

Elementary Number Theory Problems. Part XIII

Artur Korniłowicz^D Faculty of Computer Science University of Białystok Poland

Rafał Ziobro[®] Department of Carbohydrate Technology University of Agriculture Kraków, Poland

Summary. This paper formalizes problems 41, 92, 121–123, 172, 182, 183, 191, 192 and 192a from "250 Problems in Elementary Number Theory" by Wacław Sierpiński [8].

MSC: 11A41 03B35 68V20 Keywords: number theory; divisibility; prime number

MML identifier: NUMBER13, version: 8.1.14 5.79.1465

INTRODUCTION

In this paper, Problems 41 from Section I, 92, 121, 122, 123 from Section IV, 172, 182, 183, 191, 192, and 192a from Section V of [8] are formalized, using the Mizar formalism [2], [1]. The paper is a part of the project *Formalization of Elementary Number Theory in Mizar* [7], [4], [5], [6], [3].

In the preliminary section, we proved some trivial but useful facts about numbers.

In problem 92 the inequality $p_{k+1} + p_{k+2} \leq p_1 \cdot p_2 \cdot \ldots \cdot p_k$ should be justified for any integer $k \geq 3$, where p_k denotes the k-th prime. Because we count primes starting from the index 0, we formulated the fact as:

```
3 <= k implies
primenumber(k) + primenumber(k+1) <= Product primesFinS(k);</pre>
```

where primesFinS(k) denotes the finite sequence of primes of the length k, and elements of finite sequences are indexed from 1.

Problem 121 about finding the least positive integer n for which $k \cdot 2^{2^n} + 1$ is composite is represented as separated theorems for every positive $k \leq 10$.

Problem 122 requires finding all positive integers $k \leq 10$ such that every number $k \cdot 2^{2^n} + 1$ (n = 1, 2, ...) is composite. The proof lies in the fact that numbers $(3 \cdot t + 2) \cdot 2^{2^n} + 1$ are all divisible by 3 and greater than 3, for every natural t, and every positive natural n. In the book, there are minor misprints in the proof, where $2 \cdot 2^{2^2} + 1$ should be $2 \cdot 2^{2^n} + 1$ and $5 \cdot 2^{2^2} + 1$ should be $5 \cdot 2^{2^n} + 1$.

Problems 191 and 192 are generalized from positive integers to non-zero integers.

Problem 192a is formulated incorrectly in the book. It asks to prove that the system of two equations $x^2 + 7y^2 = z^2$ and $7x^2 + y^2 = t^2$ has no solutions in positive integers x, y, z, and t. However, it has solutions, for instance, x = 3, y = 1, z = 4, and t = 8. The example is provided in the book.

Proofs of other problems are straightforward formalizations of solutions given in the book.

1. Preliminaries

From now on a, b, c, k, m, n denote natural numbers, i, j denote integers, and p denotes a prime number.

Now we state the propositions:

(1) If n < 3, then n = 0 or n = 1 or n = 2.

(2) If n < 4, then n = 0 or n = 1 or n = 2 or n = 3.

(3) If n < 5, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4.

Let us note that $\frac{1}{2}$ is non integer and there exists a rational number which is non natural and there exists a rational number which is non integer.

Now we state the proposition:

(4) If $j \neq 0$ and $\frac{i}{i}$ is integer, then $j \mid i$.

Let q be a non integer rational number. One can verify that q^2 is non integer. Now we state the proposition:

(5) If $\frac{a}{b} \cdot c$ is natural and $b \neq 0$ and a and b are relatively prime, then there exists a natural number d such that $c = b \cdot d$.

2. Problem 41

Let us consider an integer k. Now we state the propositions:

- (6) $2 \cdot k + 1$ and $9 \cdot k + 4$ are relatively prime.
- (7) $gcd(2 \cdot k 1, 9 \cdot k + 4) = gcd(k + 8, 17).$

3. Problem 92

Now we state the proposition:

(8) If m > 1 and n > 1 and m and n are relatively prime, then there exist prime numbers p, q such that $p \mid m$ and $p \nmid n$ and $q \mid n$ and $q \nmid m$ and $p \neq q$.

Let us consider k. The functor primesFinS(k) yielding a finite sequence of elements of \mathbb{N} is defined by

(Def. 1) len it = k and for every natural number i such that i < k holds it(i+1) = pr(i).

Let us observe that primesFinS(0) is empty. Now we state the propositions:

- (9) primesFinS(1) = $\langle 2 \rangle$.
- (10) primesFinS(2) = $\langle 2, 3 \rangle$.
- (11) primesFinS(3) = $\langle 2, 3, 5 \rangle$.
- (12) p < pr(k) if and only if primeindex(p) < k.
- (13) If $\operatorname{primeindex}(p) < k$, then $1 + \operatorname{primeindex}(p) \in \operatorname{dom}(\operatorname{primesFinS}(k))$.
- (14) If $\operatorname{primeindex}(p) < k$, then $(\operatorname{primesFinS}(k))(1 + \operatorname{primeindex}(p)) = p$.
- (15) If p < pr(k), then $p \in rng primesFinS(k)$. The theorem is a consequence of (13), (12), and (14).
- (16) If p and $\prod \text{ primesFinS}(k)$ are relatively prime, then $\text{pr}(k) \leq p$. The theorem is a consequence of (15).

Let us consider k. Let us note that $\operatorname{primesFinS}(k)$ is positive yielding and $\operatorname{primesFinS}(k)$ is increasing.

Let R be an extended real-valued binary relation. We say that R has values greater or equal one if and only if

(Def. 2) for every extended real r such that $r \in \operatorname{rng} R$ holds $r \ge 1$.

Observe that $\langle 1 \rangle$ has values greater or equal one and there exists a naturalvalued finite sequence which has values greater or equal one.

Let f be an extended real-valued function. Let us observe that f has values greater or equal one if and only if the condition (Def. 3) is satisfied.

(Def. 3) for every object x such that $x \in \text{dom } f$ holds $f(x) \ge 1$.

Let f be an extended real-valued finite sequence. One can verify that f has values greater or equal one if and only if the condition (Def. 4) is satisfied.

(Def. 4) for every natural number n such that $1 \le n \le \text{len } f$ holds $f(n) \ge 1$.

One can verify that every extended real-valued binary relation which is empty has also values greater or equal one and every extended real-valued binary relation which has values greater or equal one is also positive yielding.

Now we state the propositions:

- (17) If $m \leq n$, then primesFinS(n) $\upharpoonright m = \text{primesFinS}(m)$.
- (18) Let us consider extended real-valued binary relations P, R. Suppose rng $P \subseteq$ rng R and R has values greater or equal one. Then P has values greater or equal one.
- (19) Let us consider extended real-valued finite sequences f, g. Suppose $f \cap g$ has values greater or equal one. Then
 - (i) f has values greater or equal one, and
 - (ii) g has values greater or equal one.
- (20) Let us consider an extended real r. If $\langle r \rangle$ has values greater or equal one, then $r \ge 1$.

Let us consider a real-valued finite sequence f with values greater or equal one. Now we state the propositions:

(21) $\prod f \ge 1.$

PROOF: Define $\mathcal{P}[\text{finite sequence of elements of } \mathbb{R}] \equiv \text{for every real-valued}$ finite sequence g with values greater or equal one such that $g = \$_1$ holds $\prod \$_1 \ge 1$. For every finite sequence p of elements of \mathbb{R} and for every element x of \mathbb{R} such that $\mathcal{P}[p]$ holds $\mathcal{P}[p \cap \langle x \rangle]$. For every finite sequence p of elements of \mathbb{R} , $\mathcal{P}[p]$. \Box

(22) $\prod (f \upharpoonright n) \leq \prod f$. The theorem is a consequence of (19) and (20).

Let us consider k. One can verify that $\operatorname{primesFinS}(k)$ has values greater or equal one.

Now we state the proposition:

(23) If $3 \leq k$, then $\operatorname{pr}(k) + \operatorname{pr}(k+1) \leq \prod \operatorname{primesFinS}(k)$. The theorem is a consequence of (8) and (16).

4. Problem 121

Let k, n be natural numbers. We say that n satisfies Sierpiński Problem 121 for k if and only if

(Def. 5) $k \cdot 2^{2^n} + 1$ is composite and for every positive natural number m such that m < n holds $k \cdot 2^{2^m} + 1$ is not composite.

Now we state the propositions:

- (24) 5 satisfies Sierpiński Problem 121 for 1. The theorem is a consequence of (3).
- (25) 1 satisfies Sierpiński Problem 121 for 2.
- (26) 2 satisfies Sierpiński Problem 121 for 3.
- (27) 2 satisfies Sierpiński Problem 121 for 4.
- (28) 1 satisfies Sierpiński Problem 121 for 5.
- (29) 1 satisfies Sierpiński Problem 121 for 6.
- (30) 3 satisfies Sierpiński Problem 121 for 7. The theorem is a consequence of (1).
- (31) 1 satisfies Sierpiński Problem 121 for 8.
- (32) 2 satisfies Sierpiński Problem 121 for 9.
- (33) 2 satisfies Sierpiński Problem 121 for 10.

5. Problem 122

Let us consider a positive natural number n.

Now we state the propositions:

- $(34) \quad 3 \mid (3 \cdot a + 2) \cdot 2^{2^n} + 1.$
- (35) $2 \cdot 2^{2^n} + 1$ is composite.
- (36) $5 \cdot 2^{2^n} + 1$ is composite. The theorem is a consequence of (34).
- (37) $8 \cdot 2^{2^n} + 1$ is composite. The theorem is a consequence of (34).
- (38) Let us consider a positive natural number k. Then $k \leq 10$ and for every positive natural number $n, k \cdot 2^{2^n} + 1$ is composite if and only if $k \in \{2, 5, 8\}$. The theorem is a consequence of (24), (26), (27), (30), (32), (33), (35), (36), and (37).

6. Problem 123

Now we state the propositions:

- $(39) \quad 2^{2^{n+1}} + 2^{2^n} + 1 \ge 7.$
- (40) If n > 0, then $2^{2^{n+1}} + 2^{2^n} + 1 \ge 21$.
- (41) If n > 1, then $2^{2^{n+1}} + 2^{2^n} + 1 \ge 273$.
- (42) If m is even or $m = 2 \cdot n$, then $2^m \mod 3 = 1$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv 2^{2 \cdot \$_1} \mod 3 = 1$. For every k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every k, $\mathcal{P}[k]$. \Box
- (43) If m is odd or $m = 2 \cdot n + 1$, then $2^m \mod 3 = 2$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv 2^{2 \cdot \$_1 + 1} \mod 3 = 2$. For every k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every k, $\mathcal{P}[k]$. \Box
- (44) Let us consider a non zero natural number n. Then $3 \mid 2^{2^{n+1}} + 2^{2^n} + 1$. The theorem is a consequence of (42).
- (45) $7 \mid 2^{2^{n+1}} + 2^{2^n} + 1$. The theorem is a consequence of (42) and (43). Let *n* be a non zero natural number. Note that $\frac{1}{3} \cdot (2^{2^{n+1}} + 2^{2^n} + 1)$ is natural. Now we state the proposition:
- (46) Let us consider a non zero natural number n. If n > 1, then $\frac{1}{3} \cdot (2^{2^{n+1}} + 2^{2^n} + 1)$ is composite. The theorem is a consequence of (39), (45), (44), and (41).

7. Problem 172

Now we state the proposition:

(47) Let us consider positive natural numbers n, x, y, z. Then $n^x + n^y = n^z$ if and only if n = 2 and y = x and z = x + 1.

8. Problem 182

Now we state the proposition:

(48) Let us consider real numbers a, b, c. If c > 1 and $c^a = c^b$, then a = b.

Let us consider positive natural numbers n, x, y, z, t. Now we state the propositions:

(49) If $x \leq y \leq z$, then $n^x + n^y + n^z = n^t$ iff n = 2 and y = x and z = x + 1and t = x + 2 or n = 3 and y = x and z = x and t = x + 1. (50) $n^x + n^y + n^z = n^t$ if and only if n = 2 and y = x and z = x + 1 and t = x + 2 or n = 2 and y = x + 1 and z = x and t = x + 2 or n = 2 and z = y and x = y + 1 and t = y + 2 or n = 3 and y = x and z = x and t = x + 1. The theorem is a consequence of (49).

9. Problem 183

Now we state the proposition:

(51) Let us consider positive natural numbers x, y, z, t. Then $4^x + 4^y + 4^z \neq 4^t$.

10. Problem 191

Now we state the proposition:

(52) Let us consider non zero integers
$$x, y, z, t$$
. Then

- (i) $x^2 + 5 \cdot y^2 \neq z^2$, or
- (ii) $5 \cdot x^2 + y^2 \neq t^2$.

11. Problem 192

Now we state the propositions:

(53) Let us consider non zero integers x, y, z, t. Then

(i)
$$x^2 + 6 \cdot y^2 \neq z^2$$
, or

(ii)
$$6 \cdot x^2 + y^2 \neq t^2$$
.

(54) (i) $3^2 + 7 \cdot 1^2 = 4^2$, and (ii) $7 \cdot 3^2 + 1^2 = 8^2$.

References

- Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [3] Adam Grabowski. Elementary number theory problems. Part XII primes in arithmetic progression. Formalized Mathematics, 31(1):277–286, 2023. doi:10.2478/forma-2023-0022.

- [4] Artur Korniłowicz. Elementary number theory problems. Part IX. Formalized Mathematics, 31(1):161–169, 2023. doi:10.2478/forma-2023-0015.
- [5] Artur Korniłowicz. Elementary number theory problems. Part X Diophantine equations. Formalized Mathematics, 31(1):171–180, 2023. doi:10.2478/forma-2023-0016.
- [6] Adam Naumowicz. Elementary number theory problems. Part XI. Formalized Mathematics, 31(1):229–275, 2023. doi:10.2478/forma-2023-0021.
- [7] Adam Naumowicz. Dataset description: Formalization of elementary number theory in Mizar. In Christoph Benzmüller and Bruce R. Miller, editors, Intelligent Computer Mathematics – 13th International Conference, CICM 2020, Bertinoro, Italy, July 26–31, 2020, Proceedings, volume 12236 of Lecture Notes in Computer Science, pages 303–308. Springer, 2020. doi:10.1007/978-3-030-53518-6_22.
- [8] Wacław Sierpiński. 250 Problems in Elementary Number Theory. Elsevier, 1970.

Accepted June 18, 2024