for every point z of S such that z # 0g and ||z|| < d holds
2|7 ||R/. || < r. Define O(object) = (L1($1), L2($1)). For every object
such that € the carrier of S holds O(x) € the carrier of T'x U. Consider
L being a function from S into T' x U such that for every object do such
that da € the carrier of S holds L(d2) = O(dz). For every elements z, y
of S, L(z +vy) = L(z) + L(y). For every vector x of S and for every real
number a, L(a-z) = a- L(x). Set K = ||L1|| + || L2||. For every vector w of
S, [|[L(w)|| < K - ||w||. Consider N being a neighbourhood of z( such that
N C Ny and N C No. [

Let us consider real normed spaces S, T, U, a subset Z of S, a partial
function u from S to T, a partial function v from S to U, and a partial function
w from S to T x U. Now we state the propositions:

(27) Suppose u is differentiable on Z and v is differentiable on Z and w =
(u,v). Then
(i) w is differentiable on Z, and

(ii) for every point x of S such that z € Z holds W, /p = (U} /2) V) 7/2)5
and
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(28)

(29)

(30)
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(iii) for every point = of S such that x € Z for every point dy of S,
(whz/a)(d2) = ((U)z/2)(d2), (V)z/0)(d2))-

PRrROOF: For every point = of S such that z € Z holds w is differentiable in
z. For every point x of S such that x € Z holds w';/, = (U} /s, V}z /o). For
every point = of S such that x € Z for every point d of S, (w},/.)(d2) =

((uiz/2)(d2), (v1z/5)(d2)). O

Suppose u is differentiable on Z and u,rZ is continuous on Z and v is
differentiable on Z and v}, is continuous on Z and w = (u,v). Then

(i) w is differentiable on Z, and
(ii) w)y is continuous on Z.

ProoF: w is differentiable on Z and for every point z of S such that
x € Z holds W)y, = (U}z/2,V}z/.) and for every point = of S such that
x € Z for every point dy of S, (W} /x)(d2) = ((u}z/2)(d2), (Viz/2)(d2))-
Set f = w/rz- For every point xy of S and for every real number r such
that xp € Z and 0 < r there exists a real number s such that 0 < s
and for every point x; of S such that 1 € Z and ||z1 — xo]| < s holds
If /20 = fraoll < 7. O

Let us consider real normed spaces E, F', and a natural number ¢. Then
diffgp(EUHY | F) = diffgp(E", (the real norm space of bounded linear
operators from E into F)).
PROOF: Define P[natural number| = diffgp(E®1+D | F) = diffgp(E%1, (the
real norm space of bounded linear operators from FE into F')). For every
natural number ¢ such that P[] holds P[i + 1] by [4, (10)]. For every
natural number 4, P[i]. O

Let us consider real normed spaces E, F', a subset Z of E, a partial
function g from E to F', and a partial function f from F to the real norm
space of bounded linear operators from E into F'. Suppose (g [Z),rZ = flZ.
Let us consider a natural number i. Then diff z (g, + 1) = diff z(f, 7).
PROOF: Define P[natural number| = diffz(g,$; + 1) = diff z(f, $1). For
every natural number ¢ such that P[i] holds P[i + 1]. For every natural
number 4, P[i]. O

Let us consider real normed spaces F, F', a natural number n, a subset Z of

FE, and a partial function g from E to F'. Now we state the propositions:

(31) If ger is differentiable n times on Z and g is differentiable on Z, then g

is differentiable n + 1 times on Z.
PROOF: Set f = gi,. fIZ = (g9]Z)},. For every natural number i such
that i <n+ 1 — 1 holds diff z(g, ) is differentiable on Z. O
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(32) Suppose g’r is differentiable n times on Z and g is differentiable on Z
and diff (g}, n) is continuous on Z. Then

(i) g is differentiable n + 1 times on Z, and
(i) diffz(g,n + 1) is continuous on Z.
The theorem is a consequence of (31), (3), (30), and (29).

(33) Let us consider real normed spaces S, E, F, G, a Lipschitzian bilinear
operator B from E x F into GG, a partial function W from S to GG, a partial
function w from S to F x F', a partial function u from S to E, a partial
function v from S to F', and a point x of S. Suppose u is differentiable in x
and v is differentiable in z and € domw and W = B -w and w = (u,v).
Then

(i) W is differentiable in x, and
(ii) w is differentiable in z, and
(i) W'(z) = B'({usz, vyz)) - w'(z), and
) w'(z) = (u(z),v'(z)), and
(v) for every point d; of S, W'(z)(d1) =
B/ (z)(d1), v/e) + B(uyg, v'(x)(d1)).
)

The theorem is a consequence of (26).

(34) Let us consider real normed spaces S, E, F, G, a subset Z of S, a Lip-
schitzian bilinear operator B from E x F into G, a partial function W

(iv

from S to G, a partial function w from S to E x F, a partial function u
from S to E, and a partial function v from S to F. Suppose u is differen-
tiable on Z and v is differentiable on Z and W = B - w and w = (u,v).
Then

(i) W is differentiable on Z, and

(ii) for every point x of S such that x € Z for every point d; of S,
(WFZ/I)(dl) = B(<UI[Z/x)<d1)v U/:):) + B(u/xa (U/[Z/x)<d1))

PROOF: w is differentiable on Z and for every point x of S such that € Z

holds w,rZ./z = (Ul g /e; ,Z/x> and for every point x of S such that x € Z for

every point dg of S, (w}z/.)(d2) = ((¥}z/:)(d2), (V}z/s)(d2)). For every

point = of S such that » € Z for every point dy of S, (W{;/,)(d1) =
B((ulrz/x)(dl)a U/x) + B(u/xa (U/[Z/x)(dl)) O

Let us consider real normed spaces S, E, a subset Z of S, a partial function

u from S to E, and a natural number i. Now we state the propositions:

(35) If w is differentiable ¢ + 1 times on Z, then “er is differentiable ¢ times
on Z.



256 KAZUHISA NAKASHO AND YASUNARI SHIDAMA

PROOF: Define P[natural number| = if u is differentiable $; + 1 times on
Z, then u}y is differentiable $; times on Z. P[0]. For every natural number
i such that P[i] holds P[i + 1]. For every natural number i, P[i]. O

(36) Suppose u is differentiable i+1 times on Z and diff 7 (u, i+1) is continuous
on Z. Then

(i) ujy is differentiable i times on Z, and
(ii) diffz(u}z,9) is continuous on Z.
The theorem is a consequence of (35), (29), (3), and (30).

(37) Let us consider real normed spaces FE, F'; G. Then there exists a Lip-
schitzian bilinear operator B from the real norm space of bounded linear
operators from E into F' x the real norm space of bounded linear operators
from F into GG into the real norm space of bounded linear operators from
F into G such that for every point u of the real norm space of bounded
linear operators from F into F' for every point v of the real norm space of
bounded linear operators from F' into G, B(u,v) = v - u.

PROOF: Set E3 = the carrier of the real norm space of bounded linear

operators from E into F'. Set F5 = the carrier of the real norm space of

bounded linear operators from F into G. Set E4 = the carrier of the real

norm space of bounded linear operators from E into G. Define P[element

of Es,element of Fy,object] = $3 = $2 - $;. Consider L being a function
from FE3 x F, into Ej4 such that for every element x of F3 and for every
element y of Fy, Pz, y, L(z,y)]. Set Ly = the real norm space of bounded

linear operators from E into F'. Set Ls = the real norm space of bounded

linear operators from F' into GG. For every points x1, x5 of L4 and for every
point y of Ls, L(z1 + z2,y) = L(z1,y) + L(z2,y). For every point x of
L4 and for every point y of Ls and for every real number a, L(a - z,y) =
a - L(z,y). For every point = of Ly and for every points y;, y2 of Ls,
L(x,y1 + y2) = L(z,y1) + L(x, y2). For every point = of Ly and for every
point y of L5 and for every real number a, L(z,a-y) = a- L(x,y). Set
K = 1. For every vector z of Ly and for every vector y of Ls, || L(x,y)| <
K-|lz| - llyll. O

(38) Let us consider a natural number i, real normed spaces S, E, F, G,
a subset Z of S, a Lipschitzian bilinear operator B from E x F' into
G, a partial function v from S to E, a partial function v from S to F,
a partial function w from S to F x F', and a partial function W from S
to G. Suppose W = B-w and w = (u,v) and u is differentiable i times on
Z and v is differentiable ¢ times on Z. Then W is differentiable 4 times on
Z.

PROOF: Define Plnatural number] = for every real normed spaces S, E,
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F, G for every subset Z of S for every Lipschitzian bilinear operator B
from E x F into G for every partial function u from S to E for every
partial function v from S to F for every partial function w from S to E x
F for every partial function W from S to G such that W = B - w and
w = (u,v) and u is differentiable $; times on Z and v is differentiable $;
times on Z holds W is differentiable $; times on Z. P[0]. For every natural
number 4 such that P[i] holds P[i + 1]. For every natural number i, P]i].
O

(39) Let us consider real normed spaces S, E, F, G, a subset Z of S, a Lip-
schitzian bilinear operator B from E x F into G, a partial function W
from S to G, a partial function w from S to E x F, a partial function u
from S to E, and a partial function v from S to F'. Suppose u is differen-
tiable on Z and “/rZ is continuous on Z and v is differentiable on Z and
v}y is continuous on Z and W = B - w and w = (u,v). Then

(i) W is differentiable on Z, and
(ii) W{z is continuous on Z.
The theorem is a consequence of (28) and (22).

(40) Let us consider real normed spaces S, E, F', G, a subset Z of S, a partial

function u from S to E, a partial function v from S to F', and a partial
function w from S to E x F. Suppose w = (u,v) and u is continuous on
Z and v is continuous on Z. Then w is continuous on Z.
PROOF: For every point g of S and for every real number r such that
xg € Z and 0 < r there exists a real number s such that 0 < s and for every
point 1 of S such that z; € Z and [lz1 — x| < s holds |Jw/,, —w /4[| <7
by [9, (18)], (16). O

(41) Let us consider a natural number i, real normed spaces S, E, F, G,
a subset Z of S, a Lipschitzian bilinear operator B from E x F' into
G, a partial function u from S to F, a partial function v from S to F,
a partial function w from S to E x F, and a partial function W from S
to G. Suppose W = B - w and w = (u,v) and u is differentiable ¢ times
on Z and diff z(u, 7) is continuous on Z and v is differentiable ¢ times on
7 and diff z (v, i) is continuous on Z. Then

(i) W is differentiable ¢ times on Z, and

(i) diffz(W,4) is continuous on Z.
PROOF: Define P[natural number| = for every real normed spaces S, E,
F, G for every subset Z of S for every Lipschitzian bilinear operator B

from E x F into G for every partial function u from S to E for every
partial function v from S to F for every partial function w from S to
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E x F for every partial function W from S to G such that W = B - w
and w = (u,v) and u is differentiable $; times on Z and diffz(u,$;) is
continuous on Z and v is differentiable $; times on Z and diffz(v, $;) is
continuous on Z holds W is differentiable $; times on Z and diff (W, $;)
is continuous on Z. P[0]. For every natural number 4 such that P[] holds
P[i + 1]. For every natural number i, P[i]. O

Let us consider a natural number 4, real normed spaces E, F, (G, a subset Z

of E/, a subset T of F', a partial function u from E to F, and a partial function
v from F to G. Now we state the propositions:

(42)

(43)

If u°Z C T and w is differentiable 7 times on Z and v is differentiable ¢
times on T, then v - u is differentiable ¢ times on Z.
PROOF: Define P[natural number] = for every real normed spaces E, F, G
for every subset Z of E for every subset T of F' for every partial function
u from F to F for every partial function v from F' to G such that u°Z C T
and u is differentiable $; times on Z and v is differentiable $; times on T
holds v - u is differentiable $; times on Z. P[0]. For every natural number
i such that P[i] holds P[i + 1]. For every natural number 4, P[i]. O

Suppose u°Z C T and wu is differentiable i times on Z and diff z(u, 1)
is continuous on Z and v is differentiable i times on T" and diff7(v,4) is
continuous on 7'. Then

(i) v-wu is differentiable 4 times on Z, and

(ii) diffz(v - u,1) is continuous on Z.
PROOF: Define P[natural number| = for every real normed spaces E, F, G
for every subset Z of E for every subset T of F' for every partial function
u from E to F for every partial function v from F to G such that u°Z C T
and u is differentiable $; times on Z and diff z(u, $1) is continuous on Z
and v is differentiable $; times on 7" and diffy(v,$;) is continuous on T
holds v - u is differentiable $; times on Z and diff z(v - u, $1) is continuous

on Z. P[0]. For every natural number i such that P[i] holds P[i + 1]. For
every natural number i, P[i]. O

3. PARTIAL DIFFERENTIATION OF VECTOR-VALUED FUNCTIONS

Now we state the proposition:
(44)

Let us consider real normed spaces F, F', GG, a subset Z of £ x F, and
a partial function f from E x F to G. Suppose f is differentiable on Z.
Then

(i) f is partially differentiable on Z w.r.t. 1, and
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(ii) f is partially differentiable on Z w.r.t. 2, and

(iii) for every point z of E' x F' such that z € Z holds for every point ds
of E, (f I" 2),,)(d2) = fiz/-(d2,0F) and for every point dy of F,
((f 1* 2),.)(ds) = f{z/:(0, ds).

PRroOOF: For every point z of £ X F such that z € Z holds f is partially

differentiable in z w.r.t. 1. For every point z of ' x I’ such that z € Z holds

f is partially differentiable in z w.r.t. 2. For every point dy of E, ((f |*

2);:)(d2) = fiz/.(d2,0F). For every point dy of F', ((f 12 Z):)(ds) =

fFZ/z(OEv d4>' O]

Let us consider real normed spaces E, F'. Now we state the propositions:

(45) There exists a Lipschitzian linear operator Ly from E into E x F' such
that for every point ds of E, Lig(d2) = {(d2, Op).
PROOF: Define Plobject, object] = there exists a point dy of E such that
do = $1 and $2 = (d2, OF). For every object x such that x € the carrier of
E there exists an object y such that y € the carrier of E x F' and Pz, y].
Consider L; being a function from the carrier of E into the carrier of
FE x F such that for every object x such that x € the carrier of E holds
P[xz, Li(x)]. For every point ds of E, L1(d2) = (d2, Or). For every elements
z,y of E, Li(z+y) = Li(x) + L1(y). For every vector = of E and for
every real number a, Li(a-x) = a- Li(x). Set K = 1. For every vector z
of E, [|[Li(z)|| < K - ||z]|. O

(46) There exists a Lipschitzian linear operator Loy from F' into E x F' such
that for every point d4 of F', Lgo(d4) = (OE, Cl4>.
PROOF: Define P[object, object] = there exists a point da of F' such that
dy = $1 and $2 = (0g, d2). For every object x such that = € the carrier of
F there exists an object y such that y € the carrier of E x F and P|x, y].
Consider L; being a function from the carrier of F' into the carrier of
E x F such that for every object x such that = € the carrier of F' holds
Plz, Li(x)]. For every point ds of F', L1(d2) = (0g, d2). For every elements
x,y of F, L1(x +y) = L1(z) + L1(y). For every vector x of F' and for
every real number a, Li(a-x) = a- L1(z). Set K = 1. For every vector x
of F, [|Ly(z)]| < K - [lzf|. O

(47) Let us consider real normed spaces E, F', a non empty subset Z of F,
a partial function L; from E to F', and a point Lg of F'. Suppose Z is open
and L1 =7+ Lo. Then

(i) L is differentiable on Z, and
(i) L1}z is continuous on Z, and
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where « is the real norm space of bounded linear operators from FE into
F.

PROOF: For every object z such that z € dom L1}, holds L1};(2) = 0Oq,
where « is the real norm space of bounded linear operators from E into
F.O
(48) Let us consider real normed spaces E, F', a non empty subset Z of F,

a partial function L; from E to F', and a point Lg of F'. Suppose Z is open
and L1 = Z —— Lg. Let us consider a natural number 7. Then

(i) there exists a point P of diffsp(E*, F') such that diff (L;,i) = Z —

P, and
(ii) diffz(Lq,1) is differentiable on Z, and
(iif) diffz(L1,17)}5 is continuous on Z.

PROOF: Define P[natural number] = there exists a point P of diffsp (E*!, F)
such that diffz(L1,%1) = Z — P and diff (L1, $;1) is differentiable on Z
and diff z(L1,$1)}; is continuous on Z. P[0]. For every natural number i
such that P[i] holds P[i + 1]. For every natural number ¢, P[i]. O

(49) Let us consider a natural number i, real normed spaces E, F, a non
empty subset Z of E, a partial function L; from E to F', and a point Ly
of F'. Suppose Z is open and L1 = Z —— Lg. Then

(i) L; is differentiable 7 times on Z, and
(ii) diffz(L1,4)}, is continuous on Z.
The theorem is a consequence of (48).
(50) Let us consider a natural number n, a real normed space S, a subset Z of

S, and a partial function f from S to S. Suppose Z is open and f = idq.
Then

(i) f is differentiable n times on Z, and
(ii) diffz(f,n) is continuous on Z.
The theorem is a consequence of (9).

Let us consider a natural number 4, real normed spaces E, F', G, a non empty
subset Z of E x F', and a partial function f from E x F' to G. Now we state the
propositions:

(51) If f is differentiable i+ 1 times on Z, then f [! Z is differentiable i times
on Z and f |? Z is differentiable i times on Z.
Proor: f is differentiable on Z. f is partially differentiable on Z w.r.t.
1 and f is partially differentiable on Z w.r.t. 2 and for every point z of
E x F such that z € Z holds for every point dy of E, ((f I' Z),,)(d2) =
fi7/-(d2,0r) and for every point dy of F', ((f 12 2);:)(da) = fl7/.(0p, ds).
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Set P = f [' Z. Set P, = f |?> Z. Consider Ljy being a Lipschitzian
linear operator from FE into E x F such that for every point dy of F,
Lip(da) = {(da, Op). Consider Loy being a Lipschitzian linear operator
from F into E x F such that for every point d4 of F', Log(ds) = (Op, dy).
Set Bs = the real norm space of bounded linear operators from E into
E x F. Set By = the real norm space of bounded linear operators from
F into E x F. Reconsider L1 = Z —— Ly as a partial function from E X
F to Bs. L; is differentiable i times on Z. For every point z of £ x F
such that z € Z holds (f [' Z),, = fiz)z= - (L1)2). flz is differentiable
7 times on Z. Consider B being a Lipschitzian bilinear operator from
the real norm space of bounded linear operators from F into £ x F' x
the real norm space of bounded linear operators from E x F' into G into
the real norm space of bounded linear operators from FE into GG such that
for every point u of the real norm space of bounded linear operators from
FE into E x F and for every point v of the real norm space of bounded linear
operators from Ex F'into G, B(u,v) = v-u. Set wy = (L1, f{;). Reconsider
W = B - wsy as a partial function from F x F' to the real norm space of
bounded linear operators from E into G. W is differentiable 7 times on
Z. For every object zp such that xg € dom P; holds Pi(xz¢) = W(xo).
Reconsider Ly = Z —— Loy as a partial function from E X F to Bs.
Lo is differentiable ¢ times on Z. For every point z of E x F' such that
z € Z holds (f |? Z) ). = fiz)=+ (L2,.). f{z is differentiable i times on
Z. Consider B being a Lipschitzian bilinear operator from the real norm
space of bounded linear operators from F' into £ x F' X the real norm space
of bounded linear operators from E x F' into G into the real norm space
of bounded linear operators from F' into G such that for every point u of
the real norm space of bounded linear operators from F' into E x F and
for every point v of the real norm space of bounded linear operators from
E x Finto G, B(u,v) = v - u. Set wy = (La, f{,). Reconsider W = B - wy
as a partial function from E x F' to the real norm space of bounded linear
operators from F into G. For every object xg such that zg € dom P, holds
Py(z9) = W(xo). O

(52) Suppose f is differentiable i+1 times on Z and diff 7 (f,i+1) is continuous
on Z. Then

(i) f I Z is differentiable i times on Z, and
(ii) diffz(f |' Z,4) is continuous on Z, and
(iii) f |? Z is differentiable i times on Z, and
(iv) diffz(f |? Z,i) is continuous on Z.

PRrOOF: f is differentiable on Z. f is partially differentiable on Z w.r.t.
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1 and f is partially differentiable on Z w.r.t. 2 and for every point z of
E x F such that z € Z holds for every point do of E, ((f |' 7)) d2) =
flz)-(da,0r) and for every point dy of F, ((f 1 Z),.)(ds) = fl-(0p, ds).
Set P, = f [' Z. Set P, = f |2 Z. Consider Ly being a Lipschitzian
linear operator from E into E x F such that for every point ds of E,
Lio(d2) = {da, Or). Consider Loy being a Lipschitzian linear operator
from F into E x F such that for every point dy of F, Log(ds) = (Op,
d4). Set Bs = the real norm space of bounded linear operators from E

into £ x F. Set By = the real norm space of bounded linear operators

from F into E x F. Reconsider L1 = Z —— Ljg as a partial function
from F x F to Bs. Ly is differentiable 7 times on Z. Ly is differentiable
i+ 1 times on Z. For every point z of E x F such that z € Z holds (f I*
2))2 = flz)= - (L1)2). flz is differentiable i times on Z and diff z(f{, ) is
continuous on Z. Consider B being a Lipschitzian bilinear operator from
the real norm space of bounded linear operators from FE into E x F X
the real norm space of bounded linear operators from £ x F' into G into
the real norm space of bounded linear operators from E into G such that
for every point u of the real norm space of bounded linear operators from
FE into E x F and for every point v of the real norm space of bounded
linear operators from £ x F' into G, B(u,v) = v - u. Set wy = (L1, f{z).
Reconsider W = B - ws as a partial function from E X F' to the real norm
space of bounded linear operators from FE into G. W is differentiable ¢
times on Z and diff z(W, ) is continuous on Z. For every object z( such
that zo € dom P; holds Pj(xg) = W(xzg). Reconsider Ly = Z —— Ly as
a partial function from E X F' to Bs. Lo is differentiable i times on Z. Lo is
differentiable i 4+ 1 times on Z. For every point z of F x F' such that z € Z
holds (f [? 2))2 = fiz)= - (L2;2). flz is differentiable i times on Z and
diff z(f{z,4) is continuous on Z. Consider B being a Lipschitzian bilinear
operator from the real norm space of bounded linear operators from F
into £ x F' x the real norm space of bounded linear operators from E X
F into G into the real norm space of bounded linear operators from F
into G such that for every point u of the real norm space of bounded
linear operators from F' into F X F' and for every point v of the real norm
space of bounded linear operators from E x F into G, B(u,v) = v - u. Set
wz = (La, f{,). Reconsider W = B - ws as a partial function from £ x F
to the real norm space of bounded linear operators from F' into G. W is
differentiable i times on Z and diff (W, ) is continuous on Z. For every
object xg such that z¢ € dom P, holds Py(xg) = W(xg). O

Let us consider real normed spaces S, F, F, a partial function u from
S to F, a partial function v from S to F, a partial function w from S to
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E x F, and a point x of S. Suppose w = (u,v) and u is differentiable in =
and v is differentiable in x. Then

(i) w is differentiable in =, and

(i) w'(z) = (u'(z),v'(2)).
PRrROOF: Consider N3 being a neighbourhood of xy such that N3 C domwu
and there exists a rest Rg of S, FE such that for every point x of S such
that x € N3 holds u/, — u/py = u'(20)(z — 7o) + R3/y_s,. Consider R3
being a rest of S, E such that for every point = of S such that x € N3 holds
Uy — /g, = U (20)(T —20) + R3/5_g,- Consider Ny being a neighbourhood
of xy such that Ny C domv and there exists a rest R4 of S, F such that
for every point x of S such that z € Ny holds v/, — v/, = v'(20)(z —20) +
Ry/y_s,- Consider Ry being a rest of S, F' such that for every point x of
S such that x € Ny holds v/, —v /gy = v'(x0) (% — 20) + Ra/g—s,- Consider
N being a neighbourhood of xy such that N C N3 and N C Ny. Set
L = (v (xg),v'(x0)). For every elements z, y of S, L(z+vy) = L(z)+ L(y).
For every vector x of S and for every real number a, L(a - x) = a - L(x).
Set K = ||u/(x0)|| + [|v'(x0)]]. For every vector = of S, |L(z)| < K - ||z]|.
Set R = (Rj3, Ry). For every point dy of S, R4, = (R3/a,, R4/4,). For
every real number r such that r > 0 there exists a real number d such
that d > 0 and for every point z of S such that z # 0g and |z|| < d
holds [|z|~! - |[R/.|| < r. For every point x of S such that € N holds
Wy — W/gy = L(x —20) + Rjpgy- U

(54) Let us consider real normed spaces S, E, F, a partial function u from
S to E, a partial function v from S to F', a partial function w from S to
E x F, and a subset Z of S. Suppose w = (u,v) and u is differentiable on
Z and v is differentiable on Z. Then

(i) w is differentiable on Z, and
(ii) for every point x of S such that z € Z holds w';/, = (W} /s V7 /2)-

PRrROOF: For every point x of S such that x € Z holds w is differentiable

in z and w'(z) = (u/(x),v'(x)). For every point z of S such that z € Z
holds wy /e = (Ul z/2,V}7/2)- O

Let S, E, F be real normed spaces. The functor CTP(S, E, F') yielding a Lip-

schitzian linear operator from (the real norm space of bounded linear operators

from S into E) x (the real norm space of bounded linear operators from S into

F) into the real norm space of bounded linear operators from S into E' x F' is
defined by

(Def. 3) for every Lipschitzian linear operator f from S into E and for every
Lipschitzian linear operator g from S into F', it(f,g) = (f,g).
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Now we state the proposition:

(55) Let us consider real normed spaces S, E, F, and a natural number i.
Then CTP(S,diffsp(S?, F),diffsp(S?, F)) is a Lipschitzian linear opera-
tor from diffgp (SOt E) x diffgp(SCE+Y), F) into the real norm space of
bounded linear operators from S into diffsp(S?, E) x diffsp(S?, F).

Let us consider real normed spaces S, E, F, a partial function u from S to
E, a partial function v from S to F, a partial function w from S to E x F', and
a subset Z of S. Now we state the propositions:

(56) Suppose w = (u,v) and wu is differentiable on Z and v is differentiable

on Z. Then

(i) w is differentiable on Z, and
(11) w/[Z = (CTP(Sa diﬁSP(S07E)’diﬁsp(soﬂF))) ’ <U/FZ)U/[Z>‘
PROOF: w is differentiable on Z and for every point x of S such that x €
Z holds w)y/, = (U} 4,V 7/2). CTP(S,diffsp(SY, E), diffsp(S°, F)) is
a Lipschitzian linear operator from diffgp(S(0t1, F) x diffgp SO+, F) in-
to the real norm space of bounded linear operators from S into diffsp (S, E)
x diffgp(S°, F'). For every object xg such that xo € dom w5 holds w},(z9) =
((CTP(S, diffsp(S°, E), diffsp (S, F))) - ()4, v}4))(x0). O
(57) Suppose w = (u,v) and u is differentiable on Z and v is differentiable
on Z. Then
(i) diff z(w,0) is differentiable on Z, and
(ii) there exists a Lipschitzian linear operator T' from diffsp(S*, F) x
diﬁsp(sl, F) into diﬁsp(sl, (EXF))such that T = CTP(S, diﬁsp(SO,
E),diffsp(S°, F)) and diff z(w, 1) = T - (diff z(u, 1), diff z (v, 1)).
The theorem is a consequence of (56), (3), (55), and (2).
(58) Suppose w = (u,v) and u is differentiable 2 times on Z and v is diffe-
rentiable 2 times on Z. Then

(i) w is differentiable 2 times on Z, and

(ii) there exists a Lipschitzian linear operator L; from diffsp(S!, E) x
diffgp(St, F) into diffsp (S, (E x F)) and there exists a Lipschitzian
linear operator Lo from diffsp(S?, E) x diffsp(S2, F) into diffgp(S?,
(diffsp(S*, F) x diffgp(S?, F))) and there exists a Lipschitzian linear
operator T from diffsp(S?, E) x diffsp(S?, F) into diffgp(S?, (E x
F)) such that L1 = CTP(S,diffsp(S°, E), diffsp(S°, F)) and Ly =
CTP(S, diffgp(S', E), diffsp(S', F)) and T = (LTRN(L, Ly, S)) - Lo
and diffz(’w, 2) =T <dlﬁz(u, 2), diffz(’l), 2)>

The theorem is a consequence of (2), (57), (3), (55), and (24).
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(59) Let us consider a natural number 4, real normed spaces S, E, F, a partial
function u from S to E, a partial function v from S to F', a partial function
w from S to E x F, and a subset Z of S. Suppose w = (u,v) and u is
differentiable i + 1 times on Z and v is differentiable ¢ + 1 times on Z.
Then

(i) w is differentiable i + 1 times on Z, and

(ii) there exists a Lipschitzian linear operator T from diffgp(SCTY, E) x
diffgp(SUHD | F) into diffsp(SCHD | (E x F)) such that diff ;(w,i +
1) =T (diff z(u,i + 1),diff z(v,i 4+ 1)).

PROOF: Define P[natural number] = for every real normed spaces S, E,
F for every partial function u from S to E for every partial function v
from S to F for every partial function w from S to E x F for every
subset Z of S such that w = (u,v) and w is differentiable $; + 1 times
on Z and v is differentiable $; 4+ 1 times on Z holds w is differentiable
$1 + 1 times on Z and there exists a Lipschitzian linear operator T' from
diffgp (SE1HD | E) x diffgp(SG1HD, F) into diffsp(S®1+Y), (E x F)) such
that diffz(w,$1 + 1) =1T- <diﬁz(u,$1 + 1),diffz(’l),$1 + 1)> P[O] For
every natural number ¢ such that P[i] holds P[i + 1]. For every natural
number ¢, P[i]. O

(60) Let us consider real normed spaces S, E, F, a partial function u from
S to F, a partial function v from S to F, a partial function w from S to
E x F, a subset Z of S, and a natural number . Suppose w = (u, v) and
u is differentiable i 4+ 1 times on Z and diff z(u, i + 1) is continuous on Z
and v is differentiable i + 1 times on Z and diff z(v,i+ 1) is continuous on
Z. Then

(i) w is differentiable i + 1 times on Z, and
(i) diffz(w, 7+ 1) is continuous on Z.

PRrOOF: Consider T being a Lipschitzian linear operator from diffgp (S (i+1)
E) x diffgp(SUHY)| F) into diffgp(SU*D, (E x F)) such that diff z(w,i +
1) =T (diff z(u,i + 1),diff z(v,7 4+ 1)). Set u; = diff z(u,i + 1). Set v; =
diff z(v,i+1). Set G = (uq,v1). For every point z¢ of S and for every real
number r such that g € Z and 0 < r there exists a real number s such
that 0 < s and for every point x; of S such that z; € Z and ||x; —xo|| < s
holds |G jz; — G /g, || < 1. T is continuous on Qg (5641, 5)xdiffgp (SG+1), F) -
U

(61) Let us consider real normed spaces X, Y, a subset V of X xY, a subset D
of X, and a subset F of Y. Suppose D is open and F is open and V = D x
E. Then V is open.
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PROOF: For every point x of X and for every point y of Y such that (z,
y) € V there exist real numbers r1, r such that 0 < r; and 0 < r9 and
Ball(z,r;) x Ball(y,r2) C V. O

4. HIGHER-ORDER DIFFERENTIABILITY OF INVERSE FUNCTION THEOREM

Now we state the propositions:

(62) Let us consider real normed spaces E, F', G, a point x of the real norm

space of bounded linear operators from E into F', and a point L of the re-
al norm space of bounded linear operators from the real norm space of
bounded linear operators from F' into E into the real norm space of boun-
ded linear operators from F into E. Suppose z is invertible and for every
point y of the real norm space of bounded linear operators from F' into F,
L(y) =y - x. Then L is invertible.
PROOF: Set F; = the real norm space of bounded linear operators from F
into E. Set F5 = the real norm space of bounded linear operators from F
into E. Reconsider L; = L as a Lipschitzian linear operator from Fj into
E5. Reconsider dy = ™! as a point of the real norm space of bounded
linear operators from F' into E. For every objects x1, xo such that zq,
xo € Qp, and Li(z1) = Li(x2) holds x; = x5. For every object y such
that y € Qp, there exists an object z such that z € Qp, and y = L1(2).
Define P[object,object] = there exists a point y of Fy such that y = $;
and $5 = y - do. For every object y such that y € the carrier of Ey there
exists an object z such that z € the carrier of Fy and Py, z]. Consider R
being a function from the carrier of E5 into the carrier of Fy such that for
every object y such that y € the carrier of Ey holds P[y, R(y)]. For every
point y of Fy, R(y) = y - da. For every element y of Fy, (R - L1)(y) = y.
Set K = ||da]|. For every vector y of Es, ||R(y)|| < K - |ly[|. O

(63) Let us consider a non trivial real Banach space F. Then the real norm
space of bounded linear operators from F' into F' is a non trivial real
Banach space.

(64) Let us consider a real Banach space F, non trivial real Banach spaces
F, G, a non empty subset Z of E x F', a point ¢ of G, a subset A of F,
and a subset B of F. Suppose Z is open and A is open and B is open and
A x B C Z. Let us consider a natural number 4, a partial function f from
E x F to G, and a partial function g from E to F. Suppose dom f = Z
and f is differentiable ¢ 4+ 1 times on Z and diff z(f,7+ 1) is continuous on
Z and domg = A and rngg C B and g is continuous on A and for every
point x of E such that x € A holds f(z,g(z)) = ¢ and for every point x
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of E and for every point z of E' x F such that z € A and z = (z, g(x))
holds partdiff(f, z) w.r.t. 2 is invertible. Then

(i) g is differentiable i 4 1 times on A, and
(ii) diff4(g,7 + 1) is continuous on A, and

(iii) for every point = of E and for every point z of E' X F' such that x € A
and z = (x, g(z)) holds ¢'(z) = —(Inv partdiff (f, z) w.r.t. 2) - (partdiff

(f,z)wr.t.1).

PROOF: Define P[natural number| = for every real Banach space E for
every non trivial real Banach spaces F, G for every non empty subset
Z of E x F for every point ¢ of G for every subset A of E for every
subset B of F' such that Z is open and A is open and B is open and
A x B C Z for every partial function f from E x F' to G for every par-
tial function g from E to F such that dom f = Z and f is differentiable
$1 + 1 times on Z and diff z(f,$1 + 1) is continuous on Z and domg = A
and rngg € B and g is continuous on A and for every point = of E
such that x € A holds f(x,g(x)) = ¢ and for every point = of E and
for every point z of E x F such that x € A and z = (z, g(z)) holds
partdiff(f, z) w.r.t. 2 is invertible holds ¢ is differentiable $; + 1 times on
A and diff 4(g,%; + 1) is continuous on A and for every point z of E
and for every point z of E x F such that x € A and z = (z, g(x)) holds
g (z) = —(Inv partdiff (f, z) w.r.t. 2) - (partdiff (f, z) w.r.t. 1). P[0]. For eve-
ry natural number ¢ such that P[i] holds P[i+1]. For every natural number
i, Pli]. O

(65) Let us consider non trivial real Banach spaces F', G. Then there exists
a partial function I from the real norm space of bounded linear operators
from F into G to the real norm space of bounded linear operators from G
into F' such that

(i) dom I = InvertOpers(F, G), and
(ii) rng I = InvertOpers(G, F'), and
(iii) I is one-to-one and continuous on InvertOpers(F, G), and
)

(iv) there exists a partial function J from the real norm space of bounded
linear operators from G into F' to the real norm space of bounded
linear operators from F into G such that J = I~ and J is one-to-one
and dom J = InvertOpers(G, F') and rng J = InvertOpers(F, G) and
J is continuous on InvertOpers(G, F), and

(v) for every point u of the real norm space of bounded linear operators
from F into G such that u € InvertOpers(F,G) holds I(u) = Inv u,
and
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(vi) for every natural number n, I is differentiable n+1 times on InvertO-
pers(F, G) and diffvertopers(F,) (L, 7 +1) is continuous on InvertOp-
ers(F, G).

PROOF: Set Eq = the real norm space of bounded linear operators from F
into G. Set F} = the real norm space of bounded linear operators from G
into F'. Set G1 = the real norm space of bounded linear operators from F
into F'. G1 is a non trivial real Banach space. Set A; = InvertOpers(F, G).
Set By = InvertOpers(G, F'). Consider g; being a partial function from E;
to F} such that domg; = A; and rngg; = By and g¢; is one-to-one and
continuous on A; and there exists a partial function J from Fj to Ey such
that J = gfl and J is one-to-one and dom J = B; and rngJ = A; and
J is continuous on Bj and for every point u of £ such that u € A; holds
g1(u) = Invu. Set Z1 = Qp, xr,. Reconsider a = idg, as a Lipschitzian
linear operator from F' into F'. Consider fy being a Lipschitzian bilinear
operator from FE; x Fj into G such that for every point uw of E; and for
every point v of Fy, fo(u,v) = v - u. Reconsider f; = fo[Z; as a partial
function from E; x F; to Gy. For every point z of Ey such that x € A;
holds fi(z,g1(x)) = a by [6, (22)]. For every point x of E; and for every
point z of Ey x F; such that x € A; and z = (z, g1(z)) for every point y
of Fy, (partdiff(fi,z) w.r.t.2)(y) = y - = by [8, (4)]. For every point x of
E; and for every point z of Ey x Fj such that x € A; and z = (x, g1(x))
holds partdiff(f1, z) w.r.t. 2 is invertible. g; is differentiable ¢ + 1 times on
Aj and diff 4, (1,7 + 1) is continuous on A;. O

Let us consider non trivial real Banach spaces E, F', a subset Z of F,
a partial function f from E to F', a point a of E, a point b of I, and a na-
tural number n. Suppose Z is open and dom f = Z and f is differentiable
n + 1 times on Z and diffz(f,n + 1) is continuous on Z and a € Z and
f(a) = b and f’(a) is invertible. Then there exists a subset A of E and
there exists a subset B of F' and there exists a partial function g from F' to
E such that A is open and B is open and A Cdom fanda € Aand b e B
and f°A = B and domg = B and rmgg = A and dom(f[A) = A and
rmg(flA) = B and f[A is one-to-one and g is one-to-one and g = (f[A)~*
and flA =g~ ! and g(b) = a and for every point y of F such that y € B
holds f'(g/,) is invertible and for every point y of F' such that y € B
holds ¢'(y) = Inv f'(g/,) and f is differentiable n + 1 times on A and
diff 4(f,n + 1) is continuous on A and g is differentiable n + 1 times on B
and diffg(g,n + 1) is continuous on B.

PROOF: Define P[natural number| = if Z is open and dom f = Z and f
is differentiable $; 4+ 1 times on Z and diff z(f,$1 + 1) is continuous on Z
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[1]

[9]

(10]
(11]
(12]

and a € Z and f(a) = b and f'(a) is invertible, then there exists a subset
A of E and there exists a subset B of F' and there exists a partial function
g from F' to E such that A is open and B is open and A C dom f and
a € Aand b € B and f°A = B and domg = B and rngg = A and
dom(f[A) = A and rng(f[A) = B and f[A is one-to-one and g is one-to-
one and g = (f]A)~! and f]A = g~ ! and g(b) = a and for every point y
of F' such that y € B holds f'(g/,) is invertible and for every point y of
F such that y € B holds ¢'(y) = Inv f'(g,,) and f is differentiable $; + 1
times on A and diff o(f,$1 + 1) is continuous on A and g is differentiable
$1 + 1 times on B and diff (g, $1 + 1) is continuous on B. P[0]. For every
natural number n such that P[n] holds P[n+1]. For every natural number
n, Pln]. O
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