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Summary. In this article we extend the algebraic theory of ordered fields
[6], [8] in Mizar. We introduce extensions of orderings: if E is a field extension
of F , then an ordering P of F extends to E, if there exists an ordering O of
E containing P . We first prove some necessary and sufficient conditions for P
being extendable to E, in particular that P extends to E if and only if the set
QS E := {

∑
a ∗ b2 | a ∈ P, b ∈ E} is a preordering of E – or equivalently if

and only if −1 /∈ QS E. Then we show for non-square a ∈ F that P extends to
F (
√
a) if and only if P and finally that every ordering P of F extends to E if

the degree of E over F is odd.
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Introduction

In this article we extend the algebraic theory of ordered fields [5] using the
Mizar formalism [1, 4, 2]. We define extensions of orderings: if E is a field
extension of F and P an ordering of F , then P extends to E, if there is an
ordering of E containing P .

In the preliminary section, we provide a number of technical lemmas. Among
others we define the sets P+ and P− of positive and negative elements, respec-
tively, and show that the existence of a partition {P+, {0}, P } is equivalent to
our definition of orderings, e.g. that P+ ∪ {0} is a positive cone [5].
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The next section is devoted to polynomials [9]. Here we prove some theorems
necessary for our main results, for example, that every polynomial of odd degree
has an irreducible factor of odd degree. We also show the – rather technical –
fact that evaluating a sum of polynomials is the same as summing up evaluations
of the addends, that is for a ∈ E we have

(
n∑
i=1

pi)(a) =
n∑
i=1

pi(a).

The third section presents more properties of the fields F (a) for an element
a such that a2 ∈ F , but a /∈ F . In this case the degree of the extension is 2, so
that the representation of elements of F (a) by x+ ·a · y with x, y ∈ F is unique
[7]. This follows from {1, a} being a basis of F (a)’s corresponding vector space
[3].

Then in Section 4 we define extensions (cf. [13, 10]) of orderings and intro-
duce the set of P -quadratic sums of E

QS(E) := {
∑
a · b2 | a ∈ P, b ∈ E}.

We show that P extends to E if and only if QS(E) is an ordering of P , which
is the case if and only if 1 /∈ QS(E). This allows to prove our main theorems
[8]: Firstly, that for a non-square element a ∈ F an ordering P of F extends to
F (a) if and only if

√
a ∈ P ; because if

−1 =
∑
ai · (xi + ·a · yi)2 ∈ QS(E),

then because −1 = 1 + a ∗ 0 would follow

−1 =
∑
ai · xi2 + ·ai · y2i · a2,

and hence −1 ∈ P , because ai, a2 ∈ F .
Secondly, that every ordering P of F extends to a field extension E of odd

degree. The proof is by induction and uses the fact that E is a simple extension
of F , e.g. E = F (a). Then, because {1, a, . . . , an−1} is a basis of E, from −1 =∑
ai · (xi+a ·yi)2 would follow the existence of an irreducible polynomial h with

odd degree < n, so that by induction hypothesis P extends to F (b), where h is
the minimal polynomial of b. Then, however, the equation can again be pushed
down to F giving −1 ∈ P .

1. Preliminaries

The scheme 3SeqDEx deals with a non empty set D and a natural number
A and a binary predicate P and a binary predicate Q and a binary predicate R
and states that
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(Sch. 1) There exist finite sequences p, q, r of elements of D such that dom p =
SegA and dom q = SegA and dom r = SegA and for every natural number
k such that k ∈ SegA holds P[k, p(k)] and for every natural number k such
that k ∈ SegA holds Q[k, q(k)] and for every natural number k such that
k ∈ SegA holds R[k, r(k)]

provided

• for every natural number k such that k ∈ SegA there exists an element x
of D such that P[k, x] and

• for every natural number k such that k ∈ SegA there exists an element x
of D such that Q[k, x] and

• for every natural number k such that k ∈ SegA there exists an element x
of D such that R[k, x].

Now we state the proposition:

(1) Let us consider an add-associative, right zeroed, right complementable,
non empty additive loop structure L. Then −{0L} = {0L}.

Let R be a ring. The functor 2.(R) yielding an element of R is defined by
the term

(Def. 1) 1R + 1R.

Let us note that there exists a field which has characteristic 2. Let R be
a ring with characteristic 2. One can verify that 2.(R) is zero.

Let R be a non degenerated ring without characteristic 2. One can verify
that 2.(R) is non zero and 2.(FQ) is non square and 2.(RF) is a square and
there exists a field which is preordered and polynomial-disjoint and every non
degenerated ring which is preordered and has also not characteristic 2. Now we
state the proposition:

(2) Let us consider a field F , an extension E of F , and a finite sequence f
of elements of E. Suppose for every natural number i such that i ∈ dom f
holds f(i) ∈ F . Then

(i) f is a finite sequence of elements of F , and

(ii)
∑
f ∈ F .

Let F be a field, a be sum of squares element of F , and b be sum of squares,
non zero element of F . Observe that a · (b−1) is a sum of squares. Let f be
a quadratic, non empty finite sequence of elements of F . Let us note that

∑
f

is a sum of squares. Let R be a zero structure. Let us observe that there exists
a finite sequence of elements of R which is trivial and ε(the carrier of R) is trivial
and every finite sequence of elements of R which is empty is also trivial.
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Let f , g be trivial finite sequences of elements of R. Observe that f a g is
trivial. Let R be a non degenerated ring, f be a non trivial finite sequence of
elements of R, and g be a finite sequence of elements of R. Observe that f a g

is non trivial and g a f is non trivial. Let R be a ring and f be a trivial finite
sequence of elements of R. One can check that

∑
f is zero. Let E be a field,

F be a subfield of E, and a be an element of F . The functor @(a,E) yielding
an element of E is defined by the term

(Def. 2) a.

Let a be an element of E. We say that a is F -membered if and only if

(Def. 3) a ∈ the carrier of F .

Let us observe that there exists an element of E which is F -membered. Let
a be an element of E. Assume a is F -membered. The functor @(F, a) yielding
an element of F is defined by the term

(Def. 4) a.

Let a be an F -membered element of E. Observe that @(F, a) reduces to a.
Let R be a non degenerated ring. One can check that 1R is non zero and −1R
is non zero. Let R be a preordered, non degenerated ring, P be a preordering of
R, and a, b be P -positive elements of R. Let us observe that a+ b is P -positive.

Let R be a preordered integral domain. Let us note that a · b is P -positive.
Let R be a ring and S be a subset of R. The functors: S+ and S− yielding
subsets of R are defined by terms

(Def. 5) S \ {0R},
(Def. 6) (−S) \ {0R},

respectively. Let R be a preordered, non degenerated ring and P be a preordering
of R. Let us note that P+ is non empty and P− is non empty and P+ ∩ P− is
empty and P+ is closed under addition. Let R be a preordered integral domain.
Note that P+ is closed under multiplication. Now we state the propositions:

(3) Let us consider a preordered, non degenerated ring R, and a preordering
P of R. Then

(i) P + P+ ⊆ P+, and

(ii) P+ + P ⊆ P+.

(4) Let us consider a preordered integral domain R, and a preordering P of
R. Then

(i) (P−) · (P−) ⊆ P+, and

(ii) (P+) · (P−) ⊆ P−, and

(iii) (P−) · (P+) ⊆ P−.
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(5) Let us consider a non degenerated integral domain R, and a subset S of
R. Suppose S is a positive cone. Then

(i) {S+, {0R}, S−} is a partition of the carrier of R, and

(ii) S+ is closed under addition and closed under multiplication.

(6) Let us consider a non degenerated ring R, and a subset S of R. Suppose
{S, {0R},−S} is a partition of the carrier of R and S is closed under
addition and closed under multiplication. Then S ∪ {0R} is a positive
cone. The theorem is a consequence of (1).

(7) Let us consider an ordered field F , an extension E of F , an ordering P
of F , and a finite sequence f of elements of E. Suppose for every natural
number i such that i ∈ dom f holds f(i) ∈ P . Then

∑
f ∈ P .

Proof: Define P[natural number] ≡ for every finite sequence f of elements
of E such that len f = $1 and for every natural number i such that i ∈
dom f holds f(i) ∈ P holds

∑
f ∈ P . P[0] by [11, (2)], [12, (25)]. For

every natural number k, P[k]. Consider n being a natural number such
that len f = n. �

(8) Let us consider an ordered field F , an ordering P of F , and a field E.
Suppose E ≈ F . Then

(i) E is ordered, and

(ii) there exists a subset Q of E such that Q = P and Q is a positive
cone.

Let F be an ordered field. Let us observe that there exists an extension of
F which is ordered.

2. Some Properties of Polynomials

Let F be a field, g be a non empty finite sequence of elements of the carrier of
Polynom-RingF , and i be an element of dom g. Let us observe that the functor
g(i) yields an element of the carrier of Polynom-RingF . Let us consider a field
F and polynomials p, q over F . Now we state the propositions:

(9) If LC p+ LC q 6= 0F , then deg((p+ q)) = max(deg(p),deg(q)).

(10) (i) if deg(p) > deg(q), then LC(p+ q) = LC p, and

(ii) if deg(p) < deg(q), then LC(p+ q) = LC q, and

(iii) if deg(p) = deg(q) and LC p + LC q 6= 0F , then LC(p + q) = LC p +
LC q.

The theorem is a consequence of (9).

Now we state the propositions:
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(11) Let us consider a field F , and an element p of the carrier of Polynom-Ring
F . Then deg(NormPoly p) = deg(p).

(12) Let us consider a field F , and a non constant element p of the carrier
of Polynom-RingF . Then there exists a non constant, monic element q of
the carrier of Polynom-RingF such that

(i) q | p, and

(ii) q is irreducible.

Proof: Define Q[natural number] ≡ for every non constant element p of
the carrier of Polynom-RingF such that deg(p) = $1 there exists a non
constant, monic element q of the carrier of Polynom-RingF such that q | p
and q is irreducible. For every natural number k, Q[k]. �

(13) Let us consider a field F , and an element p of the carrier of Polynom-Ring
F . Suppose deg(p) is odd. Then there exists a non constant, monic element
q of the carrier of Polynom-RingF such that

(i) q | p, and

(ii) q is irreducible, and

(iii) deg(q) is odd.

The theorem is a consequence of (11) and (12).

(14) Let us consider a field F , a finite sequence f of elements of the carrier of
Polynom-RingF , and a non zero polynomial p over F . Suppose p =

∑
f .

Let us consider a finite sequence g of elements of F , and a natural number
n. Suppose for every element i of dom f for every polynomial q over F
such that q = f(i) holds deg(q) ¬ n. Then deg(p) ¬ n.

(15) Let us consider an ordered field F , an ordering P of F , a finite sequence
f of elements of the carrier of Polynom-RingF , and a non zero polynomial
p over F . Suppose p =

∑
f and for every element i of dom f and for every

polynomial q over F such that q = f(i) holds deg(q) is even and LC q ∈ P .
Then deg(p) is even.

(16) Let us consider a field F , an extension E of F , a polynomial p over F ,
an element a of F , and elements x, b of E. If b = a, then ExtEval(a·p, x) =
b · (ExtEval(p, x)).

(17) Let us consider a field F , an extension E of F , a finite sequence f
of elements of the carrier of Polynom-RingF , and a polynomial p over
F . Suppose p =

∑
f . Let us consider an element a of E, and a finite

sequence g of elements of E. Suppose len g = len f and for every element
i of dom f and for every polynomial q over F such that q = f(i) holds
g(i) = ExtEval(q, a). Then ExtEval(p, a) =

∑
g.
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3. More on the Fields F (a)

Now we state the propositions:

(18) Let us consider a field F , an extension E of F , an element a of E, and
an element b of F . If b = a2, then ExtEval(X2- b, a) = 0E .

(19) Let us consider a field F , an extension E of F , and an element a of E.
If a2 ∈ F , then a is F-algebraic. The theorem is a consequence of (18).

(20) Let us consider a field F , an extension E of F , and an F-algebraic element
a of E. Then a /∈ F if and only if for every non zero polynomial p over F
such that ExtEval(p, a) = 0E holds deg(p)  2.

(21) Let us consider a field F , an extension E of F , and an F-algebraic element
a of E. Suppose a /∈ F . Let us consider an element b of F . If b = a2, then
MinPoly(a, F ) = X2- b. The theorem is a consequence of (18) and (20).

(22) Let us consider a field F , an extension E of F , and an element a of E.
Suppose a /∈ F and a2 ∈ F . Then

(i) {1E , a} is a basis of VecSp(FAdj(F, {a}), F ), and

(ii) deg(FAdj(F, {a}), F ) = 2.

Proof: Reconsider a1 = a as an F-algebraic element of E. Reconsider
b = a2 as an element of F . deg(MinPoly(a1, F )) = deg(X2- b). Base(a1) =
{1E , a}. �

(23) Let us consider a field F , an extension E of F , an F-algebraic element
a of E, and an element b of E. Then b ∈ the carrier of FAdj(F, {a})
if and only if there exists a polynomial p over F such that deg(p) <
deg(MinPoly(a, F )) and b = ExtEval(p, a).

(24) Let us consider a field F , an extension E of F , and an element a of E.
Suppose a2 ∈ F . Let us consider an element b of FAdj(F, {a}). Then there
exist elements c1, c2 of FAdj(F, {a}) such that

(i) c1, c2 ∈ F , and

(ii) b = c1 + (@(FAdj(F, {a}), a)) · c2.

The theorem is a consequence of (22).

(25) Let us consider a field F , an extension E of F , and an element a of
E. Suppose a /∈ F and a2 ∈ F . Let us consider elements c1, c2, d1, d2 of
FAdj(F, {a}). Suppose c1, c2, d1, d2 ∈ F and c1+(@(FAdj(F, {a}), a))·c2 =
d1 + (@(FAdj(F, {a}), a)) · d2. Then

(i) c1 = d1, and

(ii) c2 = d2.
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Proof: Set K = FAdj(F, {a}). Set V = VecSp(K,F ). Set j = @(K, a).
Reconsider 1V = 1K , j1 = j as an element of V . Define P[object, object] ≡
$1 = 1K and $2 = c1 − d1 or $1 = j and $2 = c2 − d2 or $1 6= 1K and
$1 6= j and $2 = 0F . For every object x such that x ∈ the carrier of V
there exists an object y such that y ∈ the carrier of F and P[x, y].

Consider l being a function from the carrier of V into the carrier of F
such that for every object x such that x ∈ the carrier of V holds P[x, l(x)].
For every element v of V such that v /∈ {1V , j1} holds l(v) = 0F . {1V , j1}
is linearly independent. �

Let us consider a field F , an extension E of F , an element a of E, an element
b of F , and a quadratic, non empty finite sequence f of elements of FAdj(F, {a}).
Now we state the propositions:

(26) Suppose a /∈ F and a2 = b. Then there exist quadratic, non empty
finite sequences g1, g2 of elements of F and there exists a non emp-
ty finite sequence g3 of elements of F such that

∑
f = (@(

∑
g1 + b ·

(
∑
g2),FAdj(F, {a}))) + (@(FAdj(F, {a}), a)) · (@(

∑
g3,FAdj(F, {a}))).

(27) Suppose a /∈ F and a2 = b and
∑
f ∈ F . Then there exist quadratic,

non empty finite sequences g1, g2 of elements of F such that
∑
f =
∑
g1+

b · (
∑
g2). The theorem is a consequence of (26) and (25).

4. Extensions of Orderings

Let F be an ordered field, E be a field, and P be an ordering of F . We say
that P extends to E if and only if

(Def. 7) there exists a subset O of E such that P ⊆ O and O is a positive cone.

Let E be an ordered extension of F and O be an ordering of E. We say that
O extends P if and only if

(Def. 8) O ∩ (the carrier of F ) = P .

Let us consider an ordered field F , an ordered extension E of F , an ordering
P of F , and an ordering O of E. Now we state the propositions:

(28) O extends P if and only if for every element a of F , a ∈ P iff a ∈ O.

(29) O extends P if and only if P ⊆ O.

Let R be an ordered ring, P be an ordering of R, and a be an element of R.
The functor signum(P, a) yielding an integer is defined by the term

(Def. 9)


1, if a ∈ P \ {0R},
0, if a = 0R,
−1, otherwise.
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The functor signum(P ) yielding a function from the carrier of R into Z is
defined by

(Def. 10) for every element a of R, it(a) = signum(P, a).

Now we state the propositions:

(30) Let us consider an ordered integral domain R, an ordering P of R, and
an element a of R. Then a = signum(P, a) ? |a|P .

(31) Let us consider an ordered field F , an ordered extension E of F , an or-
dering P of F , and an ordering O of E. Then O extends P if and only if
signum(O)�(the carrier of F ) = signum(P ). The theorem is a consequence
of (29).

Let F be an ordered field, E be an extension of F , P be an ordering of F ,
and f be a finite sequence of elements of E. We say that f is P -quadratic if and
only if

(Def. 11) for every element i of N such that i ∈ dom f there exists a non zero
element a of E and there exists an element b of E such that a ∈ P and
f(i) = a · b2.

Observe that there exists a finite sequence of elements of E which is P -
quadratic and non empty. Let f , g be P -quadratic finite sequences of elements
of E. One can check that f a g is P -quadratic as a finite sequence of elements
of E. Now we state the proposition:

(32) Let us consider an ordered field F , an extension E of F , an ordering P of
F , a P -quadratic finite sequence f of elements of E, and finite sequences
g1, g2 of elements of E. Suppose f = g1 a g2. Then

(i) g1 is P -quadratic, and

(ii) g2 is P -quadratic.

Let F be an ordered field, E be an extension of F , and P be an ordering
of F . The functor P -quadraticSums(E) yielding a non empty subset of E is
defined by the term

(Def. 12) the set of all
∑
f where f is a P -quadratic finite sequence of elements

of E.

We introduce the notation QS(E,P ) as a synonym of P -quadraticSums(E).
Let us observe that QS(E,P ) is closed under addition and closed under multi-
plication and has all sums of squares. Now we state the propositions:

(33) Let us consider an ordered field F , an ordering P of F , an extension E
of F , and a non zero element a of E. Then a ∈ QS(E,P ) if and only if
there exists a P -quadratic, non empty finite sequence f of elements of E
such that

∑
f = a and for every element i of N such that i ∈ dom f holds

f(i) 6= 0E . The theorem is a consequence of (32).
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(34) Let us consider an ordered field F , an extension E of F , and an ordering
P of F . Then P ⊆ QS(E,P ).

(35) Let us consider an ordered field F , an ordered extension E of F , an orde-
ring P of F , and an ordering O of E. If O extends P , then QS(E,P ) ⊆ O.
Proof: P ⊆ O. Define P[natural number] ≡ for every P -quadratic finite
sequence f of elements of E such that len f = $1 holds

∑
f ∈ O. For every

natural number k, P[k]. �

Let us consider an ordered field F , an extension E of F , and an ordering P
of F . Now we state the propositions:

(36) QS(E,P ) is a prepositive cone if and only if −1E /∈ QS(E,P ).

(37) P extends to E if and only if QS(E,P ) is a prepositive cone. The theorem
is a consequence of (29), (35), (36), and (34).

(38) P extends to E if and only if for every P -quadratic, non empty finite
sequence f of elements of E such that

∑
f = 0E holds f is trivial. The

theorem is a consequence of (29), (36), and (37).

(39) Let us consider an ordered field F , an extension E of F , an ordering P of
F , and an element a of E. Suppose a2 ∈ F . Let us consider a P -quadratic,
non empty finite sequence f of elements of FAdj(F, {a}). Then there exist
non empty finite sequences g1, g2 of elements of FAdj(F, {a}) such that

(i)
∑
f =
∑
g1 + (@(FAdj(F, {a}), a)) · (2 ?

∑
g2), and

(ii) for every element i of N such that i ∈ dom g1 there exists a non
zero element b of FAdj(F, {a}) and there exist elements c1, c2 of
FAdj(F, {a}) such that b ∈ P and c1, c2 ∈ F and g1(i) = b · (c12 +
c2
2 · (@(FAdj(F, {a}), a))2), and

(iii) for every element i of N such that i ∈ dom g2 there exists a non
zero element b of FAdj(F, {a}) and there exist elements c1, c2 of
FAdj(F, {a}) such that b ∈ P and c1, c2 ∈ F and g2(i) = b · c1 · c2.

Proof: Define P[natural number] ≡ for every P -quadratic, non empty
finite sequence f of elements of FAdj(F, {a}) such that len f = $1 there
exist non empty finite sequences g1, g2 of elements of FAdj(F, {a}) such
that

∑
f =
∑
g1+(@(FAdj(F, {a}), a)) · (2 ?

∑
g2) and for every element i

of N such that i ∈ dom g1 there exists a non zero element b of FAdj(F, {a}).
There exist elements c1, c2 of FAdj(F, {a}) such that b ∈ P and c1,

c2 ∈ F and g1(i) = b · (c12 + c22 · (@(FAdj(F, {a}), a))2) and for every
element i of N such that i ∈ dom g2 there exists a non zero element b
of FAdj(F, {a}) and there exist elements c1, c2 of FAdj(F, {a}) such that
b ∈ P and c1, c2 ∈ F and g2(i) = b · c1 · c2. For every non zero natural



Extensions of orderings 351

number k, P[k]. Consider n being a natural number such that n = len f .
�

(40) Let us consider an ordered field F , an extension E of F , and an element a
of E. Suppose a2 ∈ F . Let us consider an ordering P of F . Then P extends
to FAdj(F, {a}) if and only if a2 ∈ P . The theorem is a consequence of
(29), (8), (39), (2), (25), (7), (36), and (37).

(41) Let us consider an ordered, polynomial-disjoint field F , an ordering P
of F , and a non square element a of F . Then P extends to FAdj(F, {

√
a})

if and only if a ∈ P . The theorem is a consequence of (40).

(42) Positives(FQ) extends to FAdj(FQ, {
√

2.(FQ)}). The theorem is a conse-
quence of (41).

(43) Positives(FQ) does not extend to FAdj(FQ, {
√
−1FQ}).

(44) Let us consider an ordered field F , an ordering P of F , an extension
E of F , an element a of F , and elements b, c of E. Suppose b2 = a and
c2 = −a. Then

(i) P extends to FAdj(F, {b}), or

(ii) P extends to FAdj(F, {c}).

The theorem is a consequence of (40).

(45) Let us consider an ordered, polynomial-disjoint field F , an ordering P
of F , and non square elements a, b of F . Suppose b = −a. Then

(i) P extends to FAdj(F, {
√
a}), or

(ii) P extends to FAdj(F, {
√
b}).

The theorem is a consequence of (41).

Let us consider a formally real field F , an extension E of F , an element a of
F , and an element b of E. Now we state the propositions:

(46) If b2 = a and a ∈ QS(F ), then FAdj(F, {b}) is formally real. The theorem
is a consequence of (40).

(47) If b2 = a and FAdj(F, {b}) is not formally real, then −a ∈ QS(F ). The
theorem is a consequence of (8) and (27).

Let us consider an ordered, polynomial-disjoint field F and a non square
element a of F . Now we state the propositions:

(48) If a ∈ QS(F ), then FAdj(F, {
√
a}) is formally real. The theorem is a con-

sequence of (46).

(49) If FAdj(F, {
√
a}) is not formally real, then −a ∈ QS(F ). The theorem is

a consequence of (47).
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(50) Let us consider an ordered field F , an ordering P of F , and an extension
E of F . If deg(E,F ) is an odd natural number, then P extends to E.
Proof: Define Q[natural number] ≡ for every extension E of F such that
deg(E,F ) = 2 · $1 + 1 holds P extends to E. For every natural number k,
Q[k]. Reconsider n = deg(E1, F ) as an odd natural number. Consider k
being an integer such that n = 2 · k + 1. �

(51) Let us consider an ordered field F , an ordering P of F , an irreducible
element p of the carrier of Polynom-RingF , an extension E of F , and
an element a of E. Suppose deg(p) is odd and a is a root of p in E. Then
P extends to FAdj(F, {a}). The theorem is a consequence of (11) and (50).
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