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Summary. In this article, using the Mizar system, we introduce some
standard examples of vector spaces, e.g., the vector space of linear transforma-
tions between vector spaces. We formulate some conditions for the isomorphism
of finite-dimensional vector spaces and prove that linear transformations are uni-
quely determined by their values with respect to the basis.
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Introduction

In this article we continue the development of the hierarchy of algebraic
structures [5] in the repository of automatically verified repository of mathe-
matical texts. Using the Mizar system [2], [3], we introduce three standard [7]
examples of vector spaces: the vector space of n-tuples over a commutative ring
R (in Section 3), the vector space of of maps from a set X into a ring R (Sec-
tion 4), and the vector space of linear transformations between vector spaces
(Section 5). Additionally, we prove that two finite-dimensional vector spaces
are isomorphic if and only if they are of the same dimension, and hence each
vector space of dimension n is isomorphic to a vector space of n-tuples [4], [6].
In the course of proving the above we also showed, that linear transformations
are uniquely determined by their values with respect to the basis. Constructed
examples and proven facts will be useful to continue the formalization of FIELD
series of Mizar articles [8] or more advanced structures [9].
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1. Preliminaries

Now we state the proposition:

(1) Let us consider non empty, finite sets X, Y. Suppose Y = X . Then
there exists a function f from X into Y such that f is bijective.

Let L be a non empty additive loop structure, n be a natural number, and
u, v be n-element finite sequences of elements of the carrier of L. One can verify
that u+ v is n-element.

Let M be a non empty multiplicative magma, u be an n-element finite
sequence of elements of the carrier of M , and a be an element of M . Let us note
that a · u is n-element. Now we state the propositions:

(2) Let us consider a non empty, Abelian additive loop structure R, a natural
number n, and n-tuples u, v of the carrier of R. Then u+ v = v + u.

(3) Let us consider a non empty, add-associative additive loop structure
R, a natural number n, and n-tuples u, v, w of the carrier of R. Then
(u+ v) + w = u+ (v + w).

Let F be a field. Let us note that every trivial vector space over F is finite
dimensional. Let V be a non trivial vector space over F . Note that there exists
a subset of V which is non empty, finite, and linearly independent. Let V be
a non trivial, finite dimensional vector space over F . One can check that every
basis of V is non empty.

2. On Linear Transformations

Let F be a field, U , V be vector spaces over F , B be a non empty subset of
U , and f be a function from B into V . Let us note that the functor rng f yields
a subset of V . Now we state the propositions:

(4) Let us consider a field F , a vector space U over F , a linearly independent
subset B of U , and an element w of U . Suppose w ∈ B. Let us consider
a linear combination l of B. Suppose

∑
l = w. Then

(i) the support of l = {w}, and

(ii) l(w) = 1F .

Proof: Define Q[object, object] ≡ $1 = w and $2 = 1F or $1 6= w and
$2 = 0F . For every object x such that x ∈ the carrier of U there exists
an object y such that y ∈ the carrier of F and Q[x, y]. Consider l1 being
a function from the carrier of U into the carrier of F such that for every
object x such that x ∈ the carrier of U holds Q[x, l1(x)]. For every element
v of U such that v /∈ {w} holds l1(v) = 0F . The support of l1 = {w}. �
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(5) Let us consider a field F , vector spaces U , V over F , a subset B of U ,
a subset A of V , and a linear transformation T from U to V . Suppose
T ◦B ⊆ A. Let us consider a linear combination l of B. Then T (

∑
l) ∈

Lin(A).
Proof: Define P[natural number] ≡ for every linear combination l of B
such that the support of l = $1 holds T (

∑
l) ∈ Lin(A). P[0]. For every

natural number k, P[k]. Consider n being a natural number such that
α = n, where α is the support of l. �

(6) Let us consider a field F , vector spaces U , V over F , a basis B of U , and
linear transformations T1, T2 from U to V . If T1�B = T2�B, then T1 = T2.
Proof: Define P[natural number] ≡ for every linear combination l of B
such that the support of l = $1 holds T1(

∑
l) = T2(

∑
l). P[0]. For every

natural number k, P[k]. �

Let F be a field, U , V be vector spaces over F , B be a non empty, finite
subset of U , l be a linear combination of B, f be a function from B into V , and
v be an element of V . The functor Expand(f, l, v) yielding a finite sequence of
elements of the carrier of F is defined by the term

(Def. 1) l · (CFS(f−1({v}))).
The functor f · l yielding a linear combination of rng f is defined by

(Def. 2) for every element v of V , it(v) =
∑

Expand(f, l, v).

Let l be a linear combination of rng f . The functor l · f yielding a linear
combination of B is defined by

(Def. 3) for every element u of U such that u ∈ B holds it(u) = l(f(u)).

Now we state the propositions:

(7) Let us consider a field F , vector spaces U , V over F , a non empty, finite
subset B of U , and a function f from B into V . Suppose f is one-to-one.
Let us consider a linear combination l of B, and an element v of V . If
v ∈ rng f , then (f · l)(v) = l((f−1)(v)).
Proof: Consider x being an object such that x ∈ dom f and f(x) = v.
Set G = l · (CFS(f−1({v}))). domG = Seg 1. �

(8) Let us consider a field F , vector spaces U , V over F , a non empty, finite
subset B of U , and a function f from B into V . Suppose f is one-to-one.
Let us consider a linear combination l of B. Then (f ·l)·f = l. The theorem
is a consequence of (7).

(9) Let us consider a field F , vector spaces U , V over F , a non empty, finite
subset B of U , and a function f from B into V . Suppose f is one-to-one.
Let us consider a linear combination l of rng f . Then f · (l · f) = l. The
theorem is a consequence of (7).
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(10) Let us consider a field F , vector spaces U , V over F , a non empty, finite
subset B of U , a function f from B into V , and a linear combination l of
B. Then the support of f · l ⊆ f◦(the support of l).

(11) Let us consider a field F , vector spaces U , V over F , a non empty, finite
subset B of U , an element b of B, a function f from B into V , and a linear
combination l of B. Suppose the support of l = {b}. Then

(i) the support of f · l = {f(b)}, and

(ii)
∑

(f · l) = l(b) · f(b).

The theorem is a consequence of (10).

(12) Let us consider a field F , vector spaces U , V over F , a non empty, finite
subset B of U , a function f from B into V , and linear combinations l1, l2,
l3 of B. If l3 = l1 + l2, then f · l3 = f · l1 + f · l2.

(13) Let us consider a field F , vector spaces U , V over F , a non empty, finite
subset B of U , a function f from B into V , linear combinations l1, l2 of
B, and an element a of F . If l2 = a · l1, then f · l2 = a · (f · l1).

(14) Let us consider a field F , vector spaces U , V over F , a non empty, finite
subset B of U , a function f from B into V , and linear combinations l1, l2
of B. If l2 = −l1, then f · l2 = −f · l1.

(15) Let us consider a field F , vector spaces U , V over F , a non empty, finite
subset B of U , a function f from B into V , and linear combinations l1,
l2, l3 of B. If l3 = l1 − l2, then f · l3 = f · l1 − f · l2. The theorem is
a consequence of (13) and (12).

(16) Let us consider a field F , vector spaces U , V over F , and a non empty,
finite subset B of U . Suppose B is linearly independent. Let us consider
an element w of U . Suppose w ∈ B. Let us consider a linear combination l
of B. If

∑
l = w, then for every function f from B into V ,

∑
(f · l) = f(w).

The theorem is a consequence of (4) and (11).

Let F be a field, U be a finite dimensional vector space over F , V be a vector
space over F , B be a basis of U , and f be a function from B into V . The functor
canLinTrans(f) yielding a linear transformation from U to V is defined by

(Def. 4) it�B = f .

Now we state the propositions:

(17) Let us consider a field F , a non trivial, finite dimensional vector space U
over F , a vector space V over F , a basis B of U , a function f from B into
V , and a linear combination l of B. Then (canLinTrans(f))(

∑
l) =
∑

(f ·l).
Proof: Set B1 = B. Define P[object, object] ≡ for every linear combi-
nation l of B1 such that $1 =

∑
l holds $2 =

∑
(f · l). Consider T being
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a function from the carrier of U into the carrier of V such that for every ob-
ject u such that u ∈ the carrier of U holds P[u, T (u)]. T = canLinTrans(f).
�

(18) Let us consider a field F , finite dimensional vector spaces U , V over F ,
a basis B of U , a function f from B into V , and a linear transformation
T from U to V . Then T = canLinTrans(f) if and only if for every element
u of U such that u ∈ B holds T (u) = f(u).

(19) Let us consider a field F , finite dimensional vector spaces U , V over F ,
a basisB of U , and a function f fromB into V . Then (canLinTrans(f))◦B ⊆
rng f .

(20) Let us consider a field F , a non trivial, finite dimensional vector space U
over F , a finite dimensional vector space V over F , a basis B of U , a func-
tion f from B into V , and a linear combination l2 of rng f . Then there exi-
sts a linear combination l1 of B such that (canLinTrans(f))(

∑
l1) =

∑
l2.

Proof: Define P[natural number] ≡ for every linear combination l2 of
rng f such that the support of l2 = $1 there exists a linear combination l1
of B such that (canLinTrans(f))(

∑
l1) =

∑
l2. P[0] by [1, (9)]. P[1]. For

every natural number k, P[k]. Consider n being a natural number such
that α = n, where α is the support of l2. �

Let us consider a field F , a non trivial, finite dimensional vector space U over
F , a finite dimensional vector space V over F , a basis B of U , and a function f
from B into V . Now we state the propositions:

(21) im canLinTrans(f) = Lin(rng f). The theorem is a consequence of (19),
(5), and (20).

(22) canLinTrans(f) is one-to-one if and only if rng f is linearly independent
and f is one-to-one.

3. The Vector Space Rn

Let R be a ring and n be a natural number. The functor vectorAdd(n,R)
yielding a binary operation on (the carrier of R)n is defined by

(Def. 5) for every n-tuples u, v of the carrier of R, it(u, v) = u+ v.

The functor vectorMult(n,R) yielding a function from (the carrier of R) ×
(the carrier of R)n into (the carrier of R)n is defined by

(Def. 6) for every element a of R and for every n-tuple u of the carrier of R,
it(a, u) = a · u.

The functor RnVS yielding a strict vector space structure over R is defined by
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(Def. 7) the carrier of it = (the carrier of R)n and the addition of it = vectorAdd
(n,R) and the zero of it = n 7→ 0R and the left multiplication of it =
vectorMult(n,R).

One can verify that RnVS is non empty and RnVS is Abelian, add-associative,
right zeroed, and right complementable and RnVS is scalar distributive, scalar
associative, and vector distributive. Let R be a commutative ring. Observe that
RnVS is scalar unital.

Let R be a ring and n, i be natural numbers. The functor i thunitVector(n,R)
yielding an element of (the carrier of R)n is defined by the term

(Def. 8) Replace(n 7→ 0R, i, 1R).

Now we state the propositions:

(23) Let us consider a ring R, and natural numbers n, i. Suppose 1 ¬ i ¬ n.
Then

(i) (i thunitVector(n,R))(i) = 1R, and

(ii) for every natural number j such that 1 ¬ j ¬ n and j 6= i holds
(i thunitVector(n,R))(j) = 0R.

(24) Let us consider a non degenerated ring R, and natural numbers n, i,
j. Suppose 1 ¬ i ¬ n and 1 ¬ j ¬ n. Then i thunitVector(n,R) =
j thunitVector(n,R) if and only if i = j. The theorem is a consequence
of (23).

Let R be a ring and n be a natural number. The functor Base(R,n) yielding
a subset of RnVS is defined by the term

(Def. 9) {i thunitVector(n,R), where i is a natural number : 1 ¬ i ¬ n}.

One can check that Base(R,n) is finite. Now we state the propositions:

(25) Let us consider a non degenerated ring R, and a natural number n. Then

Base(R,n) = n.
Proof: Define P[object, object] ≡ there exists a natural number x such
that $1 = x and $2 = x thunitVector(n,R). Consider f being a function
such that dom f = Seg n and for every object x such that x ∈ Seg n holds
P[x, f(x)]. �

(26) Let us consider a non degenerated, commutative ring R, a natural num-
ber n, a linear combination l of Base(R,n), an n-tuple v of the car-
rier of R, and a natural number i. If v =

∑
l and 1 ¬ i ¬ n, then

v(i) = l(i thunitVector(n,R)). The theorem is a consequence of (24) and
(23).

Let R be a non degenerated, commutative ring and n be a natural number.
Note that Base(R,n) is linearly independent. Now we state the proposition:
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(27) Let us consider a non degenerated, commutative ring R, and a natural
number n. Then Lin(Base(R,n)) = RnVS.

Let R be a non degenerated, commutative ring and n be a natural number.
One can check that Base(R,n) is base. Let F be a field. One can check that FnVS
is finite dimensional. Now we state the proposition:

(28) Let us consider a field F , and a natural number n. Then dim(FnVS) = n.
The theorem is a consequence of (25) and (27).

Let R be a ring and U , V be vector spaces over R. We say that U and V

are isomorphic if and only if

(Def. 10) there exists a linear transformation T from U to V such that T is bijec-
tive.

Now we state the propositions:

(29) Let us consider a field F , and finite dimensional vector spaces U , V over
F . Then U and V are isomorphic if and only if dim(U) = dim(V ). The
theorem is a consequence of (1), (22), and (21).

(30) Let us consider a field F , and a finite dimensional vector space U over
F . Then U and F

dim(U)
VS are isomorphic. The theorem is a consequence of

(28) and (29).

(31) Let us consider a finite ring R, and a natural number n. Then α = β
n
,

where α is the carrier of RnVS and β is the carrier of R.

Let R be a finite ring and n be a natural number. One can check that RnVS
is finite.

4. The Vector Space of Maps into a Ring R

Let X be a non empty set, L be a non empty additive loop structure, and
f , g be functions from X into L. The functor f ′ +′ g yielding a function from
X into L is defined by

(Def. 11) for every element x of X, it(x) = f(x) + g(x).

Let L be a non empty, Abelian additive loop structure. Observe that the
functor f ′ +′ g is commutative.

Let L be a non empty additive loop structure and f be a function from X

into L. The functor − f yielding a function from X into L is defined by

(Def. 12) for every element x of X, it(x) = −f(x).

Let L be a non empty multiplicative loop structure and a be an element of
L. The functor a ? f yielding a function from X into L is defined by

(Def. 13) for every element x of X, it(x) = a · f(x).



230 christoph schwarzweller et al.

Let L be a left unital, non empty multiplicative loop structure. One can
verify that 1L ? f reduces to f . Now we state the propositions:

(32) Let us consider a non empty set X, a non empty, add-associative additive
loop structure L, and functions f , g, h from X into L. Then f ′+′ g′+′ h =
f ′ +′ g′ +′ h.

(33) Let us consider a non empty set X, a non empty, add-associative, right
zeroed, right complementable additive loop structure L, and a function
f from X into L. Then f ′ +′ − f = X 7−→ 0L.

(34) Let us consider a non empty set X, a left distributive, non empty double
loop structure L, elements a, b of L, and a function f from X into L. Then
(a+ b) ? f = a ? f ′ +′ b ? f .

(35) Let us consider a non empty set X, an associative, non empty multipli-
cative loop structure L, elements a, b of L, and a function f from X into
L. Then a · b ? f = a ?(b ? f).

(36) Let us consider a non empty set X, a right distributive, non empty
double loop structure L, an element a of L, and functions f , g from X

into L. Then a ?(f ′ +′ g) = a ? f ′ +′ a ? g.

Let X be a non empty set and L be a non empty additive loop structure.
The functor mapAdd(X,L) yielding a binary operation on (the carrier of L)X

is defined by

(Def. 14) for every functions f , g from X into L, it(f, g) = f ′ +′ g.

Let L be a non empty multiplicative loop structure. The functor mapMult(X,
L) yielding a function from (the carrier of L) × (the carrier of L)X into

(the carrier of L)X is defined by

(Def. 15) for every function f fromX into L and for every element a of L, it(a, f) =
a ? f .

Let L be a non empty double loop structure. The functor Maps(X,L) yiel-
ding a strict vector space structure over L is defined by

(Def. 16) the carrier of it = (the carrier of L)X and the addition of it = mapAdd
(X,L) and the zero of it = X 7−→ 0L and the left multiplication of
it = mapMult(X,L).

Let X, L be non empty double loop structures. The functor Maps(X,L) is
defined by the term

(Def. 17) Maps((the carrier of X), L).

Let X be a non empty set and L be a non empty double loop structure.
Let us note that Maps(X,L) is non empty. Let L be a non empty, Abelian
double loop structure. Let us note that Maps(X,L) is Abelian. Let L be a non
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empty, add-associative double loop structure. Observe that Maps(X,L) is add-
associative. Let L be a non empty, right zeroed double loop structure. Observe
that Maps(X,L) is right zeroed.

Let L be a non empty, add-associative, right zeroed, right complementable
double loop structure. Note that Maps(X,L) is right complementable. Let L
be a left distributive, non empty double loop structure. One can check that
Maps(X,L) is scalar distributive. Let L be an associative, non empty double loop
structure. One can check that Maps(X,L) is scalar associative. Let L be a right
distributive, non empty double loop structure. One can check that Maps(X,L)
is vector distributive. Let L be a left unital, non empty double loop structure.
One can verify that Maps(X,L) is scalar unital.

5. The Vector Space of Linear Transformations

Let X be a non empty set, R be a non empty 1-sorted structure, L be a non
empty vector space structure over R, f be a function from X into L, and a be
an element of R. The functor a ? f yielding a function from X into L is defined
by

(Def. 18) for every element x of X, it(x) = a · f(x).

Let R be a non empty ring and L be a scalar unital, non empty vector space
structure over R. One can check that 1R ? f reduces to f . Now we state the
propositions:

(37) Let us consider a non empty set X, a ring R, a scalar distributive, non
empty vector space structure L over R, elements a, b of R, and a function
f from X into L. Then (a+ b) ? f = a ? f ′ +′ b ? f .

(38) Let us consider a non empty set X, a ring R, a scalar associative, non
empty vector space structure L over R, elements a, b of R, and a function
f from X into L. Then a · b ? f = a ?(b ? f).

(39) Let us consider a non empty set X, a ring R, a vector distributive, non
empty vector space structure L over R, elements a, b of R, and functions
f , g from X into L. Then a ?(f ′ +′ g) = a ? f ′ +′ a ? g.

Let X be a non empty set, R be a non empty additive loop structure, and
L be a non empty vector space structure over R. The functor mapAdd(X,L)
yielding a binary operation on (the carrier of L)X is defined by

(Def. 19) for every functions f , g from X into L, it(f, g) = f ′ +′ g.

LetR be a non empty multiplicative loop structure. The functor mapMult(X,
L) yielding a function from (the carrier of R) × (the carrier of L)X into

(the carrier of L)X is defined by
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(Def. 20) for every function f from X into L and for every element a of R,
it(a, f) = a ? f .

Let R be a non empty double loop structure. The functor Maps(X,L) yiel-
ding a strict vector space structure over R is defined by

(Def. 21) the carrier of it = (the carrier of L)X and the addition of it = mapAdd
(X,L) and the zero of it = X 7−→ 0L and the left multiplication of
it = mapMult(X,L).

Let L1, L2 be non empty vector space structures overR. The functor Maps(L1,
L2) is defined by the term

(Def. 22) Maps((the carrier of L1), L2).

Let X be a non empty set and L be a non empty vector space structure over
R. One can verify that Maps(X,L) is non empty.

Let R be a ring and L be a non empty, Abelian vector space structure over
R. Observe that Maps(X,L) is Abelian.

Let L be a non empty, add-associative vector space structure over R. Note
that Maps(X,L) is add-associative.

Let L be a non empty, right zeroed vector space structure over R. Let us
observe that Maps(X,L) is right zeroed.

Let L be an add-associative, right zeroed, right complementable, non empty
vector space structure over R. One can verify that Maps(X,L) is right comple-
mentable.

Let L be a scalar distributive, non empty vector space structure over R.
Note that Maps(X,L) is scalar distributive.

Let L be a scalar associative, non empty vector space structure over R. Let
us observe that Maps(X,L) is scalar associative.

Let L be a vector distributive, non empty vector space structure over R.
Note that Maps(X,L) is vector distributive.

Let L be a scalar unital, non empty vector space structure over R. Let us
observe that Maps(X,L) is scalar unital.

Let U , V be vector spaces over R. One can check that the functor Maps(U, V )
yields a vector space over R. Now we state the propositions:

(40) Let us consider a commutative ring R, vector spaces U , V over R, and
linear transformations f , g from U to V . Then f ′+′ g is a linear transfor-
mation from U to V .

(41) Let us consider a commutative ring R, vector spaces U , V over R, a linear
transformation f from U to V , and an element a of R. Then a ? f is a linear
transformation from U to V .

Let F be a field and U , V be vector spaces over F . The functor LinTrans(U, V )
yielding a strict subspace of Maps(U, V ) is defined by



Some standard examples of vector spaces 233

(Def. 23) the carrier of it = the set of all f where f is a linear transformation
from U to V .

Let V be a vector space over F . The functor End(V ) yielding a subspace of
Maps(V, V ) is defined by the term

(Def. 24) LinTrans(V, V ).
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