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tiation in real normed spaces in the Mizar system. The focus is on higher-order
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Introduction

This article, using the Mizar system [1], [2], extends the theory of diffe-
rentiation in real normed spaces [5], focusing on higher-order derivatives and
the inverse function theorem [7]. The work presents a comprehensive treatment
of higher-order derivatives for vector-valued functions and develops theorems
on the composition of differentiable functions and their higher-order deriva-
tives [10], [11]. It provides an analysis of partial derivatives for multivariable
vector-valued functions and extends the inverse function theorem to higher-
order differentiability, including continuity properties [12]. Additionally, the pa-
per formalizes the differentiability of the inversion operator on invertible linear
operators [3].
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1. Foundations of Differentiation in Real Normed Spaces

From now on E, F , G, S, T , W , Y denote real normed spaces, f , f1, f2

denote partial functions from S to T , Z denotes a subset of S, and i, n denote
natural numbers. Now we state the proposition:

(1) Let us consider real normed spaces S, T , a partial function f from S to
T , a subset Z of S, and a point x of S. Suppose Z is open and x ∈ Z and
Z ⊆ dom f . Then f�Z is differentiable in x if and only if f is differentiable
in x.

Let us consider real normed spaces S, T , a partial function f from S to T ,
and a subset Z of S. Now we state the propositions:

(2) f�Z is differentiable on Z if and only if f is differentiable on Z.

(3) If f is differentiable on Z, then (f�Z)′�Z = f ′�Z . The theorem is a conse-
quence of (2).

Let us consider real normed spaces S, T , a partial function f from S to T ,
and subsets X, Z of S. Now we state the propositions:

(4) If Z is open and Z ⊆ X and f is differentiable on X, then f ′�Z = f ′�X�Z.
Proof: For every object x such that x ∈ dom(f ′�X�Z) holds (f ′�X�Z)(x) =
f ′�Z(x). �

(5) If Z is open and Z ⊆ X and f is differentiable onX and f ′�X is continuous
on X, then f ′�Z is continuous on Z. The theorem is a consequence of (4).

Let us consider real normed spaces S, T , a partial function f from S to T ,
a subset Z of S, and a natural number k. Now we state the propositions:

(6) Suppose f is differentiable k times on Z. Then

(i) f�Z is differentiable k times on Z, and

(ii) diffZ(f�Z, k) = diffZ(f, k).

Proof: Define P[natural number] ≡ if f is differentiable $1 times on Z,
then f�Z is differentiable $1 times on Z and diffZ(f�Z, $1) = diffZ(f, $1).
P[0]. For every natural number k such that P[k] holds P[k+ 1]. For every
natural number k, P[k]. �

(7) Suppose f is differentiable k times on Z and diffZ(f, k) is continuous on
Z. Then

(i) f�Z is differentiable k times on Z, and

(ii) diffZ(f�Z, k) is continuous on Z.

Let us consider real normed spaces S, T , a partial function f from S to T ,
subsets X, Z of S, and a natural number i. Now we state the propositions:
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(8) Suppose Z is open and Z ⊆ X. Then if f is differentiable i times on X,
then f is differentiable i times on Z and diffZ(f, i) = diffX(f, i)�Z.
Proof: Define P[natural number] ≡ if f is differentiable $1 times on X,
then f is differentiable $1 times on Z and diffZ(f, $1) = diffX(f, $1)�Z.
P[0]. For every natural number i such that P[i] holds P[i+ 1]. For every
natural number i, P[i]. �

(9) Suppose Z is open and Z ⊆ X. Then suppose f is differentiable i times
on X and diffX(f, i) is continuous on X. Then

(i) f is differentiable i times on Z, and

(ii) diffZ(f, i) is continuous on Z.

The theorem is a consequence of (8).

(10) Let us consider real normed spaces X, Y, a real number a, Lipschitzian
linear operators v1, v2 from X into Y, and points w1, w2 of the real norm
space of bounded linear operators from X into Y. Suppose v1 = w1 and
v2 = w2. Then

(i) v1 + v2 = w1 + w2, and

(ii) a · v1 = a · w1.

Proof: Reconsider w12 = w1 + w2 as a point of the real norm space of
bounded linear operators from X into Y. For every object s such that
s ∈ dom(v1 + v2) holds (v1 + v2)(s) = w12(s). Reconsider w12 = a · w1 as
a point of the real norm space of bounded linear operators from X into Y.
For every object s such that s ∈ dom(a · v1) holds (a · v1)(s) = w12(s). �

(11) Let us consider real normed spaces X, Y, Lipschitzian linear operators
v1, v2, v3 from X into Y, and real numbers a, b. Then

(i) v1 + v2 = v2 + v1, and

(ii) (v1 + v2) + v3 = v1 + (v2 + v3), and

(iii) a · (v1 + v2) = a · v1 + a · v2, and

(iv) (a+ b) · v1 = a · v1 + b · v1, and

(v) a · b · v1 = a · (b · v1).

The theorem is a consequence of (10).

(12) Let us consider real normed spaces X, Y, Z, a Lipschitzian linear ope-
rator v from X into Y, a Lipschitzian linear operator s from Y into Z,
a point p6 of the real norm space of bounded linear operators from X into
Y, and a point p5 of the real norm space of bounded linear operators from
Y into Z. If v = p6 and s = p5, then s · v = p5 · p6.
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(13) Let us consider real normed spaces X, Y, Z, Lipschitzian linear operators
v1, v2 from X into Y, Lipschitzian linear operators s1, s2 from Y into Z,
and a real number a. Then

(i) s1 · (v1 + v2) = s1 · v1 + s1 · v2, and

(ii) (s1 + s2) · v1 = s1 · v1 + s2 · v1, and

(iii) s1 · (a · v1) = a · s1 · v1.

The theorem is a consequence of (10) and (12).

(14) Let us consider real normed spaces S, T , U , a partial function f1 from
S to T , a partial function f2 from T to U , and a point x0 of S. Suppose
x0 ∈ dom(f2 · f1) and f1 is continuous in x0 and f2 is continuous in f1/x0 .
Then f2 · f1 is continuous in x0.
Proof: Set f = f2 · f1. For every real number r such that 0 < r there
exists a real number s such that 0 < s and for every point x1 of S such
that x1 ∈ dom f and ‖x1 − x0‖ < s holds ‖f/x1 − f/x0‖ < r. �

(15) Let us consider real normed spaces E, F , G, a subset Z of E, a subset
T of F , a partial function u from E to F , and a partial function v from
F to G. Suppose u◦Z ⊆ T and u is continuous on Z and v is continuous
on T . Then v · u is continuous on Z.
Proof: Set f = v · u. For every point x0 of E and for every real number
r such that x0 ∈ Z and 0 < r there exists a real number s such that 0 < s

and for every point x1 of E such that x1 ∈ Z and ‖x1 − x0‖ < s holds
‖f/x1 − f/x0‖ < r. �

(16) Let us consider real normed spaces X, Y, a point x of X, a point y of Y,
and a point z of X × Y. Suppose z = 〈〈x, y〉〉. Then ‖z‖ ¬ ‖x‖+ ‖y‖.

(17) Let us consider real normed spaces E, F , G, a partial function u from
E to F , a Lipschitzian linear operator L from F into G, and a point x of
E. Suppose u is differentiable in x. Then

(i) L · u is differentiable in x, and

(ii) (L · u)′(x) = L · u′(x).

(18) Let us consider real normed spaces E, F , G, a subset Z of E, a subset
T of F , a partial function u from E to F , and a partial function v from F

to G. Suppose u◦Z ⊆ T and u is differentiable on Z and v is differentiable
on T . Then

(i) v · u is differentiable on Z, and

(ii) for every point x of E such that x ∈ Z holds (v · u)′�Z/x = v′�T /u/x ·
(u′�Z/x).
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Proof: For every point x of E such that x ∈ Z holds v ·u is differentiable
in x and (v ·u)′(x) = v′(u/x) ·u′(x). For every point x of E such that x ∈ Z
holds (v · u)′�Z/x = v′�T /u/x · (u

′
�Z/x). �

(19) Let us consider real normed spaces F , G, and a Lipschitzian linear ope-
rator L from F into G. Then

(i) L is differentiable on ΩF , and

(ii) L′�ΩF is continuous on ΩF , and

(iii) for every point x of F , L′�ΩF /x = L.

(20) Let us consider real normed spaces E, F , G, a partial function u from E

to F , a subset Z of E, and a Lipschitzian linear operator L from F into
G. Suppose u is differentiable on Z. Then

(i) L · u is differentiable on Z, and

(ii) for every point x of E such that x ∈ Z holds (L ·u)′�Z/x = L · (u′�Z/x).

The theorem is a consequence of (19) and (18).

Let E, F , G be real normed spaces and L be a Lipschitzian linear operator
from F into G. The functor LTRN(L,E) yielding a function is defined by

(Def. 1) dom it = N and it(0) = L and for every natural number i, there exists
a Lipschitzian linear operator K from diffSP(E(i+1), F ) into diffSP(E(i+1),

G) and there exists a Lipschitzian linear operator M from diffSP(Ei, F )
into diffSP(Ei, G) such that it(i+1) = K and it(i)(∈ the real norm space
of bounded linear operators from diffSP(Ei, F ) into diffSP(Ei, G)) = M

and for every Lipschitzian linear operator V from E into diffSP(Ei, F ),
K(V ) = M · V .

Let i be a natural number. The functor LTRN(i, L,E) yielding a Lipschitzian
linear operator from diffSP(Ei, F ) into diffSP(Ei, G) is defined by the term

(Def. 2) (LTRN(L,E))(i).

2. Higher-Order Differentiation and Function Composition

Now we state the propositions:

(21) Let us consider real normed spaces E, F , G, and a Lipschitzian linear
operator L from F into G. Then

(i) LTRN(0, L,E) = L, and

(ii) for every natural number i and for every Lipschitzian linear operator
V from E into diffSP(Ei, F ), (LTRN(i+ 1, L,E))(V ) =

(LTRN(i, L,E)) · V .
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(22) Let us consider real normed spaces E, F , G, a subset Z of E, a subset
T of F , a partial function u from E to F , and a partial function v from F

to G. Suppose u◦Z ⊆ T and u is differentiable on Z and u′�Z is continuous
on Z and v is differentiable on T and v′�T is continuous on T . Then

(i) v · u is differentiable on Z, and

(ii) (v · u)′�Z is continuous on Z.

Proof: v · u is differentiable on Z and for every point x of E such that
x ∈ Z holds (v · u)′�Z/x = v′�T /u/x · (u

′
�Z/x). Set f = (v · u)′�Z . For every

point x0 of E and for every real number r such that x0 ∈ Z and 0 < r

there exists a real number s such that 0 < s and for every point x1 of E
such that x1 ∈ Z and ‖x1 − x0‖ < s holds ‖f/x1 − f/x0‖ < r. �

(23) Let us consider real normed spaces E, F , G, a subset Z of E, a partial
function u from E to F , and a Lipschitzian linear operator L from F into
G. Suppose u is differentiable on Z and u′�Z is continuous on Z. Then

(i) L · u is differentiable on Z, and

(ii) (L · u)′�Z is continuous on Z.

The theorem is a consequence of (19) and (22).

Let us consider real normed spaces E, F , G, a subset Z of E, a partial
function u from E to F , a Lipschitzian linear operator L from F into G, and
a natural number i. Now we state the propositions:

(24) Suppose u is differentiable i times on Z. Then

(i) L · u is differentiable i times on Z, and

(ii) diffZ(L · u, i) = (LTRN(i, L,E)) · diffZ(u, i).

Proof: Define P[natural number] ≡ if u is differentiable $1 times on Z,
then L·u is differentiable $1 times on Z and diffZ(L·u, $1) = (LTRN($1, L,

E)) · diffZ(u, $1). P[0]. For every natural number i such that P[i] holds
P[i+ 1]. For every natural number i, P[i]. �

(25) Suppose u is differentiable i times on Z and diffZ(u, i) is continuous on
Z. Then

(i) L · u is differentiable i times on Z, and

(ii) diffZ(L · u, i) is continuous on Z.

The theorem is a consequence of (24) and (15).

(26) Let us consider real normed spaces S, T , U , a point x of S, a partial
function u from S to T , a partial function v from S to U , and a partial
function w from S to T × U . Suppose u is differentiable in x and v is
differentiable in x and w = 〈u, v〉. Then
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(i) w is differentiable in x, and

(ii) w′(x) = 〈u′(x), v′(x)〉, and

(iii) for every point d2 of S, w′(x)(d2) = 〈〈u′(x)(d2), v′(x)(d2)〉〉.

Proof: For every point t of S such that t ∈ domw holds w/t = 〈〈f1/t, f2/t〉〉.
Consider N1 being a neighbourhood of x0 such that N1 ⊆ dom f1 and there
exists a point L of the real norm space of bounded linear operators from
S into T and there exists a rest R of S, T such that for every point x of
S such that x ∈ N1 holds f1/x − f1/x0 = L(x − x0) + R/x−x0 . Consider
L1 being a point of the real norm space of bounded linear operators from
S into T , R1 being a rest of S, T such that for every point x of S such
that x ∈ N1 holds f1/x−f1/x0 = L1(x−x0)+R1/x−x0 . Consider N2 being
a neighbourhood of x0 such that N2 ⊆ dom f2 and there exists a point
L of the real norm space of bounded linear operators from S into U and
there exists a rest R of S, U such that for every point x of S such that
x ∈ N2 holds f2/x−f2/x0 = L(x−x0)+R/x−x0 . Consider L2 being a point
of the real norm space of bounded linear operators from S into U , R2

being a rest of S, U such that for every point x of S such that x ∈ N2

holds f2/x − f2/x0 = L2(x − x0) + R2/x−x0 . Define O(object) = 〈〈R1/$1 ,

R2/$1〉〉. Consider R being a function from S into T × U such that for
every object d2 such that d2 ∈ the carrier of S holds R(d2) = O(d2). For
every real number r such that r > 0 there exists a real number d such
that d > 0 and for every point z of S such that z 6= 0S and ‖z‖ < d holds
‖z‖−1 ·‖R/z‖ < r. Define O(object) = 〈〈L1($1), L2($1)〉〉. For every object x
such that x ∈ the carrier of S holds O(x) ∈ the carrier of T ×U . Consider
L being a function from S into T × U such that for every object d2 such
that d2 ∈ the carrier of S holds L(d2) = O(d2). For every elements x, y
of S, L(x + y) = L(x) + L(y). For every vector x of S and for every real
number a, L(a ·x) = a ·L(x). Set K = ‖L1‖+ ‖L2‖. For every vector w of
S, ‖L(w)‖ ¬ K · ‖w‖. Consider N being a neighbourhood of x0 such that
N ⊆ N1 and N ⊆ N2. �

Let us consider real normed spaces S, T , U , a subset Z of S, a partial
function u from S to T , a partial function v from S to U , and a partial function
w from S to T × U . Now we state the propositions:

(27) Suppose u is differentiable on Z and v is differentiable on Z and w =
〈u, v〉. Then

(i) w is differentiable on Z, and

(ii) for every point x of S such that x ∈ Z holds w′�Z/x = 〈u′�Z/x, v′�Z/x〉,
and
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(iii) for every point x of S such that x ∈ Z for every point d2 of S,
(w′�Z/x)(d2) = 〈〈(u′�Z/x)(d2), (v′�Z/x)(d2)〉〉.

Proof: For every point x of S such that x ∈ Z holds w is differentiable in
x. For every point x of S such that x ∈ Z holds w′�Z/x = 〈u′�Z/x, v′�Z/x〉. For
every point x of S such that x ∈ Z for every point d2 of S, (w′�Z/x)(d2) =
〈〈(u′�Z/x)(d2), (v′�Z/x)(d2)〉〉. �

(28) Suppose u is differentiable on Z and u′�Z is continuous on Z and v is
differentiable on Z and v′�Z is continuous on Z and w = 〈u, v〉. Then

(i) w is differentiable on Z, and

(ii) w′�Z is continuous on Z.

Proof: w is differentiable on Z and for every point x of S such that
x ∈ Z holds w′�Z/x = 〈u′�Z/x, v′�Z/x〉 and for every point x of S such that
x ∈ Z for every point d2 of S, (w′�Z/x)(d2) = 〈〈(u′�Z/x)(d2), (v′�Z/x)(d2)〉〉.
Set f = w′�Z . For every point x0 of S and for every real number r such
that x0 ∈ Z and 0 < r there exists a real number s such that 0 < s

and for every point x1 of S such that x1 ∈ Z and ‖x1 − x0‖ < s holds
‖f/x1 − f/x0‖ < r. �

(29) Let us consider real normed spaces E, F , and a natural number i. Then
diffSP(E(i+1), F ) = diffSP(Ei, (the real norm space of bounded linear
operators from E into F )).
Proof: Define P[natural number] ≡ diffSP(E($1+1), F ) = diffSP(E$1 , (the
real norm space of bounded linear operators from E into F )). For every
natural number i such that P[i] holds P[i + 1] by [4, (10)]. For every
natural number i, P[i]. �

(30) Let us consider real normed spaces E, F , a subset Z of E, a partial
function g from E to F , and a partial function f from E to the real norm
space of bounded linear operators from E into F . Suppose (g�Z)′�Z = f�Z.
Let us consider a natural number i. Then diffZ(g, i+ 1) = diffZ(f, i).
Proof: Define P[natural number] ≡ diffZ(g, $1 + 1) = diffZ(f, $1). For
every natural number i such that P[i] holds P[i + 1]. For every natural
number i, P[i]. �

Let us consider real normed spaces E, F , a natural number n, a subset Z of
E, and a partial function g from E to F . Now we state the propositions:

(31) If g′�Z is differentiable n times on Z and g is differentiable on Z, then g

is differentiable n+ 1 times on Z.
Proof: Set f = g′�Z . f�Z = (g�Z)′�Z . For every natural number i such
that i ¬ n+ 1− 1 holds diffZ(g, i) is differentiable on Z. �
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(32) Suppose g′�Z is differentiable n times on Z and g is differentiable on Z

and diffZ(g′�Z , n) is continuous on Z. Then

(i) g is differentiable n+ 1 times on Z, and

(ii) diffZ(g, n+ 1) is continuous on Z.

The theorem is a consequence of (31), (3), (30), and (29).

(33) Let us consider real normed spaces S, E, F , G, a Lipschitzian bilinear
operator B from E × F into G, a partial function W from S to G, a partial
function w from S to E × F , a partial function u from S to E, a partial
function v from S to F , and a point x of S. Suppose u is differentiable in x
and v is differentiable in x and x ∈ domw and W = B ·w and w = 〈u, v〉.
Then

(i) W is differentiable in x, and

(ii) w is differentiable in x, and

(iii) W ′(x) = B′(〈〈u/x, v/x〉〉) · w′(x), and

(iv) w′(x) = 〈u′(x), v′(x)〉, and

(v) for every point d1 of S, W ′(x)(d1) =

B(u′(x)(d1), v/x) +B(u/x, v′(x)(d1)).

The theorem is a consequence of (26).

(34) Let us consider real normed spaces S, E, F , G, a subset Z of S, a Lip-
schitzian bilinear operator B from E × F into G, a partial function W

from S to G, a partial function w from S to E × F , a partial function u

from S to E, and a partial function v from S to F . Suppose u is differen-
tiable on Z and v is differentiable on Z and W = B · w and w = 〈u, v〉.
Then

(i) W is differentiable on Z, and

(ii) for every point x of S such that x ∈ Z for every point d1 of S,
(W ′�Z/x)(d1) = B((u′�Z/x)(d1), v/x) +B(u/x, (v′�Z/x)(d1)).

Proof: w is differentiable on Z and for every point x of S such that x ∈ Z
holds w′�Z/x = 〈u′�Z/x, v′�Z/x〉 and for every point x of S such that x ∈ Z for
every point d2 of S, (w′�Z/x)(d2) = 〈〈(u′�Z/x)(d2), (v′�Z/x)(d2)〉〉. For every
point x of S such that x ∈ Z for every point d1 of S, (W ′�Z/x)(d1) =
B((u′�Z/x)(d1), v/x) +B(u/x, (v′�Z/x)(d1)). �

Let us consider real normed spaces S, E, a subset Z of S, a partial function
u from S to E, and a natural number i. Now we state the propositions:

(35) If u is differentiable i + 1 times on Z, then u′�Z is differentiable i times
on Z.
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Proof: Define P[natural number] ≡ if u is differentiable $1 + 1 times on
Z, then u′�Z is differentiable $1 times on Z. P[0]. For every natural number
i such that P[i] holds P[i+ 1]. For every natural number i, P[i]. �

(36) Suppose u is differentiable i+1 times on Z and diffZ(u, i+1) is continuous
on Z. Then

(i) u′�Z is differentiable i times on Z, and

(ii) diffZ(u′�Z , i) is continuous on Z.

The theorem is a consequence of (35), (29), (3), and (30).

(37) Let us consider real normed spaces E, F , G. Then there exists a Lip-
schitzian bilinear operator B from the real norm space of bounded linear
operators from E into F × the real norm space of bounded linear operators
from F into G into the real norm space of bounded linear operators from
E into G such that for every point u of the real norm space of bounded
linear operators from E into F for every point v of the real norm space of
bounded linear operators from F into G, B(u, v) = v · u.
Proof: Set E3 = the carrier of the real norm space of bounded linear
operators from E into F . Set F2 = the carrier of the real norm space of
bounded linear operators from F into G. Set E4 = the carrier of the real
norm space of bounded linear operators from E into G. Define P[element
of E3, element of F2, object] ≡ $3 = $2 · $1. Consider L being a function
from E3 × F2 into E4 such that for every element x of E3 and for every
element y of F2, P[x, y, L(x, y)]. Set L4 = the real norm space of bounded
linear operators from E into F . Set L5 = the real norm space of bounded
linear operators from F into G. For every points x1, x2 of L4 and for every
point y of L5, L(x1 + x2, y) = L(x1, y) + L(x2, y). For every point x of
L4 and for every point y of L5 and for every real number a, L(a · x, y) =
a · L(x, y). For every point x of L4 and for every points y1, y2 of L5,
L(x, y1 + y2) = L(x, y1) + L(x, y2). For every point x of L4 and for every
point y of L5 and for every real number a, L(x, a · y) = a · L(x, y). Set
K = 1. For every vector x of L4 and for every vector y of L5, ‖L(x, y)‖ ¬
K · ‖x‖ · ‖y‖. �

(38) Let us consider a natural number i, real normed spaces S, E, F , G,
a subset Z of S, a Lipschitzian bilinear operator B from E × F into
G, a partial function u from S to E, a partial function v from S to F ,
a partial function w from S to E × F , and a partial function W from S

to G. Suppose W = B ·w and w = 〈u, v〉 and u is differentiable i times on
Z and v is differentiable i times on Z. Then W is differentiable i times on
Z.
Proof: Define P[natural number] ≡ for every real normed spaces S, E,
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F , G for every subset Z of S for every Lipschitzian bilinear operator B
from E × F into G for every partial function u from S to E for every
partial function v from S to F for every partial function w from S to E×
F for every partial function W from S to G such that W = B · w and
w = 〈u, v〉 and u is differentiable $1 times on Z and v is differentiable $1

times on Z holds W is differentiable $1 times on Z. P[0]. For every natural
number i such that P[i] holds P[i+ 1]. For every natural number i, P[i].
�

(39) Let us consider real normed spaces S, E, F , G, a subset Z of S, a Lip-
schitzian bilinear operator B from E × F into G, a partial function W

from S to G, a partial function w from S to E × F , a partial function u

from S to E, and a partial function v from S to F . Suppose u is differen-
tiable on Z and u′�Z is continuous on Z and v is differentiable on Z and
v′�Z is continuous on Z and W = B · w and w = 〈u, v〉. Then

(i) W is differentiable on Z, and

(ii) W ′�Z is continuous on Z.

The theorem is a consequence of (28) and (22).

(40) Let us consider real normed spaces S, E, F , G, a subset Z of S, a partial
function u from S to E, a partial function v from S to F , and a partial
function w from S to E × F . Suppose w = 〈u, v〉 and u is continuous on
Z and v is continuous on Z. Then w is continuous on Z.
Proof: For every point x0 of S and for every real number r such that
x0 ∈ Z and 0 < r there exists a real number s such that 0 < s and for every
point x1 of S such that x1 ∈ Z and ‖x1−x0‖ < s holds ‖w/x1 −w/x0‖ < r

by [9, (18)], (16). �

(41) Let us consider a natural number i, real normed spaces S, E, F , G,
a subset Z of S, a Lipschitzian bilinear operator B from E × F into
G, a partial function u from S to E, a partial function v from S to F ,
a partial function w from S to E × F , and a partial function W from S

to G. Suppose W = B · w and w = 〈u, v〉 and u is differentiable i times
on Z and diffZ(u, i) is continuous on Z and v is differentiable i times on
Z and diffZ(v, i) is continuous on Z. Then

(i) W is differentiable i times on Z, and

(ii) diffZ(W, i) is continuous on Z.

Proof: Define P[natural number] ≡ for every real normed spaces S, E,
F , G for every subset Z of S for every Lipschitzian bilinear operator B
from E × F into G for every partial function u from S to E for every
partial function v from S to F for every partial function w from S to



258 kazuhisa nakasho and yasunari shidama

E × F for every partial function W from S to G such that W = B · w
and w = 〈u, v〉 and u is differentiable $1 times on Z and diffZ(u, $1) is
continuous on Z and v is differentiable $1 times on Z and diffZ(v, $1) is
continuous on Z holds W is differentiable $1 times on Z and diffZ(W, $1)
is continuous on Z. P[0]. For every natural number i such that P[i] holds
P[i+ 1]. For every natural number i, P[i]. �

Let us consider a natural number i, real normed spaces E, F , G, a subset Z
of E, a subset T of F , a partial function u from E to F , and a partial function
v from F to G. Now we state the propositions:

(42) If u◦Z ⊆ T and u is differentiable i times on Z and v is differentiable i
times on T , then v · u is differentiable i times on Z.
Proof: Define P[natural number] ≡ for every real normed spaces E, F , G
for every subset Z of E for every subset T of F for every partial function
u from E to F for every partial function v from F to G such that u◦Z ⊆ T
and u is differentiable $1 times on Z and v is differentiable $1 times on T
holds v · u is differentiable $1 times on Z. P[0]. For every natural number
i such that P[i] holds P[i+ 1]. For every natural number i, P[i]. �

(43) Suppose u◦Z ⊆ T and u is differentiable i times on Z and diffZ(u, i)
is continuous on Z and v is differentiable i times on T and diffT (v, i) is
continuous on T . Then

(i) v · u is differentiable i times on Z, and

(ii) diffZ(v · u, i) is continuous on Z.

Proof: Define P[natural number] ≡ for every real normed spaces E, F , G
for every subset Z of E for every subset T of F for every partial function
u from E to F for every partial function v from F to G such that u◦Z ⊆ T
and u is differentiable $1 times on Z and diffZ(u, $1) is continuous on Z

and v is differentiable $1 times on T and diffT (v, $1) is continuous on T

holds v · u is differentiable $1 times on Z and diffZ(v · u, $1) is continuous
on Z. P[0]. For every natural number i such that P[i] holds P[i+ 1]. For
every natural number i, P[i]. �

3. Partial Differentiation of Vector-Valued Functions

Now we state the proposition:

(44) Let us consider real normed spaces E, F , G, a subset Z of E × F , and
a partial function f from E × F to G. Suppose f is differentiable on Z.
Then

(i) f is partially differentiable on Z w.r.t. 1, and
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(ii) f is partially differentiable on Z w.r.t. 2, and

(iii) for every point z of E × F such that z ∈ Z holds for every point d2

of E, ((f �1 Z)/z)(d2) = f ′�Z/z(d2, 0F ) and for every point d4 of F ,
((f �2 Z)/z)(d4) = f ′�Z/z(0E , d4).

Proof: For every point z of E × F such that z ∈ Z holds f is partially
differentiable in z w.r.t. 1. For every point z of E×F such that z ∈ Z holds
f is partially differentiable in z w.r.t. 2. For every point d2 of E, ((f �1

Z)/z)(d2) = f ′�Z/z(d2, 0F ). For every point d4 of F , ((f �2 Z)/z)(d4) =
f ′�Z/z(0E , d4). �

Let us consider real normed spaces E, F . Now we state the propositions:

(45) There exists a Lipschitzian linear operator L10 from E into E × F such
that for every point d2 of E, L10(d2) = 〈〈d2, 0F 〉〉.
Proof: Define P[object, object] ≡ there exists a point d2 of E such that
d2 = $1 and $2 = 〈〈d2, 0F 〉〉. For every object x such that x ∈ the carrier of
E there exists an object y such that y ∈ the carrier of E × F and P[x, y].
Consider L1 being a function from the carrier of E into the carrier of
E × F such that for every object x such that x ∈ the carrier of E holds
P[x, L1(x)]. For every point d2 of E, L1(d2) = 〈〈d2, 0F 〉〉. For every elements
x, y of E, L1(x + y) = L1(x) + L1(y). For every vector x of E and for
every real number a, L1(a · x) = a · L1(x). Set K = 1. For every vector x
of E, ‖L1(x)‖ ¬ K · ‖x‖. �

(46) There exists a Lipschitzian linear operator L20 from F into E × F such
that for every point d4 of F , L20(d4) = 〈〈0E , d4〉〉.
Proof: Define P[object, object] ≡ there exists a point d2 of F such that
d2 = $1 and $2 = 〈〈0E , d2〉〉. For every object x such that x ∈ the carrier of
F there exists an object y such that y ∈ the carrier of E × F and P[x, y].
Consider L1 being a function from the carrier of F into the carrier of
E × F such that for every object x such that x ∈ the carrier of F holds
P[x, L1(x)]. For every point d2 of F , L1(d2) = 〈〈0E , d2〉〉. For every elements
x, y of F , L1(x + y) = L1(x) + L1(y). For every vector x of F and for
every real number a, L1(a · x) = a · L1(x). Set K = 1. For every vector x
of F , ‖L1(x)‖ ¬ K · ‖x‖. �

(47) Let us consider real normed spaces E, F , a non empty subset Z of E,
a partial function L1 from E to F , and a point L0 of F . Suppose Z is open
and L1 = Z 7−→ L0. Then

(i) L1 is differentiable on Z, and

(ii) L1
′
�Z is continuous on Z, and

(iii) L1
′
�Z = Z 7−→ 0α,
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where α is the real norm space of bounded linear operators from E into
F .
Proof: For every object z such that z ∈ domL1

′
�Z holds L1

′
�Z(z) = 0α,

where α is the real norm space of bounded linear operators from E into
F . �

(48) Let us consider real normed spaces E, F , a non empty subset Z of E,
a partial function L1 from E to F , and a point L0 of F . Suppose Z is open
and L1 = Z 7−→ L0. Let us consider a natural number i. Then

(i) there exists a point P of diffSP(Ei, F ) such that diffZ(L1, i) = Z 7−→
P , and

(ii) diffZ(L1, i) is differentiable on Z, and

(iii) diffZ(L1, i)′�Z is continuous on Z.

Proof: Define P[natural number] ≡ there exists a point P of diffSP(E$1 , F )
such that diffZ(L1, $1) = Z 7−→ P and diffZ(L1, $1) is differentiable on Z

and diffZ(L1, $1)′�Z is continuous on Z. P[0]. For every natural number i
such that P[i] holds P[i+ 1]. For every natural number i, P[i]. �

(49) Let us consider a natural number i, real normed spaces E, F , a non
empty subset Z of E, a partial function L1 from E to F , and a point L0

of F . Suppose Z is open and L1 = Z 7−→ L0. Then

(i) L1 is differentiable i times on Z, and

(ii) diffZ(L1, i)′�Z is continuous on Z.

The theorem is a consequence of (48).

(50) Let us consider a natural number n, a real normed space S, a subset Z of
S, and a partial function f from S to S. Suppose Z is open and f = idΩS .
Then

(i) f is differentiable n times on Z, and

(ii) diffZ(f, n) is continuous on Z.

The theorem is a consequence of (9).

Let us consider a natural number i, real normed spaces E, F , G, a non empty
subset Z of E×F , and a partial function f from E×F to G. Now we state the
propositions:

(51) If f is differentiable i+1 times on Z, then f �1 Z is differentiable i times
on Z and f �2 Z is differentiable i times on Z.
Proof: f is differentiable on Z. f is partially differentiable on Z w.r.t.
1 and f is partially differentiable on Z w.r.t. 2 and for every point z of
E × F such that z ∈ Z holds for every point d2 of E, ((f �1 Z)/z)(d2) =
f ′�Z/z(d2, 0F ) and for every point d4 of F , ((f �2 Z)/z)(d4) = f ′�Z/z(0E , d4).
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Set P1 = f �1 Z. Set P2 = f �2 Z. Consider L10 being a Lipschitzian
linear operator from E into E × F such that for every point d2 of E,
L10(d2) = 〈〈d2, 0F 〉〉. Consider L20 being a Lipschitzian linear operator
from F into E × F such that for every point d4 of F , L20(d4) = 〈〈0E , d4〉〉.
Set B3 = the real norm space of bounded linear operators from E into
E × F . Set B2 = the real norm space of bounded linear operators from
F into E × F . Reconsider L1 = Z 7−→ L10 as a partial function from E ×
F to B3. L1 is differentiable i times on Z. For every point z of E × F
such that z ∈ Z holds (f �1 Z)/z = f ′�Z/z · (L1/z). f ′�Z is differentiable
i times on Z. Consider B being a Lipschitzian bilinear operator from
the real norm space of bounded linear operators from E into E × F ×
the real norm space of bounded linear operators from E × F into G into
the real norm space of bounded linear operators from E into G such that
for every point u of the real norm space of bounded linear operators from
E into E×F and for every point v of the real norm space of bounded linear
operators from E×F into G, B(u, v) = v·u. Set w2 = 〈L1, f

′
�Z〉. Reconsider

W = B · w2 as a partial function from E × F to the real norm space of
bounded linear operators from E into G. W is differentiable i times on
Z. For every object x0 such that x0 ∈ domP1 holds P1(x0) = W (x0).
Reconsider L2 = Z 7−→ L20 as a partial function from E × F to B2.
L2 is differentiable i times on Z. For every point z of E × F such that
z ∈ Z holds (f �2 Z)/z = f ′�Z/z · (L2/z). f ′�Z is differentiable i times on
Z. Consider B being a Lipschitzian bilinear operator from the real norm
space of bounded linear operators from F into E×F × the real norm space
of bounded linear operators from E × F into G into the real norm space
of bounded linear operators from F into G such that for every point u of
the real norm space of bounded linear operators from F into E × F and
for every point v of the real norm space of bounded linear operators from
E × F into G, B(u, v) = v · u. Set w2 = 〈L2, f

′
�Z〉. Reconsider W = B ·w2

as a partial function from E×F to the real norm space of bounded linear
operators from F into G. For every object x0 such that x0 ∈ domP2 holds
P2(x0) = W (x0). �

(52) Suppose f is differentiable i+1 times on Z and diffZ(f, i+1) is continuous
on Z. Then

(i) f �1 Z is differentiable i times on Z, and

(ii) diffZ(f �1 Z, i) is continuous on Z, and

(iii) f �2 Z is differentiable i times on Z, and

(iv) diffZ(f �2 Z, i) is continuous on Z.

Proof: f is differentiable on Z. f is partially differentiable on Z w.r.t.
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1 and f is partially differentiable on Z w.r.t. 2 and for every point z of
E × F such that z ∈ Z holds for every point d2 of E, ((f �1 Z)/z)(d2) =
f ′�Z/z(d2, 0F ) and for every point d4 of F , ((f �2 Z)/z)(d4) = f ′�Z/z(0E , d4).
Set P1 = f �1 Z. Set P2 = f �2 Z. Consider L10 being a Lipschitzian
linear operator from E into E × F such that for every point d2 of E,
L10(d2) = 〈〈d2, 0F 〉〉. Consider L20 being a Lipschitzian linear operator
from F into E × F such that for every point d4 of F , L20(d4) = 〈〈0E ,
d4〉〉. Set B3 = the real norm space of bounded linear operators from E

into E × F . Set B2 = the real norm space of bounded linear operators
from F into E × F . Reconsider L1 = Z 7−→ L10 as a partial function
from E × F to B3. L1 is differentiable i times on Z. L1 is differentiable
i+ 1 times on Z. For every point z of E × F such that z ∈ Z holds (f �1

Z)/z = f ′�Z/z · (L1/z). f ′�Z is differentiable i times on Z and diffZ(f ′�Z , i) is
continuous on Z. Consider B being a Lipschitzian bilinear operator from
the real norm space of bounded linear operators from E into E × F ×
the real norm space of bounded linear operators from E × F into G into
the real norm space of bounded linear operators from E into G such that
for every point u of the real norm space of bounded linear operators from
E into E × F and for every point v of the real norm space of bounded
linear operators from E × F into G, B(u, v) = v · u. Set w2 = 〈L1, f

′
�Z〉.

Reconsider W = B ·w2 as a partial function from E ×F to the real norm
space of bounded linear operators from E into G. W is differentiable i
times on Z and diffZ(W, i) is continuous on Z. For every object x0 such
that x0 ∈ domP1 holds P1(x0) = W (x0). Reconsider L2 = Z 7−→ L20 as
a partial function from E×F to B2. L2 is differentiable i times on Z. L2 is
differentiable i+ 1 times on Z. For every point z of E×F such that z ∈ Z
holds (f �2 Z)/z = f ′�Z/z · (L2/z). f ′�Z is differentiable i times on Z and
diffZ(f ′�Z , i) is continuous on Z. Consider B being a Lipschitzian bilinear
operator from the real norm space of bounded linear operators from F

into E × F × the real norm space of bounded linear operators from E ×
F into G into the real norm space of bounded linear operators from F

into G such that for every point u of the real norm space of bounded
linear operators from F into E×F and for every point v of the real norm
space of bounded linear operators from E ×F into G, B(u, v) = v · u. Set
w2 = 〈L2, f

′
�Z〉. Reconsider W = B · w2 as a partial function from E × F

to the real norm space of bounded linear operators from F into G. W is
differentiable i times on Z and diffZ(W, i) is continuous on Z. For every
object x0 such that x0 ∈ domP2 holds P2(x0) = W (x0). �

(53) Let us consider real normed spaces S, E, F , a partial function u from
S to E, a partial function v from S to F , a partial function w from S to
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E ×F , and a point x of S. Suppose w = 〈u, v〉 and u is differentiable in x
and v is differentiable in x. Then

(i) w is differentiable in x, and

(ii) w′(x) = 〈u′(x), v′(x)〉.
Proof: Consider N3 being a neighbourhood of x0 such that N3 ⊆ domu

and there exists a rest R3 of S, E such that for every point x of S such
that x ∈ N3 holds u/x − u/x0 = u′(x0)(x − x0) + R3/x−x0 . Consider R3

being a rest of S, E such that for every point x of S such that x ∈ N3 holds
u/x−u/x0 = u′(x0)(x−x0)+R3/x−x0 . Consider N4 being a neighbourhood
of x0 such that N4 ⊆ dom v and there exists a rest R4 of S, F such that
for every point x of S such that x ∈ N4 holds v/x−v/x0 = v′(x0)(x−x0)+
R4/x−x0 . Consider R4 being a rest of S, F such that for every point x of
S such that x ∈ N4 holds v/x− v/x0 = v′(x0)(x− x0) +R4/x−x0 . Consider
N being a neighbourhood of x0 such that N ⊆ N3 and N ⊆ N4. Set
L = 〈u′(x0), v′(x0)〉. For every elements x, y of S, L(x+y) = L(x) +L(y).
For every vector x of S and for every real number a, L(a · x) = a · L(x).
Set K = ‖u′(x0)‖ + ‖v′(x0)‖. For every vector x of S, ‖L(x)‖ ¬ K · ‖x‖.
Set R = 〈R3, R4〉. For every point d2 of S, R/d2 = 〈〈R3/d2 , R4/d2〉〉. For
every real number r such that r > 0 there exists a real number d such
that d > 0 and for every point z of S such that z 6= 0S and ‖z‖ < d

holds ‖z‖−1 · ‖R/z‖ < r. For every point x of S such that x ∈ N holds
w/x − w/x0 = L(x− x0) +R/x−x0 . �

(54) Let us consider real normed spaces S, E, F , a partial function u from
S to E, a partial function v from S to F , a partial function w from S to
E ×F , and a subset Z of S. Suppose w = 〈u, v〉 and u is differentiable on
Z and v is differentiable on Z. Then

(i) w is differentiable on Z, and

(ii) for every point x of S such that x ∈ Z holds w′�Z/x = 〈u′�Z/x, v′�Z/x〉.
Proof: For every point x of S such that x ∈ Z holds w is differentiable
in x and w′(x) = 〈u′(x), v′(x)〉. For every point x of S such that x ∈ Z
holds w′�Z/x = 〈u′�Z/x, v′�Z/x〉. �

Let S, E, F be real normed spaces. The functor CTP(S,E, F ) yielding a Lip-
schitzian linear operator from (the real norm space of bounded linear operators
from S into E)× (the real norm space of bounded linear operators from S into
F ) into the real norm space of bounded linear operators from S into E × F is
defined by

(Def. 3) for every Lipschitzian linear operator f from S into E and for every
Lipschitzian linear operator g from S into F , it(f, g) = 〈f, g〉.
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Now we state the proposition:

(55) Let us consider real normed spaces S, E, F , and a natural number i.
Then CTP(S,diffSP(Si, E),diffSP(Si, F )) is a Lipschitzian linear opera-
tor from diffSP(S(i+1), E) × diffSP(S(i+1), F ) into the real norm space of
bounded linear operators from S into diffSP(Si, E)× diffSP(Si, F ).

Let us consider real normed spaces S, E, F , a partial function u from S to
E, a partial function v from S to F , a partial function w from S to E ×F , and
a subset Z of S. Now we state the propositions:

(56) Suppose w = 〈u, v〉 and u is differentiable on Z and v is differentiable
on Z. Then

(i) w is differentiable on Z, and

(ii) w′�Z = (CTP(S, diffSP(S0, E), diffSP(S0, F ))) · 〈u′�Z , v′�Z〉.
Proof: w is differentiable on Z and for every point x of S such that x ∈
Z holds w′�Z/x = 〈u′�Z/x, v′�Z/x〉. CTP(S,diffSP(S0, E),diffSP(S0, F )) is
a Lipschitzian linear operator from diffSP(S(0+1), E)×diffSP(S(0+1), F ) in-
to the real norm space of bounded linear operators from S into diffSP(S0, E)
×diffSP(S0, F ). For every object x0 such that x0 ∈ domw′�Z holds w′�Z(x0) =
((CTP(S, diffSP(S0, E), diffSP(S0, F ))) · 〈u′�Z , v′�Z〉)(x0). �

(57) Suppose w = 〈u, v〉 and u is differentiable on Z and v is differentiable
on Z. Then

(i) diffZ(w, 0) is differentiable on Z, and

(ii) there exists a Lipschitzian linear operator T from diffSP(S1, E) ×
diffSP(S1, F ) into diffSP(S1, (E×F )) such that T = CTP(S, diffSP(S0,

E), diffSP(S0, F )) and diffZ(w, 1) = T · 〈diffZ(u, 1),diffZ(v, 1)〉.
The theorem is a consequence of (56), (3), (55), and (2).

(58) Suppose w = 〈u, v〉 and u is differentiable 2 times on Z and v is diffe-
rentiable 2 times on Z. Then

(i) w is differentiable 2 times on Z, and

(ii) there exists a Lipschitzian linear operator L1 from diffSP(S1, E) ×
diffSP(S1, F ) into diffSP(S1, (E ×F )) and there exists a Lipschitzian
linear operator L2 from diffSP(S2, E)× diffSP(S2, F ) into diffSP(S1,

(diffSP(S1, E)×diffSP(S1, F ))) and there exists a Lipschitzian linear
operator T from diffSP(S2, E) × diffSP(S2, F ) into diffSP(S2, (E ×
F )) such that L1 = CTP(S, diffSP(S0, E), diffSP(S0, F )) and L2 =
CTP(S, diffSP(S1, E), diffSP(S1, F )) and T = (LTRN(1, L1, S)) · L2

and diffZ(w, 2) = T · 〈diffZ(u, 2), diffZ(v, 2)〉.
The theorem is a consequence of (2), (57), (3), (55), and (24).
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(59) Let us consider a natural number i, real normed spaces S, E, F , a partial
function u from S to E, a partial function v from S to F , a partial function
w from S to E × F , and a subset Z of S. Suppose w = 〈u, v〉 and u is
differentiable i + 1 times on Z and v is differentiable i + 1 times on Z.
Then

(i) w is differentiable i+ 1 times on Z, and

(ii) there exists a Lipschitzian linear operator T from diffSP(S(i+1), E)×
diffSP(S(i+1), F ) into diffSP(S(i+1), (E × F )) such that diffZ(w, i +
1) = T · 〈diffZ(u, i+ 1),diffZ(v, i+ 1)〉.

Proof: Define P[natural number] ≡ for every real normed spaces S, E,
F for every partial function u from S to E for every partial function v

from S to F for every partial function w from S to E × F for every
subset Z of S such that w = 〈u, v〉 and u is differentiable $1 + 1 times
on Z and v is differentiable $1 + 1 times on Z holds w is differentiable
$1 + 1 times on Z and there exists a Lipschitzian linear operator T from
diffSP(S($1+1), E) × diffSP(S($1+1), F ) into diffSP(S($1+1), (E × F )) such
that diffZ(w, $1 + 1) = T · 〈diffZ(u, $1 + 1),diffZ(v, $1 + 1)〉. P[0]. For
every natural number i such that P[i] holds P[i + 1]. For every natural
number i, P[i]. �

(60) Let us consider real normed spaces S, E, F , a partial function u from
S to E, a partial function v from S to F , a partial function w from S to
E × F , a subset Z of S, and a natural number i. Suppose w = 〈u, v〉 and
u is differentiable i+ 1 times on Z and diffZ(u, i+ 1) is continuous on Z

and v is differentiable i+ 1 times on Z and diffZ(v, i+ 1) is continuous on
Z. Then

(i) w is differentiable i+ 1 times on Z, and

(ii) diffZ(w, i+ 1) is continuous on Z.

Proof: Consider T being a Lipschitzian linear operator from diffSP(S(i+1),

E) × diffSP(S(i+1), F ) into diffSP(S(i+1), (E × F )) such that diffZ(w, i +
1) = T · 〈diffZ(u, i+ 1), diffZ(v, i+ 1)〉. Set u1 = diffZ(u, i+ 1). Set v1 =
diffZ(v, i+ 1). Set G = 〈u1, v1〉. For every point x0 of S and for every real
number r such that x0 ∈ Z and 0 < r there exists a real number s such
that 0 < s and for every point x1 of S such that x1 ∈ Z and ‖x1−x0‖ < s

holds ‖G/x1−G/x0‖ < r. T is continuous on ΩdiffSP(S(i+1),E)×diffSP(S(i+1),F ).
�

(61) Let us consider real normed spaces X, Y, a subset V of X×Y, a subset D
of X, and a subset E of Y. Suppose D is open and E is open and V = D×
E. Then V is open.
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Proof: For every point x of X and for every point y of Y such that 〈〈x,
y〉〉 ∈ V there exist real numbers r1, r2 such that 0 < r1 and 0 < r2 and
Ball(x, r1)× Ball(y, r2) ⊆ V . �

4. Higher-Order Differentiability of Inverse Function Theorem

Now we state the propositions:

(62) Let us consider real normed spaces E, F , G, a point x of the real norm
space of bounded linear operators from E into F , and a point L of the re-
al norm space of bounded linear operators from the real norm space of
bounded linear operators from F into E into the real norm space of boun-
ded linear operators from E into E. Suppose x is invertible and for every
point y of the real norm space of bounded linear operators from F into E,
L(y) = y · x. Then L is invertible.
Proof: Set F4 = the real norm space of bounded linear operators from F

into E. Set E2 = the real norm space of bounded linear operators from E

into E. Reconsider L1 = L as a Lipschitzian linear operator from F4 into
E2. Reconsider d2 = x−1 as a point of the real norm space of bounded
linear operators from F into E. For every objects x1, x2 such that x1,
x2 ∈ ΩF4 and L1(x1) = L1(x2) holds x1 = x2. For every object y such
that y ∈ ΩE2 there exists an object z such that z ∈ ΩF4 and y = L1(z).
Define P[object, object] ≡ there exists a point y of E2 such that y = $1

and $2 = y · d2. For every object y such that y ∈ the carrier of E2 there
exists an object z such that z ∈ the carrier of F4 and P[y, z]. Consider R
being a function from the carrier of E2 into the carrier of F4 such that for
every object y such that y ∈ the carrier of E2 holds P[y,R(y)]. For every
point y of E2, R(y) = y · d2. For every element y of F4, (R · L1)(y) = y.
Set K = ‖d2‖. For every vector y of E2, ‖R(y)‖ ¬ K · ‖y‖. �

(63) Let us consider a non trivial real Banach space F . Then the real norm
space of bounded linear operators from F into F is a non trivial real
Banach space.

(64) Let us consider a real Banach space E, non trivial real Banach spaces
F , G, a non empty subset Z of E × F , a point c of G, a subset A of E,
and a subset B of F . Suppose Z is open and A is open and B is open and
A×B ⊆ Z. Let us consider a natural number i, a partial function f from
E × F to G, and a partial function g from E to F . Suppose dom f = Z

and f is differentiable i+ 1 times on Z and diffZ(f, i+ 1) is continuous on
Z and dom g = A and rng g ⊆ B and g is continuous on A and for every
point x of E such that x ∈ A holds f(x, g(x)) = c and for every point x
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of E and for every point z of E × F such that x ∈ A and z = 〈〈x, g(x)〉〉
holds partdiff(f, z) w.r.t. 2 is invertible. Then

(i) g is differentiable i+ 1 times on A, and

(ii) diffA(g, i+ 1) is continuous on A, and

(iii) for every point x of E and for every point z of E×F such that x ∈ A
and z = 〈〈x, g(x)〉〉 holds g′(x) = −(Inv partdiff(f, z) w.r.t. 2) · (partdiff
(f, z) w.r.t. 1).

Proof: Define P[natural number] ≡ for every real Banach space E for
every non trivial real Banach spaces F , G for every non empty subset
Z of E × F for every point c of G for every subset A of E for every
subset B of F such that Z is open and A is open and B is open and
A × B ⊆ Z for every partial function f from E × F to G for every par-
tial function g from E to F such that dom f = Z and f is differentiable
$1 + 1 times on Z and diffZ(f, $1 + 1) is continuous on Z and dom g = A

and rng g ⊆ B and g is continuous on A and for every point x of E
such that x ∈ A holds f(x, g(x)) = c and for every point x of E and
for every point z of E × F such that x ∈ A and z = 〈〈x, g(x)〉〉 holds
partdiff(f, z) w.r.t. 2 is invertible holds g is differentiable $1 + 1 times on
A and diffA(g, $1 + 1) is continuous on A and for every point x of E
and for every point z of E × F such that x ∈ A and z = 〈〈x, g(x)〉〉 holds
g′(x) = −(Inv partdiff(f, z) w.r.t. 2) · (partdiff(f, z) w.r.t. 1). P[0]. For eve-
ry natural number i such that P[i] holds P[i+1]. For every natural number
i, P[i]. �

(65) Let us consider non trivial real Banach spaces F , G. Then there exists
a partial function I from the real norm space of bounded linear operators
from F into G to the real norm space of bounded linear operators from G

into F such that

(i) dom I = InvertOpers(F,G), and

(ii) rng I = InvertOpers(G,F ), and

(iii) I is one-to-one and continuous on InvertOpers(F,G), and

(iv) there exists a partial function J from the real norm space of bounded
linear operators from G into F to the real norm space of bounded
linear operators from F into G such that J = I−1 and J is one-to-one
and domJ = InvertOpers(G,F ) and rng J = InvertOpers(F,G) and
J is continuous on InvertOpers(G,F ), and

(v) for every point u of the real norm space of bounded linear operators
from F into G such that u ∈ InvertOpers(F,G) holds I(u) = Inv u,
and
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(vi) for every natural number n, I is differentiable n+1 times on InvertO-

pers(F,G) and diffInvertOpers(F,G)(I, n+1) is continuous on InvertOp-

ers(F,G).

Proof: Set E1 = the real norm space of bounded linear operators from F

into G. Set F1 = the real norm space of bounded linear operators from G

into F . Set G1 = the real norm space of bounded linear operators from F

into F . G1 is a non trivial real Banach space. Set A1 = InvertOpers(F,G).
Set B1 = InvertOpers(G,F ). Consider g1 being a partial function from E1

to F1 such that dom g1 = A1 and rng g1 = B1 and g1 is one-to-one and
continuous on A1 and there exists a partial function J from F1 to E1 such
that J = g1

−1 and J is one-to-one and domJ = B1 and rng J = A1 and
J is continuous on B1 and for every point u of E1 such that u ∈ A1 holds
g1(u) = Inv u. Set Z1 = ΩE1×F1 . Reconsider a = idΩF as a Lipschitzian
linear operator from F into F . Consider f0 being a Lipschitzian bilinear
operator from E1 × F1 into G1 such that for every point u of E1 and for
every point v of F1, f0(u, v) = v · u. Reconsider f1 = f0�Z1 as a partial
function from E1 × F1 to G1. For every point x of E1 such that x ∈ A1

holds f1(x, g1(x)) = a by [6, (22)]. For every point x of E1 and for every
point z of E1 × F1 such that x ∈ A1 and z = 〈〈x, g1(x)〉〉 for every point y
of F1, (partdiff(f1, z) w.r.t. 2)(y) = y · x by [8, (4)]. For every point x of
E1 and for every point z of E1 × F1 such that x ∈ A1 and z = 〈〈x, g1(x)〉〉
holds partdiff(f1, z) w.r.t. 2 is invertible. g1 is differentiable i+ 1 times on
A1 and diffA1(g1, i+ 1) is continuous on A1. �

(66) Let us consider non trivial real Banach spaces E, F , a subset Z of E,
a partial function f from E to F , a point a of E, a point b of F , and a na-
tural number n. Suppose Z is open and dom f = Z and f is differentiable
n + 1 times on Z and diffZ(f, n + 1) is continuous on Z and a ∈ Z and
f(a) = b and f ′(a) is invertible. Then there exists a subset A of E and
there exists a subset B of F and there exists a partial function g from F to
E such that A is open and B is open and A ⊆ dom f and a ∈ A and b ∈ B
and f◦A = B and dom g = B and rng g = A and dom(f�A) = A and
rng(f�A) = B and f�A is one-to-one and g is one-to-one and g = (f�A)−1

and f�A = g−1 and g(b) = a and for every point y of F such that y ∈ B
holds f ′(g/y) is invertible and for every point y of F such that y ∈ B

holds g′(y) = Inv f ′(g/y) and f is differentiable n + 1 times on A and
diffA(f, n+ 1) is continuous on A and g is differentiable n+ 1 times on B
and diffB(g, n+ 1) is continuous on B.
Proof: Define P[natural number] ≡ if Z is open and dom f = Z and f

is differentiable $1 + 1 times on Z and diffZ(f, $1 + 1) is continuous on Z
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and a ∈ Z and f(a) = b and f ′(a) is invertible, then there exists a subset
A of E and there exists a subset B of F and there exists a partial function
g from F to E such that A is open and B is open and A ⊆ dom f and
a ∈ A and b ∈ B and f◦A = B and dom g = B and rng g = A and
dom(f�A) = A and rng(f�A) = B and f�A is one-to-one and g is one-to-
one and g = (f�A)−1 and f�A = g−1 and g(b) = a and for every point y
of F such that y ∈ B holds f ′(g/y) is invertible and for every point y of
F such that y ∈ B holds g′(y) = Inv f ′(g/y) and f is differentiable $1 + 1
times on A and diffA(f, $1 + 1) is continuous on A and g is differentiable
$1 + 1 times on B and diffB(g, $1 + 1) is continuous on B. P[0]. For every
natural number n such that P[n] holds P[n+1]. For every natural number
n, P[n]. �
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