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Summary. In this article we continue the formalization of field theory in
Mizar. We introduce simple extensions: an extension E of F is simple if E is
generated over F by a single element of E, that is E = F (a) for some a ∈ E.
First, we prove that a finite extension E of F is simple if and only if there are
only finitely many intermediate fields between E and F [7]. Second, we show
that finite extensions of a field F with characteristic 0 are always simple [1]. For
this we had to prove, that irreducible polynomials over F have single roots only,
which required extending results on divisibility and gcds of polynomials [14], [13]
and formal derivation of polynomials [15].
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Introduction

In this paper we formalize simple extensions [6] using the Mizar formalism
[3, 2, 5, 4]. An extension E of F is simple, if E is generated by a single element,
that is E = F (a) for some a ∈ E. It is well known that both all finite extensions
of fields with characteristic 0 and finite extensions of finite fields are simple, so
that most common field extensions are simple. In this paper we deal with fields
of characteristic 0 only.

In the preliminary section, we provide some technical lemmas about sums
of finite sequences and field extensions. We also define the set of intermediate
fields between E and F needed later to characterize simple extensions.
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The next two sections provide a number of basic theorems about bags and
polynomials necessary to prove our main theorems, for example, that if all roots
a of a polynomial of p ∗ q have multiplicity 1, then p and q have no common
roots.

The fourth section deals with divisibility of polynomials [8]. We among others
show that the gcd of two polynomials is the same in F and an extension E of
F and that for a polynomial p1 of the form

(x− a1) · (x− a2) · · · · · (x− an)

gcd(p1, p2) with a polynomial p2 is again of the form

(x− b1) · (x− b2) · · · · · (x− bk),

where the bj are exactly the common roots of p1 and p2. We also show that the
number of monic divisors of a polynomial is bounded by 2deg p. This is crucial
in the proof that a simple extension has only a finite number of intermediate
fields.

To show that finite extensions of characteric 0 are simple, it is used that
an irreducible polynomial has no multiple roots. This is shown in section five
using derivatives [1]: for an irreducible polynomial we have gcd(p, p′) = 1, so p
is square free.

In the last section we finally define simple extensions and primitive elements,
and show the main results. A finite extension E over an infinite field F is simple
if and only if there are only finitely many intermediate fields between E and F :
If E = F (a) is simple, then each intermediate field K is uniquely determined
by the roots of a’s minimal polynomial over K. Because each such polynomial
is a monic divisor of p’s minimal polynomial over E, there are only finitely
many intermediate fields. If the number of intermediate fields is finite, then
– because F is infinite – for a and b there exist x and y with x 6= y, and
F (a+x ∗ b) = F (a+ y ∗ b). Then both a and b are in F (a+x ∗ b) [1] from which
follows that F (a, b) = F (a + x ∗ b), so that E is simple by induction. Because
a field with characteristic 0 is infinite, this also shows our second main result:
every finite extension E over a field F with characteristic 0 is simple.

1. Preliminaries

Let n be a non zero, natural number. Note that n − 1 is natural. Let n
be an element of N. Note that n −′ 1 is natural. Let R be a ring and n be
a natural number. Let us note that n · (0R) reduces to 0R. Observe that every
finite sequence of elements of N is non-negative yielding. Now we state the
proposition:
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(1) Let us consider a finite sequence f of elements of N, and natural numbers
i, j. If i, j ∈ dom f and i 6= j, then

∑
f  f(i) + f(j).

Let F be a field, E be an extension of F , and a, b be F-algebraic elements
of E. One can verify that the functor {a, b} yields an F-algebraic subset of E.
Let K be an extension of F and E be a K-extending extension of F . Note that
every F-algebraic element of E is K-algebraic. Let E be an F -finite extension of
F . One can verify that every subset of E is F-algebraic.

Let K be an F -finite extension of F . Note that there exists an extension of
F which is K-extending and F -finite. Let E be an extension of F and K be
an extension of E. Let us observe that there exists an extension of F which is
K-extending and E-extending. Now we state the propositions:

(2) Let us consider a field F , an extension E of F , and subsets T1, T2,
T3 of E. Suppose FAdj(F, T1) = FAdj(F, T2). Then FAdj(F, T1 ∪ T3) =
FAdj(F, T2 ∪ T3).

(3) Let us consider a ring R, a ring extension S of R, an element a of R,
an element b of S, and an element n of N. If a = b, then n · a = n · b.
Proof: Define P[natural number] ≡ $1 · a = $1 · b. For every natural
number k, P[k]. �

Let F be a field and E be an extension of F .
The functor IntermediateFields(E,F ) yielding a set is defined by

(Def. 1) for every object x, x ∈ it iff there exists a strict field K such that K = x
and F is a subfield of K and K is a subfield of E.

One can check that IntermediateFields(E,F ) is non empty and field-mem-
bered. Now we state the propositions:

(4) Let us consider a field F , an extension E of F , and a strict field K. Then
K ∈ IntermediateFields(E,F ) if and only if F is a subfield of K and K is
a subfield of E.

(5) Let us consider a field F , an extension E of F , and an F -extending exten-
sion K of E. Then IntermediateFields(E,F ) ⊆ IntermediateFields(K,F ).

2. More on Bags

Let Z be a non empty set and B be a bag of Z. One can verify that the
functor B yields an element of N. Let us consider a non empty set Z and bags
B1, B2 of Z. Now we state the propositions:

(6) B1 | B2 if and only if there exists a bag B3 of Z such that B2 = B1+B3.

(7) If B1 | B2, then B1 ¬ B2 . The theorem is a consequence of (6).
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(8) Let us consider a non empty set Z, a bag B of Z, and an object o. Then
B(o) ¬ B .

(9) Let us consider a non empty set Z, a bag B of Z, and objects o1, o2.
Suppose B(o1) = B and o2 6= o1. Then B(o2) = 0. The theorem is a con-
sequence of (1).

(10) Let us consider an integral domain R, and a bag B1 of the carrier of
R. Then B1 = 1 if and only if there exists an element a of R such that
B1 = Bag({a}). The theorem is a consequence of (8) and (9).

(11) Let us consider a field F , and non zero bags B1, B2 of the carrier of F .
If B2 | B1 and B1 = 1, then B2 = B1. The theorem is a consequence of
(10) and (7).

(12) Let us consider a non empty set Z, and bags B1, B2 of Z. If B2 | B1 and
B1 −′ B2 is zero, then B2 = B1.

(13) Let us consider a field F , and non empty, finite subsets S1, S2 of F . Then
Bag(S1) | Bag(S2) if and only if S1 ⊆ S2.

(14) Let us consider a field F , a non zero bag B of the carrier of F , and a non
empty, finite subset S1 of F . Then B | Bag(S1) if and only if there exists
a non empty, finite subset S2 of F such that B = Bag(S2) and S2 ⊆ S1.
The theorem is a consequence of (13).

3. More on Polynomials

Let R be an integral domain and p, q be non constant elements of the carrier
of Polynom-RingR. Let us note that p · q is non constant. Now we state the
propositions:

(15) Let us consider a field F , a monic polynomial p over F , and a polynomial
r over F . If p ∗ r is monic, then r is monic.

(16) Let us consider an integral domain R, and a polynomial p over R. Then
p is monic and constant if and only if p = 1.R.

(17) Let us consider an integral domain R, an element a of R, and a non zero
natural number m. Then (rpoly(1, a))m is a product of linear polynomials
of R.

(18) Let us consider a field F , a polynomial p over F , an extension E of F ,
a polynomial q over E, and an element n of N. If q = p, then qn = pn.

(19) Let us consider a field F , a polynomial p over F , and elements i, j of N.
Then pi+j = pi ∗ pj .

(20) Let us consider a field F , an element a of F , and a product of linear
polynomials p of F and {a}. Then p = rpoly(1, a).
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(21) Let us consider a field F , non zero bags B1, B2 of the carrier of F ,
a product of linear polynomials p of F and B1, and a product of linear
polynomials q of F and B2. If B1 = B2, then p = q.

(22) Let us consider a field F , an extension E of F , an element p of the carrier
of Polynom-RingF , and an element q of the carrier of Polynom-RingE.
If q = p, then Coeff(q) = Coeff(p).

(23) Let us consider a field F , non zero polynomials p, q over F , and an ele-
ment a of F . Then multiplicity(p, a) ¬ multiplicity(p ∗ q, a).

(24) Let us consider a field F , an extension E of F , polynomials p, q over F ,
and polynomials p1, q1 over E. If p1 = p and q1 = q, then p1[q1] = p[q].
Proof: Consider f being a finite sequence of elements of the carrier of
Polynom-RingF such that p[q] =

∑
f and len f = len p and for every

element n of N such that n ∈ dom f holds f(n) = p(n−′ 1) · (qn−′1).
Consider g being a finite sequence of elements of the carrier of Polynom-

RingE such that p1[q1] =
∑
g and len g = len p1 and for every element n

of N such that n ∈ dom g holds g(n) = p1(n−′ 1) · (q1n−
′1). f = g by (18),

[11, (23)], [12, (2)]. �

(25) Let us consider a field F , polynomials p, q over F , an extension E of F ,
and an element a of E. Then ExtEval(p[q], a) = ExtEval(p,ExtEval(q, a)).
The theorem is a consequence of (24).

(26) Let us consider a field F , elements a, b of F , an extension E of F , and
an element x of E. Then ExtEval(〈a, b〉, x) = (@(a,E)) + (@(b, E)) · x.

(27) Let us consider a non degenerated commutative ring R, and polynomials
p, q over R. Then Roots(p) ⊆ Roots(p ∗ q).

(28) Let us consider an integral domain R, non empty, finite subsets S1, S2 of
R, a product of linear polynomials p of R and S1, and a product of linear
polynomials q of R and S2. Suppose S1 ∩ S2 = ∅. Then p ∗ q is a product
of linear polynomials of R and S1 ∪ S2.

(29) Let us consider a field F , and non zero polynomials p, q over F . Suppose
for every element a of F such that a is a root of p∗ q holds multiplicity(p∗
q, a) = 1. Then Roots(p) ∩ Roots(q) = ∅.

(30) Let us consider a field F , and a product of linear polynomials p of F .
Then p is a product of linear polynomials of F and Roots(p) if and only
if for every element a ofF such that a is a root of p holds
multiplicity(p, a) = 1.

(31) Let us consider a field F , a non empty, finite subset S of F , a product
of linear polynomials p of F and S, and a non zero polynomial q over
F with roots. Suppose p ∗ q is a product of linear polynomials of F and
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S∪Roots(q). Then q is a product of linear polynomials of F and Roots(q).
The theorem is a consequence of (15), (23), and (30).

(32) Let us consider a field F , a non empty, finite subset S of F , an element
a of F , a product of linear polynomials p of F and S ∪ {a}, and a non
constant polynomial q over F . Suppose p = rpoly(1, a)∗q and a /∈ S. Then
q is a product of linear polynomials of F and S.
Proof: rpoly(1, a) is a product of linear polynomials of F and {a}. For
every element b of F such that b is a root of rpoly(1, a) ∗ q holds
multiplicity(rpoly(1, a) ∗ q, b) = 1. S = Roots(q). �

(33) Let us consider a field F , non empty, finite subsets S1, S2 of F , a product
of linear polynomials p of F and S1, an element a of F , and a non constant
polynomial q over F . Suppose p = rpoly(1, a) ∗ q and S2 = S1 \ {a}.
Then q is a product of linear polynomials of F and S2. The theorem is
a consequence of (32).

4. On Divisibility and Polynomial GCDs

Let R, S be non degenerated commutative rings and p be a polynomial over
R. We say that p is square-free over S if and only if

(Def. 2) there exists no non constant polynomial q1 over S and there exists a po-
lynomial q2 over S such that q2 = p and q12 | q2.

Let R be a non degenerated commutative ring. We say that p is square-free
if and only if

(Def. 3) p is square-free over R.

Let R be an integral domain. Let us note that there exists a non constant po-
lynomial over R which is square-free and there exists a non constant polynomial
over R which is non square-free. Now we state the propositions:

(34) Let us consider a non degenerated commutative ring R, and a polynomial
p over R. Then p is square-free if and only if there exists no non constant
polynomial q over R such that q2 | p.

(35) Let us consider a field F , and a monic polynomial p over F . If p | 1.F ,
then p = 1.F .

(36) Let us consider a field F , and non zero polynomials p, q over F . Then
BRoots(p) | BRoots(p ∗ q). The theorem is a consequence of (23).

(37) Let us consider an integral domain R, and polynomials p, q over R. If
q | p, then Roots(q) ⊆ Roots(p).

(38) Let us consider a field F , polynomials p, q over F , and a non zero poly-
nomial r over F . If r ∗ q | r ∗ p, then q | p.
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(39) Let us consider a field F , polynomials p, q over F , and a monic poly-
nomial r over F . Then gcd(r ∗ p, r ∗ q) = r ∗ (gcd(p, q)). The theorem is
a consequence of (15), (38), and (35).

(40) Let us consider a field F , polynomials p, q over F , and elements n, k of
N. If qn | p and k ¬ n, then qk | p. The theorem is a consequence of (19).

(41) Let us consider a field F , an extension E of F , an element p of the carrier
of Polynom-RingF , and an element q of the carrier of Polynom-RingE.
If q = p, then if q is irreducible, then p is irreducible.

(42) Let us consider a GCD domain R. Then every element of R is a GCD
of a and 0R.

Let us consider an EuclideanRing R, elements a, b of R, and a GCD g of a
and b. Now we state the propositions:

(43) There exist elements r, s of R such that g = a · r + b · s.
(44) {g}–ideal = {a, b}–ideal. The theorem is a consequence of (43).

(45) Let us consider a field F , an extension E of F , elements p, q of the carrier
of Polynom-RingF , and elements p1, q1 of the carrier of Polynom-RingE.
If p1 = p and q1 = q, then gcd(p1, q1) = gcd(p, q).

(46) Letus consider a field F, and anelement p ofthe carrier of Polynom-RingF .
Then gcd(p,0.F ) = NormPoly p.

(47) Let us consider a field F , an element p of the carrier of Polynom-RingF ,
and a non zero element q of the carrier of Polynom-RingF . If q | p, then
gcd(p, q) = NormPoly q.

(48) Let us consider a field F , an extension E of F , elements p, q of the carrier
of Polynom-RingF , and elements p1, q1 of the carrier of Polynom-RingE.
If p1 = p and q1 = q, then q1 | p1 iff q | p. The theorem is a consequence
of (45) and (47).

(49) Let us consider a field F , a non zero bag B1 of the carrier of F , a product
of linear polynomials p of F and B1, and a non constant, monic polynomial
q over F . Then q | p if and only if there exists a non zero bag B2 of
the carrier of F such that q is a product of linear polynomials of F and
B2 and B2 | B1. The theorem is a consequence of (36), (12), and (21).

(50) Let us consider a field F , a non empty, finite subset S1 of F , a product of
linear polynomials p of F and S1, and a non constant, monic polynomial
q over F . Then q | p if and only if there exists a non empty, finite subset
S2 of F such that q is a product of linear polynomials of F and S2 and
S2 ⊆ S1. The theorem is a consequence of (49), (14), and (13).

(51) Let us consider a field F , a product of linear polynomials p of F , a monic
polynomial q over F , and an element a of F . Then q | rpoly(1, a) ∗ p if
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and only if q | p or there exists a polynomial r over F such that r | p and
q = rpoly(1, a) ∗ r. The theorem is a consequence of (16), (49), and (38).

(52) Let us consider a field F , a product of linear polynomials p of F , and
a polynomial q over F . Then Roots(p) ∩ Roots(q) = ∅ if and only if
gcd(p, q) = 1.F .

(53) Let us consider a field F , non empty, finite subsets S1, S2 of F , a product
of linear polynomials p1 of F and S1, and a polynomial p2 over F . Suppose
S2 = S1 ∩ Roots(p2). Then gcd(p1, p2) is a product of linear polynomials
of F and S2.
Proof: Define P[natural number] ≡ for every non empty, finite subsets
S1, S2 of F for every product of linear polynomials p1 of F and S1 for
every polynomial p2 over F such that S2 = $1 and S2 = S1 ∩ Roots(p2)
holds gcd(p1, p2) is a product of linear polynomials of F and S2. P[1]. For
every natural number k, P[k]. Consider n being a natural number such
that S2 = n. �

Let R be an integral domain and p be a polynomial over R. The functors:
Divisors(p) and MonicDivisors(p) yielding non empty subsets of the carrier of
Polynom-RingR are defined by terms

(Def. 4) {q, where q is an element of the carrier of Polynom-RingR : q | p},

(Def. 5) {q, where q is a monic element of the carrier of Polynom-RingR : q | p},

respectively. Now we state the propositions:

(54) Let us consider a field F , and an element a of F .
Then MonicDivisors(rpoly(1, a)) = {1.F, rpoly(1, a)}.

(55) Let us consider a field F , a non zero element p of the carrier of Polynom-
RingF , and a non zero element a of F .
Then MonicDivisors(p) = MonicDivisors(a · p).

(56) Let us consider a field F , an extension E of F , a polynomial p over F , and
a polynomial q over E. If q = p, then MonicDivisors(p) ⊆ MonicDivisors(q).

Let F be a field and p be a non zero polynomial over F . Let us note that
MonicDivisors(p) is finite. Now we state the proposition:

(57) Let us consider a field F , and a non zero polynomial p over F . Then

MonicDivisors(p) ¬ 2deg(p). The theorem is a consequence of (55), (56),
and (16).



Simple extensions 295

5. Formal Derivative of Polynomials and Multiplicity of Roots

Let R be a ring. We introduce the notation Deriv(R) as a synonym of
Der1(R). Let R be an integral domain. Observe that Deriv(R) is derivation.
Now we state the propositions:

(58) Let us consider a non degenerated commutative ring R. Then

(i) (Deriv(R))(1.R) = 0.R, and

(ii) (Deriv(R))(0.R) = 0.R.

(59) Let us consider a ring R, an element p of the carrier of Polynom-RingR,
and an element a of R. Then (Deriv(R))(a · p) = a · (Deriv(R))(p).

(60) Let us consider a non degenerated commutative ring R, and a constant
element p of the carrier of Polynom-RingR. Then (Deriv(R))(p) = 0.R.
The theorem is a consequence of (59) and (58).

(61) Let us consider a ringR, and an element a ofR. Then (Deriv(R))(X− a) =
1.R.

(62) Let us consider a non degenerated commutative ring R, and an element
p of the carrier of Polynom-RingR. Then (Deriv(R))(p0) = 0.R. The
theorem is a consequence of (58).

(63) Let us consider an integral domain R, an element p of the carrier of
Polynom-RingR, and a non zero element n of N. Then (Deriv(R))(pn) =
n · (pn−1 · (Deriv(R))(p)).

(64) Let us consider a non degenerated commutative ring R, and a non zero
element p of the carrier of Polynom-RingR. Then deg((Deriv(R))(p)) <
deg(p).

(65) Let us consider a field F , and a non zero element p of the carrier of
Polynom-RingF . Suppose gcd(p, (Deriv(F ))(p)) = 1.F . Then p is square-
free.

(66) Let us consider a non degenerated commutative ring R, an element p
of the carrier of Polynom-RingR, a commutative ring extension S of
R, and an element q of the carrier of Polynom-RingS. If q = p, then
(Deriv(S))(q) = (Deriv(R))(p). The theorem is a consequence of (3).

Let R be a non degenerated commutative ring, S be a commutative ring
extension of R, p be a non zero polynomial over R, and a be an element of S.
The functor multiplicity(p, a) yielding an element of N is defined by

(Def. 6) there exists a non zero polynomial q over S such that q = p and it =
multiplicity(q, a).

Now we state the propositions:
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(67) Let us consider a field F , a non zero polynomial p over F , an element
a of F , and an element n of N. Then n = multiplicity(p, a) if and only if
(X− a)n | p and (X− a)n+1 - p.

(68) Let us consider a field F with characteristic 0, and a non zero element p
of the carrier of Polynom-RingF . Then deg((Deriv(F ))(p)) = deg(p)− 1.
The theorem is a consequence of (60) and (64).

(69) Let us consider a field F with characteristic 0, and an element p of
the carrier of Polynom-RingF . Then (Deriv(F ))(p) = 0.F if and only if p
is constant. The theorem is a consequence of (68) and (60).

(70) Let us consider a field F with characteristic 0, and an irreducible element
p of the carrier of Polynom-RingF . Then gcd(p, (Deriv(F ))(p)) = 1.F .
The theorem is a consequence of (69) and (64).

(71) Let us consider a field F with characteristic 0, an irreducible element p
of the carrier of Polynom-RingF , an extension E of F , and an element a
of E. If a is a root of p in E, then multiplicity(p, a) = 1. The theorem is
a consequence of (66), (70), (45), (65), (67), and (40).

6. Simple Extensions

Let F be a field and E be an extension of F . We say that E is F -simple if
and only if

(Def. 7) there exists an element a of E such that E ≈ FAdj(F, {a}).
Let a be an element of E. We say that a is F -primitive if and only if

(Def. 8) E ≈ FAdj(F, {a}).
Let us note that there exists an extension of F which is F -simple and F -

finite. Let E be an F -simple extension of F . One can verify that there exists
an element of E which is F -primitive.

Let E be an extension of F and a be an element of E. The functor deg(a, F )
yielding an integer is defined by the term

(Def. 9) deg(FAdj(F, {a}), F ).

Now we state the propositions:

(72) Let us consider a field F , an F -finite extension E of F , and an element
a of E. Then deg(a, F ) | deg(E,F ).

(73) Let us consider a field F , and an F -finite extension E of F . Then E is F -
simple if and only if there exists an element a of E such that deg(a, F ) =
deg(E,F ).

(74) Let us consider a field F , an F -finite extension E of F , and an element
a of E. Then a is F -primitive if and only if deg(a, F ) = deg(E,F ).
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(75) Let us consider a field F , an F -finite extension K of F , an F -finite, F -
extending extension E of K, and a K-algebraic element a of E. Suppose
E ≈ FAdj(F, {a}). Then

(i) E ≈ FAdj(K, {a}), and

(ii) K ≈ FAdj(F,Coeff(MinPoly(a,K))).

Proof: FAdj(K, {a}) = FAdj(F, {a}) by [9, (11)]. SetK1 = FAdj(F,Coeff
(MinPoly(a,K))). Reconsider E1 = E as an F -extending extension of
K1. Reconsider a1 = a as a K1-algebraic element of E1. FAdj(F, {a1}) =
FAdj(K1, {a1}). Reconsider p = MinPoly(a,K) as a polynomial over K1.
p is irreducible. �

(76) Let us consider an infinite field F , and an F -finite extension E of F .
Then E is F -simple if and only if IntermediateFields(E,F ) is finite. The
theorem is a consequence of (5), (2), (4), (75), and (22).

(77) Let us consider a field F with characteristic 0, an extension E of F , and
F-algebraic elements a, b of E. Then there exists an element x of F such
that FAdj(F, {a, b}) = FAdj(F, {a+ (@(x,E)) · b}).
Proof: Set K = FAdj(F, {a, b}). Set m1 = MinPoly(a, F ). Set m3 =
MinPoly(b, F ). Reconsider a3 = a, b1 = b as an element of K. Consider
Z being an extension of E such that Z is algebraic closed. Set R1 =
Roots(Z,m1). Set R2 = (Roots(Z,m3)) \ {b}. There exists an element x
of F such that for every elements c, d of Z such that c ∈ R1 and d ∈ R2
holds (@(a3, Z)) + (@(x, Z)) · (@(b1, Z)) 6= c+ (@(x, Z)) · d.

Consider x being an element of F such that for every elements c, d of
Z such that c ∈ R1 and d ∈ R2 holds (@(a3, Z)) + (@(x, Z)) · (@(b1, Z)) 6=
c + (@(x, Z)) · d. Set l1 = (@(a3, Z)) + (@(x, Z)) · (@(b1, Z)). Set G =
FAdj(F, {l1}). G is a subfield of K. Reconsider m2 = MinPoly(a, F ), m4 =
MinPoly(b, F ) as a polynomial over G.

Reconsider m2 = MinPoly(a, F ), m4 = MinPoly(b, F ) as a non con-
stant polynomial over G. Set g = 〈@(G, l1),−(@(x,G))〉. Set h = m2[g].
Reconsider m5 = m4, h1 = h as a polynomial over Z. gcd(h1,m5) =
X−(@(b1, Z)). b ∈ G. a ∈ G. a + (@(x,E)) · b = (@(a3, Z)) + (@(x, Z)) ·
(@(b1, Z)) by [10, (12)]. �

Let F be a field with characteristic 0. One can verify that every F -finite
extension of F is F -simple.
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