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Summary.We continue the formal development of the application of pie-
cewise linear functions and centroids in the area of fuzzy set theory. The corre-
sponding piecewise linear functions are symmetrical and composed by absolute
function. In this paper we prove that the membership functions of isosceles trian-
gle type and isosceles trapezoid type can be constructed by functions of this type.
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Introduction

In this paper, some mathematical properties of piecewise linear functions are
formalized in Mizar [11], [10] in order to use them in fuzzy set theory [2], [22]. The
focused piecewise linear functions are symmetrical and composed by absolute
function. L-R fuzzy number is applied for various fields [1], [3], [20], [12]. Since
isosceles triangle type and isosceles trapezoid type membership functions are
simple [4], they are applied for the membership functions of L-R fuzzy number
in most cases [17]. It is formalized that the membership functions of isosceles
triangle type [16] and isosceles trapezoid type (introduced formally in Mizar
in [5]) can be constructed by absolute value functions. We wanted to avoid
duplication [9] of some basic functional notions, so we use extensively Mizar
functor “AffineMap” denoting just linear function with two parameters.

We prove that the centroids of the composite function of two continuous
functions are the weighted averages of the areas and centroids of the functions
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that compose them [21]. Moreover, some calculation and operation between
membership functions for fuzzy approximate reasoning [19], e.g. Mamdani me-
thod [13] and the product-sum-gravity method [18] are formalized, extending
also the development of both fuzzy numbers within the Mizar Mathematical
Library [7] and fuzzy sets in general [14], [15], [8] (for another recent formal
development in this area, see [6]).

1. Preliminaries

From now on A denotes a non empty, closed interval subset of R. Now we
state the proposition:

(1) Let us consider real numbers b, c, d. If b > 0 and c > 0 and d > 0, then
b−d
b
c

< c.

Let us consider real numbers a, x. Now we state the propositions:

(2) a− |a · x| ¬ a.
(3) a− |x| ¬ a.
(4) Let us consider real numbers a, b, c, x. Then | b·(a−x−a)c | = | b·(a+x−a)c |.
Let us consider real numbers a, b, c. Now we state the propositions:

(5) |max(c, a)−max(c, b)| ¬ |a− b|.
(6) |min(c, a)−min(c, b)| ¬ |a− b|.
(7) Let us consider real numbers a, b, c, d. Then |min(c,max(d, a))−min(c,

max(d, b))| ¬ |a− b|. The theorem is a consequence of (6) and (5).

2. Continuous Functions

Let us consider a real number c and partial functions f , g from R to R. Now
we state the propositions:

(8) Suppose ]−∞, c] ⊆ dom f and [c,+∞[ ⊆ dom g.
Then f�]−∞, c[+·g�[c,+∞[ = f�]−∞, c]+·g�[c,+∞[.
Proof: Set f1 = f�]−∞, c[+·g�[c,+∞[. Set f2 = f�]−∞, c]+·g�[c,+∞[.
For every object x such that x ∈ dom f1 holds f1(x) = f2(x). �

(9) Suppose f is continuous and g is continuous and f(c) = g(c) and ]−∞, c]
⊆ dom f and [c,+∞[ ⊆ dom g. Then f�]−∞, c]+·g�[c,+∞[ is continuous.
Proof: Set F = f�]−∞, c]+·g�[c,+∞[. For every real number x0 such
that x0 ∈ domF holds F is continuous in x0. �
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(10) Let us consider a real number c, and functions f , g from R into R.
Suppose f is continuous and g is continuous and f(c) = g(c). Then
f�]−∞, c]+·g�[c,+∞[ is a continuous function from R into R. The the-
orem is a consequence of (9).

(11) Let us consider real numbers a, b, c, and functions f , g, h from R in-
to R. Suppose a ¬ b ¬ c and f is continuous and g is continuous and

h�[a, c] = f�[a, b]+·g�[b, c] and f(b) = g(b). Then
∫
[a,c]

h(x)dx =
∫
[a,b]

f(x)dx+

∫
[b,c]

g(x)dx.

(12) Let us consider a function f from R into R, and real numbers a, b, c.
Suppose a ¬ b ¬ c and [a, c] ⊆ dom f and f�[a, b] is bounded and f�[b, c]
is bounded and f is integrable on [a, b] and f is integrable on [b, c]. Then

(i) f is integrable on [a, c], and

(ii)
c∫
a

f(x)dx =
b∫
a

f(x)dx+
c∫
b

f(x)dx.

(13) Let us consider real numbers a, b, c, and a function f from R into R.
Suppose a ¬ c and f is integrable on [a, c] and f�[a, c] is bounded and
[a, c] ⊆ dom f and b ∈ [a, c]. Then

(i) f is integrable on [a, b], and

(ii) f is integrable on [b, c], and

(iii)
c∫
a

f(x)dx =
b∫
a

f(x)dx+
c∫
b

f(x)dx.

(14) Let us consider a real number a, and functions f , g, h from R into R.
Suppose f�A is bounded and f is integrable on A and g�A is bounded
and g is integrable on A and a ∈ A and h = f�]−∞, a]+·g�[a,+∞[ and
f(a) = g(a). Then h is integrable on A.
Proof: For every object x such that x ∈ dom(f�[inf A, a]) holds (f�[inf A,
a])(x) = (h�[inf A, a])(x).Forevery object xsuchthatx ∈ dom(g�[a, supA])
holds (g�[a, supA])(x) = (h�[a, supA])(x). f is integrable on [inf A, a]. g
is integrable on [a, supA]. �

(15) Let us consider real numbers a, b, c, and functions f , g from R into R.
Suppose a ¬ b ¬ c. Then (f�]−∞, b]+·g�[b,+∞[)�[a, c] = f�[a, b]+·g�[b, c].
Proof: For every object x such that x ∈ dom((f�]−∞, b]+·g�[b,+∞[)�[a,
c]) holds ((f�]−∞, b]+·g�[b,+∞[)�[a, c])(x) = (f�[a, b]+·g�[b, c])(x). �
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(16) Let us consider real numbers a, b, c, and functions f , g, h from R into R.
Suppose a ¬ b ¬ c and f is integrable on [a, c] and f�[a, c] is bounded and g
is integrable on [a, c] and g�[a, c] is bounded and h = f�]−∞, b]+·g�[b,+∞[

and f(b) = g(b). Then
∫
[a,c]

h(x)dx =
∫
[a,b]

f(x)dx+
∫
[b,c]

g(x)dx. The theorem

is a consequence of (15) and (14).

3. Area and Centroid of Continuous Functions

Now we state the propositions:

(17) Let us consider functions f , g, h from R into R, and real numbers a,
b, c. Suppose a ¬ b ¬ c and f is continuous and g is continuous and

h�[a, c] = f�[a, b]+·g�[b, c] and
∫
[a,b]

f(x)dx 6= 0 and
∫
[b,c]

g(x)dx 6= 0 and

f(b) = g(b). Then centroid(h, [a, c]) = 1∫
[a,c]

h(x)dx
· ((centroid(f, [a, b])) ·

(
∫
[a,b]

f(x)dx) + (centroid(g, [b, c])) · (
∫
[b,c]

g(x)dx)).

(18) Let us consider a function f from R into R, and real numbers a, b, c.
Suppose for every real number x, f(x) = b − | b·(x−a)c |. Let us consider
a real number y. Then f(a− y) = f(a+ y).

(19) Let us consider a function f from R into R, and real numbers a, b, c, d,
e. Suppose for every real number x, f(x) = min(d,max(e, b − | b·(x−a)c |)).
Let us consider a real number y. Then f(a− y) = f(a+ y).

(20) Let us consider real numbers a, b, c, d. Suppose b > 0 and c > 0 and d > 0
and d < b. Let us consider a real number x. Then (d ·TrapezoidalFS((a−
c), (a+ d−b

b
c

), (a+ b−d
b
c

), (a+ c)))(x) = min(d,max(0, b− | b·(x−a)c |)).

Proof: For every real number x, (d ·TrapezoidalFS((a−c), (a+ d−bb
c

), (a+

b−d
b
c

), (a+ c)))(x) = min(d,max(0, b− | b·(x−a)c |)). �

(21) Let us consider real numbers a, b, c, d. Suppose b > 0 and c > 0 and
d > 0 and d < b. Then centroid(d · TrapezoidalFS((a− c), (a+ d−b

b
c

), (a+
b−d
b
c

), (a+ c)), [a− c, a+ c]) = a.

Let us consider real numbers a, b, c, d and a function f from R into R. Now
we state the propositions:
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(22) Suppose b > 0 and c > 0 and d > 0 and d < b and for every real number
x, f(x) = min(d,max(0, b − | b·(x−a)c |)). Then f = d · TrapezoidalFS((a −
c), (a+ d−b

b
c

), (a+ b−d
b
c

), (a+ c)). The theorem is a consequence of (20).

(23) Suppose b > 0 and c > 0 and d > 0 and d < b and for every real number
x, f(x) = min(d,max(0, b−| b·(x−a)c |)). Then centroid(f, [a− c, a+ c]) = a.
The theorem is a consequence of (22) and (21).

Let us consider real numbers a, b, c, d, e and a function f from R into R.
Now we state the propositions:

(24) If b 6= 0 and c 6= 0 and for every real number x, f(x) = min(d,max(e, b−
| b·(x−a)c |)), then f is Lipschitzian.
Proof: There exists a real number r such that 0 < r and for every real
numbers x1, x2 such that x1, x2 ∈ dom f holds |f(x1)−f(x2)| ¬ r·|x1−x2|.
�

(25) If c 6= 0 and for every real number x, f(x) = min(d,max(e, b−| b·(x−a)c |)),
then f is Lipschitzian. The theorem is a consequence of (24).

Let us consider real numbers a, b, c, d and a function f from R into R. Now
we state the propositions:

(26) Suppose c > 0 and for every real number x, f(x) = min(d,max(0, b −
| b·(x−a)c |)). Then

(i) f is integrable on A, and

(ii) f�A is bounded.

The theorem is a consequence of (25).

(27) Suppose b > 0 and c > 0 and d > 0 and for every real number x,
f(x) = min(d,max(0, b− | b·(x−a)c |)). Then

(i) f(inf[a− c, a+ c]) = 0, and

(ii) f(sup[a− c, a+ c]) = 0.

(28) Let us consider real numbers a, b, c. Suppose b > 0 and c > 0. Let us
consider a real number x. If x /∈ [a−c, a+c], then max(0, b−| b·(x−a)c |) = 0.

Proof: Define H(element of R) = (max(0, b− | b·($1−a)c |))(∈ R). Consider
h being a function from R into R such that for every element x of R,
h(x) = H(x). For every real number x, h(x) = max(0, b− | b·(x−a)c |). �

(29) Let us consider real numbers a, b, c, d. Suppose b > 0 and c > 0 and
d > 0. Let us consider a real number x. Suppose x /∈ [a − c, a + c]. Then
min(d,max(0, b− | b·(x−a)c |)) = 0. The theorem is a consequence of (28).

Let us consider real numbers a, b, c, d, a function f from R into R, and a real
number x. Now we state the propositions:
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(30) Suppose b > 0 and c > 0 and d > 0 and for every real number x,
f(x) = min(d,max(0, b−| b·(x−a)c |)). Then if x /∈ [a−c, a+c], then f(x) = 0.
The theorem is a consequence of (29).

(31) Suppose b > 0 and c > 0 and d > 0 and for every real number x,
f(x) = min(d,max(0, b − | b·(x−a)c |)). Then if x ∈ A \ [a − c, a + c], then
f(x) = 0. The theorem is a consequence of (30).

Let us consider real numbers a, b, c, d and a function f from R into R. Now
we state the propositions:

(32) Suppose b > 0 and c > 0 and d > 0 and [a−c, a+c] ⊆ A and for every real
number x, f(x) = min(d,max(0, b − | b·(x−a)c |)). Then centroid(f,A) = a.
The theorem is a consequence of (26), (31), (27), and (23).

(33) Suppose b > 0 and c > 0 and d > 0 and [a − c, a + c] ⊆ A and d < b
and for every real number x, f(x) = min(d,max(0, b − | b·(x−a)c |)). Then
centroid(f,A) = centroid(f, [a − c, a + c]). The theorem is a consequence
of (32) and (23).

(34) Let us consider real numbers a, b, c, d, and functions f , F from R into R.
Suppose b > 0 and c > 0 and d > 0 and for every real number x, f(x) =
max(0, b−| b·(x−a)c |) and for every real number x, F (x) = min(d,max(0, b−
| b·(x−a)c |)). Then centroid(f, [a− c, a+ c]) = centroid(F, [a− c, a+ c]). The
theorem is a consequence of (23) and (3).

(35) Let us consider real numbers a, b, c, d, and a function f from R into
R. Suppose b > 0 and c > 0 and d > 0 and d < b and for every real
number x, f(x) = min(d,max(0, b − | b·(x−a)c |)). Then f�[a − c, a + c] =
((AffineMap( bc , b −

a·b
c ))�[a − c, a + d−b

b
c

]+·(AffineMap(0, d))�[a + d−b
b
c

, a +
b−d
b
c

])+·(AffineMap(− bc , b+ a·b
c ))�[a+ b−d

b
c

, a+ c].

Proof: − b−db
c

> −c. b−db
c

< c. For every object x such that x ∈ dom(f�[a−

c, a+ c]) holds (f�[a− c, a+ c])(x) = (((AffineMap( bc , b−
a·b
c ))�[a− c, a+

d−b
b
c

]+·(AffineMap(0, d))�[a+ d−bb
c

, a+ b−db
c

])+·(AffineMap(− bc , b+
a·b
c ))�[a+

b−d
b
c

, a+ c])(x). �

4. Some Special Examples

Now we state the proposition:

(36) Let us consider real numbers a, b, c, d, r, s. Suppose a < b < c < d.
Then

(i) (AffineMap( rb−a ,−
a·r
b−a))(a) = 0, and

(ii) (AffineMap( rb−a ,−
a·r
b−a))(b) = r, and
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(iii) (AffineMap( s−rc−b , s−
c·(s−r)
c−b ))(b) = r, and

(iv) (AffineMap( s−rc−b , s−
c·(s−r)
c−b ))(c) = s, and

(v) (AffineMap( −sd−c ,−
d·(−s)
d−c ))(c) = s, and

(vi) (AffineMap( −sd−c ,−
d·(−s)
d−c ))(d) = 0.

Let us consider real numbers a, b, c, d, r, s and a function f from R into R.
Now we state the propositions:

(37) Suppose a < b < c < d and f�[a, d] = ((AffineMap( rb−a ,−
a·r
b−a))�[a, b]+·

(AffineMap( s−rc−b , s−
c·(s−r)
c−b ))�[b, c])+·(AffineMap( −sd−c ,−

d·(−s)
d−c ))�[c, d]. Then∫

[a,d]

(idR · f)(x)dx =
∫
[a,b]

(idR · (AffineMap(
r

b− a
,− a · r
b− a

)))(x)dx+
∫
[b,c]

(idR·

(AffineMap( s−rc−b , s−
c·(s−r)
c−b )))(x)dx+

∫
[c,d]

(idR · (AffineMap(
−s
d− c

,

−d·(−s)d−c )))(x)dx.
Proof: Set f3 = AffineMap( rb−a ,−

a·r
b−a). Set f4 = AffineMap( s−rc−b , s −

c·(s−r)
c−b ). Reconsider h = f3�]−∞, b[+·f4�[b,+∞[ as a function from R in-

to R. f3(b) = r. For every object x such that x ∈ dom(h�[a, c]) holds
(h�[a, c])(x) = (f3�[a, b]+·f4�[b, c])(x). �

(38) Suppose a < b < c < d and f�[a, d] = ((AffineMap( rb−a ,−
a·r
b−a))�[a, b]+·

(AffineMap( s−rc−b , s−
c·(s−r)
c−b ))�[b, c])+·(AffineMap( −sd−c ,−

d·(−s)
d−c ))�[c, d]. Then∫

[a,d]

f(x)dx =
∫
[a,b]

(AffineMap(
r

b− a
,− a · r
b− a

))(x)dx+
∫
[b,c]

(AffineMap(
s− r
c− b
,

s− c·(s−r)c−b ))(x)dx+
∫
[c,d]

(AffineMap(
−s
d− c

,−d · (−s)
d− c

))(x)dx.

Proof: Set f3 = AffineMap( rb−a ,−
a·r
b−a). Set f4 = AffineMap( s−rc−b , s −

c·(s−r)
c−b ). Reconsider h = f3�]−∞, b[+·f4�[b,+∞[ as a function from R in-

to R. f3(b) = r. For every object x such that x ∈ dom(h�[a, c]) holds

(h�[a, c])(x) = (f3�[a, b]+·f4�[b, c])(x).
∫
[a,c]

h(x)dx=
∫
[a,b]

f3(x)dx+
∫
[b,c]

f4(x)dx.

�

Let us consider real numbers a, b, c, d, r, s, x. Now we state the propositions:

(39) Suppose a < b < c < d and r  0 and s  0 and (x < a or d < x). Then
(((AffineMap( rb−a ,−

a·r
b−a))�]−∞, b]+·(AffineMap( s−rc−b , s−

c·(s−r)
c−b ))�[b, c])+·

(AffineMap( −sd−c ,−
d·(−s)
d−c ))�[c,+∞[)(x) ¬ 0.
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(40) Suppose a < b < c < d and r  0 and s  0 and x ∈ [a, d]. Then
(((AffineMap( rb−a ,−

a·r
b−a))�]−∞, b]+·(AffineMap( s−rc−b , s−

c·(s−r)
c−b ))�[b, c])+·

(AffineMap( −sd−c ,−
d·(−s)
d−c ))�[c,+∞[)(x)  0.

(41) Let us consider real numbers a, b, c, d, r, s. Suppose a < b < c < d and
r  0 and s  0 and r = s. Let us consider a real number x. Then (r ·
TrapezoidalFS(a, b, c, d))(x) = max+((((AffineMap( rb−a ,−

a·r
b−a))�]−∞, b]+·

(AffineMap( s−rc−b , s−
c·(s−r)
c−b ))�[b, c])+·

(AffineMap( −sd−c ,−
d·(−s)
d−c ))�[c,+∞[)(x)).

Proof: Set T = TrapezoidalFS(a, b, c, d). For every real number x, (r ·
T )(x) = max+((((AffineMap( rb−a ,−

a·r
b−a))�]−∞, b]+·(AffineMap( s−rc−b , s −

c·(s−r)
c−b ))�[b, c])+·(AffineMap( −sd−c ,−

d·(−s)
d−c ))�[c,+∞[)(x)). �

(42) Let us consider real numbers a, b, c, d. Suppose c ¬ d. Then

(i)
∫
[c,d]

(idR · (AffineMap(a, b)))(x)dx = (d−c) ·(a · (d · d+ d · c+ c · c)
3

+

b · (d+ c)
2

), and

(ii)
∫
[c,d]

(AffineMap(a, b))(x)dx = (d− c) · (a · (d+ c)
2

+ b).

(43) Let us consider real numbers a, b, c, d, r, s, and a function f from R into
R. Suppose a < b < c < d and f�[a, d] = ((AffineMap( rb−a ,−

a·r
b−a))�[a, b]+·

(AffineMap( s−rc−b , s−
c·(s−r)
c−b ))�[b, c])+·(AffineMap( −sd−c ,−

d·(−s)
d−c ))�[c, d].

Then centroid(f, [a, d]) =
(

(b− a) · (
r
b−a ·(b·b+b·a+a·a)

3 +
(− a·r
b−a )·(b+a)
2 )+

(c− b) · (
s−r
c−b ·(c·c+c·b+b·b)

3 +
(s− c·(s−r)

c−b )·(c+b)
2 ) + (d− c) · (

−s
d−c ·(d·d+d·c+c·c)

3 +
(− d·(−s)

d−c )·(d+c)
2 )

)
/

(
(b− a) · (

r
b−a ·(b+a)
2 +− a·rb−a) + (c− b) · (

s−r
c−b ·(c+b)
2 + (s−

c·(s−r)
c−b )) + (d− c) · (

−s
d−c ·(d+c)
2 +−d·(−s)d−c )

)
. The theorem is a consequence

of (37), (38), and (42).

(44) Let us consider real numbers b, c, d. Suppose b < c. Then (AffineMap(d ·
1
c−b , d · (−

b
c−b))) + (AffineMap(d · (− 1

c−b), d ·
c
c−b)) = AffineMap(0, d).

(45) Let us consider real numbers a, b, c, p, q. Suppose a < b < c. Then
(AffineMap(p, q))�[a, b]+·(AffineMap(p, q))�[b, c] = (AffineMap(p, q))�[a, c].
Proof: Set f = AffineMap(p, q). For every object x such that
x ∈ dom(f�[a, c]) holds (f�[a, c])(x) = (f�[a, b]+·f�[b, c])(x). �

Let us consider real numbers a, b, c and a real number x. Now we state the
propositions:
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(46) If a < b < c, then if x ∈ [a, b], then (TriangularFS(a, b, c))(x) =
(AffineMap( 1b−a ,−

a
b−a))(x).

Proof: For every real number x such that x ∈ [a, b] holds (TriangularFS(a,
b, c))(x) = (AffineMap( 1b−a ,−

a
b−a))(x). �

(47) If a < b < c, then if x ∈ [b, c], then (TriangularFS(a, b, c))(x) =
(AffineMap(− 1

c−b ,
c
c−b))(x).

(48) If a < b < c, then if x /∈ ]a, c[, then (TriangularFS(a, b, c))(x) =
(AffineMap(0, 0))(x).
Proof: For every real number x such that x /∈ ]a, c[ holds
(TriangularFS(a, b, c))(x) = (AffineMap(0, 0))(x). �
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