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Summary. Conway’s introduction to algebraic operations on surreal num-
bers with a rather simple definition. However, he combines recursion with Con-
way’s induction on surreal numbers, more formally he combines transfinite induc-
tion-recursion with the properties of proper classes, which is difficult to introduce
formally.

This article represents a further step in our ongoing efforts to investigate the
possibilities offered by Mizar with Tarski-Grothendieck set theory [4] to introduce
the algebraic structure of Conway numbers and to prove their ring character.
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Introduction

We present a formal analysis of the contents of Chapter 1, The Class No is
a Field of John Conway’s seminal book [5]. We formalised four sections, namely
Properties of Addition, Properties of Negation, Properties of Addition and Or-
der and Properties of Multiplication. We begin our exploration by formulating
and proving two schemes (i.e., second-order theorems) for defining arithmetic
operations on surreal numbers using a technique that mimics induction-infinite
recursion. Then, we examine the applicability of this solution by defining the
opposite surreal number but also the sum and product of surreal numbers. We
prove for each such operator simultaneously its correctness and crucial proper-
ties, in particular the preservation of pre-order under the operator. For this
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purpose, we use transfinite induction with respect to successive generations of
surreal numbers. Notice that we express the Conway induction using the trans-
finite induction with the Heisenberg sum of two ordinals [3, 6], formalised in
[7].

The most important result is the formalisation of the following properties of
the surreal numbers

x+ 0No=x (38),
x+ y= y + x (29),

(x+ y) + z=x+ (y + z) (37),

−(x+y) =−x+−y (40),
−− x=x (9),
x+−x≈ 0No (39),

x · 0No≈ 0No (56),
x · 1No≈x (57),
x · y≈ y · x(51),

(−x) · y = −x · y = x · (−y) (58) (−x) · (−y) = x · y (58),
x · (y+z) ≈ x·y + x·z (67), (x·y) · z ≈ x · (y ·z) (69),

0No < x ∧ 0No < y ⇒ 0No < x · y (72), y ¬ z ⇔ x+ y ¬ x+ z (32).

The formalisation is mainly based on [1, 2, 5, 10].

1. Preliminaries

From now on α, β, γ denote ordinal numbers, o denotes an object, x, y, z,
t, r, l denote surreal numbers, and X, Y denote sets.

Let f be a function. One can check that f is function yielding if and only if
the condition (Def. 1) is satisfied.

(Def. 1) rng f is functional.

One can check that there exists a transfinite sequence which is ⊆-monotone
and function yielding. Let f be a ⊆-monotone function and X be a set. Let
us observe that f�X is ⊆-monotone. Let f be a ⊆-monotone, function yielding
transfinite sequence. Let us note that

⋃
rng f is function-like and relation-like.

Now we state the propositions:

(1) Let us consider a ⊆-monotone, function yielding transfinite sequence f ,
and an object o. Suppose o ∈ dom(

⋃
rng f). Then there exists α such that

(i) α ∈ dom f , and

(ii) o ∈ dom(f(α)).

(2) Let us consider a ⊆-monotone, function yielding transfinite sequence f ,
and α. Suppose α ∈ dom f . Then

(i) dom(f(α)) ⊆ dom(
⋃

rng f), and

(ii) for every o such that o ∈ dom(f(α)) holds f(α)(o) = (
⋃

rng f)(o).

Proof: Set U =
⋃

rng f . dom(f(α)) ⊆ domU . �
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(3) Let us consider a ⊆-monotone, function yielding transfinite sequence f ,
an ordinal number α, and a set X. Suppose for every o such that o ∈ X
there exists an ordinal number β such that o ∈ dom(f(β)) and β ∈ α.
Then (

⋃
rng(f�α))◦X = (

⋃
rng f)◦X. The theorem is a consequence of

(2).

2. Surreal Number Operators – Schemes

The scheme MonoFvSExists deals with an ordinal number θ and a unary
functor δ yielding a set and a binary functor H yielding an object and states
that

(Sch. 1) There exists a ⊆-monotone, function yielding transfinite sequence S such
that domS = succ θ and for every ordinal number α such that α ∈ succ θ
there exists a many sorted set S3 indexed by δ(α) such that S(α) = S3
and for every o such that o ∈ δ(α) holds S3(o) = H(o, S�α)

provided

• for every ⊆-monotone, function yielding transfinite sequence S such that
for every ordinal number α such that α ∈ domS holds dom(S(α)) = δ(α)
for every ordinal number α for every o such that o ∈ dom(S(α)) holds
H(o, S�α) = H(o, S) and

• for every ordinal numbers α, β such that α ⊆ β holds δ(α) ⊆ δ(β).

The scheme MonoFvSUniq deals with an ordinal number θ and a unary
functor δ yielding a set and ⊆-monotone, function yielding transfinite sequences
S1, S2 and a binary functor H yielding an object and states that

(Sch. 2) S1�θ = S2�θ

provided

• θ ⊆ domS1 and θ ⊆ domS2 and

• for every ordinal number α such that α ∈ θ there exists a many sorted
set S3 indexed by δ(α) such that S1(α) = S3 and for every o such that
o ∈ δ(α) holds S3(o) = H(o, S1�α) and

• for every ordinal number α such that α ∈ θ there exists a many sorted
set S3 indexed by δ(α) such that S2(α) = S3 and for every o such that
o ∈ δ(α) holds S3(o) = H(o, S2�α).
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3. The Opposite Surreal Number

Let us consider α. The functor oppositeNo(α) yielding a many sorted set
indexed by Dayα is defined by

(Def. 2) there exists a ⊆-monotone, function yielding transfinite sequence S such
that domS = succα and it = S(α) and for every β such that β ∈ succα
there exists a many sorted set S5 indexed by Dayβ such that S(β) = S5
and for every o such that o ∈ Dayβ holds S5(o) = 〈〈(

⋃
rng(S�β))◦(Ro),

(
⋃

rng(S�β))◦(Lo)〉〉.
Now we state the propositions:

(4) Let us consider a ⊆-monotone, function yielding transfinite sequence S.
Suppose for every β such that β ∈ domS there exists a many sorted set S5
indexed by Dayβ such that S(β) = S5 and for every o such that o ∈ Dayβ
holds S5(o) = 〈〈(

⋃
rng(S�β))◦(Ro), (

⋃
rng(S�β))◦(Lo)〉〉. If α ∈ domS, then

oppositeNo(α) = S(α).
Proof: Define δ(ordinal number) = Day$1. DefineH(object,⊆-monotone,
function yielding transfinite sequence) = 〈〈(

⋃
rng $2)◦(R$1), (

⋃
rng $2)◦

(L$1)〉〉. Consider S2 being a ⊆-monotone, function yielding transfinite se-
quence such that domS2 = succα and S2(α) = oppositeNo(α) and for
every ordinal number β such that β ∈ succα there exists a many sorted
set S5 indexed by δ(β) such that S2(β) = S5 and for every object x such
that x ∈ δ(β) holds S5(x) = H(x, S2�β). S1� succα = S2� succα. �

(5) Let us consider a ⊆-monotone, function yielding transfinite sequence f .
Suppose o ∈ dom(f(β)) and β ∈ α. Then

(i) o ∈ dom(
⋃

rng(f�α)), and

(ii) (
⋃

rng(f�α))(o) = (
⋃

rng f)(o).

The theorem is a consequence of (2).

(6) Let us consider a ⊆-monotone, function yielding transfinite sequence f ,
and ordinal numbers α, β. Suppose o ∈ dom(f(β)) and β ∈ α. Then
(
⋃

rng(f�α))(o) = (
⋃

rng f)(o). The theorem is a consequence of (2).

Let us consider x. The functor −x yielding a set is defined by the term

(Def. 3) (oppositeNo(bornx))(x).

Let X be a set. The functor 	X yielding a set is defined by

(Def. 4) o ∈ it iff there exists a surreal number x such that x ∈ X and o = −x.

Now we state the proposition:

(7) −x = 〈〈 	 Rx, 	Lx 〉〉.
Proof: Set α = bornx. Consider S being a ⊆-monotone, function yielding
transfinite sequence such that domS = succα and oppositeNo(α) = S(α)
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and for every ordinal number β such that β ∈ succα there exists a ma-
ny sorted set S5 indexed by Dayβ such that S(β) = S5 and for eve-
ry object x such that x ∈ Dayβ holds S5(x) = 〈〈(

⋃
rng(S�β))◦(Rx),

(
⋃

rng(S�β))◦(Lx)〉〉. Consider S3 being a many sorted set indexed by Dayα
such that S(α) = S3 and for every object x such that x ∈ Dayα holds
S3(x) = 〈〈(

⋃
rng(S�α))◦(Rx), (

⋃
rng(S�α))◦(Lx)〉〉. Set U =

⋃
rng(S�α).

	Rx ⊆ U◦(Rx). U◦(Rx) ⊆ 	Rx. 	Lx ⊆ U◦(Lx). U◦(Lx) ⊆ 	Lx. �

Let us consider x. One can check that −x is surreal. Let X be a set. Let us
note that 	X is surreal-membered. Now we state the propositions:

(8) (i) L(−x) = 	Rx, and

(ii) R(−x) = 	Lx.
The theorem is a consequence of (7).

(9) Conway Ch. 1 Th. 4(ii):
−−x = x.

Let us consider x. Let us observe that −−x reduces to x. Now we state the
propositions:

(10) x ¬ y if and only if −y ¬ −x.

(11) Let us consider a surreal number x, and an ordinal number δ. If x ∈ Dayδ,
then −x ∈ Dayδ.

(12) bornx = born (−x).

(13) born≈x = born≈(−x). The theorem is a consequence of (10) and (12).

(14) If x ∈ Born≈y, then −x ∈ Born≈(−y). The theorem is a consequence
of (10), (13), and (12).

(15) Let us consider a surreal-membered set X. Then 		X = X.

(16) 	X ⊆ X .
Proof: Define P[object, object] ≡ for every x such that x = $1 holds
$2 = −x. If o ∈ 	X, then there exists an object u such that P[o, u].
Consider f being a function such that dom f = 	X and for every object
o such that o ∈ 	X holds P[o, f(o)]. rng f ⊆ X. f is one-to-one. �

(17) Let us consider a surreal-membered set X. Then X = 	X . The theorem
is a consequence of (15) and (16).

Let us consider surreal-membered sets X, Y. Now we state the propositions:

(18) X � Y if and only if 	Y � 	X. The theorem is a consequence of (15).

(19) X � Y if and only if 	Y � 	X. The theorem is a consequence of (15).

Now we state the propositions:

(20) Let us consider sets X1, X2. Then 	(X1 ∪X2) = 	X1 ∪ 	X2.
(21) {−x} = 	{x}.



220 karol pąk

(22) 	∅ = ∅.
(23) −0No = 0No. The theorem is a consequence of (7) and (22).

One can verify that −0No reduces to 0No. Now we state the proposition:

(24) x ≈ 0No if and only if −x ≈ 0No.
Let α be an ordinal number. The functor Triangleα yielding a subset of

Dayα×Dayα is defined by

(Def. 5) for every surreal numbers x, y, 〈〈x, y〉〉 ∈ it iff bornx⊕ born y ⊆ α.

Observe that Triangleα is non empty. Now we state the proposition:

(25) Let us consider ordinal numbers α, β. Suppose α ⊆ β. Then Triangleα ⊆
Triangleβ.

4. The Sum of Surreal Numbers

Let α be an ordinal number. The functor sumNo(α) yielding a many sorted
set indexed by Triangleα is defined by

(Def. 6) there exists a ⊆-monotone, function yielding transfinite sequence S such
that domS = succα and it = S(α) and for every ordinal number β such
that β ∈ succα there exists a many sorted set S5 indexed by Triangleβ
such that S(β) = S5 and for every object x such that x ∈ Triangleβ holds
S5(x) = 〈〈(

⋃
rng(S�β))◦(LLx ×{Rx} ∪ {Lx} × LRx), (

⋃
rng(S�β))◦(RLx ×

{Rx} ∪ {Lx} × RRx)〉〉.
Now we state the proposition:

(26) Let us consider a ⊆-monotone, function yielding transfinite sequence S.
Suppose for every ordinal number β such that β ∈ domS there exists a ma-
ny sorted set S5 indexed by Triangleβ such that S(β) = S5 and for every
object x such that x ∈ Triangleβ holds S5(x) = 〈〈(

⋃
rng(S�β))◦(LLx ×

{Rx} ∪ {Lx} × LRx), (
⋃

rng(S�β))◦(RLx ×{Rx} ∪ {Lx} × RRx)〉〉. Let us
consider an ordinal number α. If α ∈ domS, then sumNo(α) = S(α).
Proof: Define δ(ordinal number) = Triangle $1. DefineH(object,⊆-mono-
tone, function yielding transfinite sequence) = 〈〈(

⋃
rng $2)◦(LL$1 ×{R$1}∪

{L$1}×LR$1 ), (
⋃

rng $2)◦(RL$1 ×{R$1}∪{L$1}×RR$1 )〉〉. Consider S1 being
a ⊆-monotone, function yielding transfinite sequence such that domS1 =
succα and sumNo(α) = S1(α) and for every ordinal number β such that
β ∈ succα there exists a many sorted set S5 indexed by δ(β) such that
S1(β) = S5 and for every object x such that x ∈ δ(β) holds S5(x) =
H(x, S1�β). S� succα = S1� succα. �

Let x, y be surreal numbers. The functor x + y yielding a set is defined by
the term
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(Def. 7) (sumNo(bornx⊕ born y))(〈〈x, y〉〉).
Let X, Y be sets. The functor X ⊕ Y yielding a set is defined by

(Def. 8) o ∈ it iff there exist surreal numbers x, y such that x ∈ X and y ∈ Y
and o = x+ y.

Now we state the propositions:

(27) Let us consider a set X. Then X ⊕ ∅ = ∅.
(28) Let us consider surreal numbers x, y. Then x+ y = 〈〈(Lx⊕{y})∪ ({x}⊕

Ly), (Rx⊕{y}) ∪ ({x} ⊕ Ry)〉〉.
Proof: Set B3 = bornx. Set B5 = born y. Set α = B3 ⊕ B5. Consi-
der S being a ⊆-monotone, function yielding transfinite sequence such
that domS = succα and sumNo(α) = S(α) and for every ordinal num-
ber β such that β ∈ succα there exists a many sorted set S5 indexed
by Triangleβ such that S(β) = S5 and for every object x such that
x ∈ Triangleβ holds S5(x) = 〈〈(

⋃
rng(S�β))◦(LLx ×{Rx} ∪ {Lx} × LRx),

(
⋃

rng(S�β))◦(RLx ×{Rx}∪ {Lx}×RRx)〉〉. Consider S3 being a many sor-
ted set indexed by Triangleα such that S(α) = S3 and for every ob-
ject x such that x ∈ Triangleα holds S3(x) = 〈〈(

⋃
rng(S�α))◦(L(x)1 ×

{Rx} ∪ {Lx} × LRx), (
⋃

rng(S�α))◦(RLx ×{Rx} ∪ {Lx} × RRx)〉〉. Set U =⋃
rng(S�α). U◦(Lx×{y}) ⊆ Lx⊕{y}. Lx⊕{y} ⊆ U◦(Lx×{y}). U◦(Rx×
{y}) ⊆ Rx⊕{y}. Rx⊕{y} ⊆ U◦(Rx×{y}). U◦({x} × Ly) ⊆ {x} ⊕ Ly.
{x}⊕Ly ⊆ U◦({x}×Ly). U◦({x}×Ry) ⊆ {x}⊕Ry. {x}⊕Ry ⊆ U◦({x}×
Ry). �

(29) Commutativity of Addition for Surreal Number, Conway Ch. 1
Th. 3(ii):
x+ y = y + x.
Proof: Define P[ordinal number] ≡ for every surreal numbers x, y such
that bornx ⊕ born y ⊆ $1 holds x + y = y + x. For every ordinal number
δ such that for every ordinal number γ such that γ ∈ δ holds P[γ] holds
P[δ]. For every ordinal number δ, P[δ]. �

Let x, y be surreal numbers. Let us note that the functor x + y is commu-
tative. Now we state the proposition:

(30) Let us consider sets X, Y. Then X ⊕ Y = Y ⊕X.

Let X, Y be sets. One can verify that the functor X ⊕ Y is commutative.
Let us consider x and y. Let us note that x+y is surreal. Let x, y be surreal

numbers. The functor x− y yielding a surreal number is defined by the term

(Def. 9) x+−y.

Now we state the proposition:

(31) born (x+ y) ⊆ bornx⊕ born y.
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Let X, Y be sets. Let us note that X⊕Y is surreal-membered. Now we state
the propositions:

(32) Transitive Law of Addition for Surreal Number, Conway
Ch. 1 Th. 5:
x ¬ y if and only if x+ z ¬ y + z.

(33) Let us consider sets X1, X2, Y. Then (X1∪X2)⊕Y = (X1⊕Y )∪(X2⊕Y ).

(34) Let us consider sets X, Y1, Y2. Then X⊕(Y1∪Y2) = (X⊕Y1)∪(X⊕Y2).
(35) Let us consider sets X1, X2, Y1, Y2. Suppose X1lX2 and Y1lY2. Then

X1 ⊕ Y1 lX2 ⊕ Y2. The theorem is a consequence of (32).

(36) {x} ⊕ {y} = {x+ y}.
(37) Associativity of Addition for Surreal Number, Conway Ch. 1
Th. 3(iii):
(x+ y) + z = x+ (y + z).
Proof: Define P[ordinal number] ≡ for every surreal numbers x, y, z such
that (bornx ⊕ born y) ⊕ born z ⊆ $1 holds (x + y) + z = x + (y + z). For
every ordinal number δ such that for every ordinal number γ such that
γ ∈ δ holds P[γ] holds P[δ]. For every ordinal number δ, P[δ]. �

(38) Additive Identity for Surreal Number, Conway Ch. 1 Th. 3(i):
x+ 0No = x.
Proof: Set y = 0No. Define P[ordinal number] ≡ for every surreal number
x such that bornx = $1 holds x+ y = x. For every ordinal number δ such
that for every ordinal number γ such that γ ∈ δ holds P[γ] holds P[δ]. For
every ordinal number δ, P[δ]. �

Let us consider x. Let us note that x+ 0No reduces to x. Now we state the
proposition:

(39) Property of The Aditive Inverse for Surreal Number, Con-
way Ch. 1 Th. 4(iii):
x− x ≈ 0No.
Proof: Set y = 0No. Define P[ordinal number] ≡ for every surreal number
x such that bornx = $1 holds x + −x ≈ y. For every ordinal number δ
such that for every ordinal number γ such that γ ∈ δ holds P[γ] holds
P[δ] by (7), (28), [8, (43)], [9, (1)]. For every ordinal number δ, P[δ]. �

(40) Conway Ch. 1 Th. 4(i):
−(x+ y) = −x+−y.
Proof: Define P[ordinal number] ≡ for every surreal numbers x, y such
that bornx ⊕ born y ⊆ $1 holds −(x+ y) = −x + −y. For every ordinal
number δ such that for every ordinal number γ such that γ ∈ δ holds P[γ]
holds P[δ]. For every ordinal number δ, P[δ]. �
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(41) x+ y ¬ z if and only if x ¬ z − y.
Proof: If x+y ¬ z, then x ¬ z−y. x+y ¬ z+−y+y. x+y ¬ z+(−y+y).
y − y ≈ 0No. z + (−y + y) ¬ z + 0No = z. �

(42) x+ y < z if and only if x < z − y.
Proof: If x + y < z, then x < z − y. z + −y ¬ x + y + −y. z + −y ¬
x+ (y +−y). y − y ≈ 0No. x+ (y +−y) ¬ x+ 0No = x. �

(43) If x ¬ y and z ¬ t, then x+ z ¬ y + t. The theorem is a consequence of
(32).

(44) If x ¬ y and z < t, then x+ z < y + t. The theorem is a consequence of
(42), (39), (32), and (37).

(45) x < y if and only if 0No < y − x. The theorem is a consequence of (42).

(46) x < y if and only if x− y < 0No. The theorem is a consequence of (41).

(47) If x− y ≈ 0No, then x ≈ y. The theorem is a consequence of (39), (37),
and (43).

Let x be an object. Assume x is surreal. The functor −′x yielding a surreal
number is defined by

(Def. 10) for every surreal number x1 such that x1 = x holds it = −x1.
Let a be a surreal number. We identify −′x with −a. Let x, y be objects.

Assume x is surreal and y is surreal. The functor x+′y yielding a surreal number
is defined by

(Def. 11) for every surreal numbers x1, y1 such that x1 = x and y1 = y holds
it = x1 + y1.

Let a, b be surreal numbers. We identify x+′ y with a+ b.

5. The Product of Superreal Numbers

Let α be an ordinal number. The functor multNo(α) yielding a many sorted
set indexed by Triangleα is defined by

(Def. 12) there exists a ⊆-monotone, function yielding transfinite sequence S such
that domS = succα and it = S(α) and for every ordinal number β such
that β ∈ succα there exists a many sorted set S5 indexed by Triangleβ
such that S(β) = S5 and for every object x such that x ∈ Triangleβ
holds S5(x) = 〈〈{((

⋃
rng(S�β))(〈〈x6, Rx 〉〉) +′ (

⋃
rng(S�β))(〈〈Lx, y4〉〉)) +′

−′(
⋃

rng(S�β))(〈〈x6, y4〉〉), where x6 is an element of LLx , y4 is an element
of LRx : x6 ∈ LLx and y4 ∈ LRx}∪{((

⋃
rng(S�β))(〈〈x7, Rx 〉〉)+′(

⋃
rng(S�β))

(〈〈Lx, y5〉〉)) +′−′(
⋃

rng(S�β))(〈〈x7, y5〉〉),where x7 is an element of RLx , y5
is an element of RRx : x7 ∈ RLx and y5 ∈ RRx}, {((

⋃
rng(S�β))(〈〈x6,

Rx 〉〉)+′ (
⋃

rng(S�β))(〈〈Lx, y5〉〉))+′−′(
⋃

rng(S�β))(〈〈x6, y5〉〉), where x6 is
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an element of LLx , y5 is an element of RRx : x6 ∈ LLx and y5 ∈ RRx} ∪
{((
⋃

rng(S�β))(〈〈x7, Rx 〉〉)+′(
⋃

rng(S�β))(〈〈Lx, y4〉〉))+′−′(
⋃

rng(S�β))(〈〈x7,
y4〉〉), where x7 is an element of RLx , y4 is an element of LRx : x7 ∈ RLx and
y4 ∈ LRx}〉〉.

Let x, y be surreal numbers. The functor x · y yielding a set is defined by
the term

(Def. 13) (multNo(bornx⊕ born y))(〈〈x, y〉〉).
Now we state the proposition:

(48) Let us consider a ⊆-monotone, function yielding transfinite sequence S.
Suppose for every ordinal number β such that β ∈ domS there exists a ma-
ny sorted set S5 indexed by Triangleβ such that S(β) = S5 and for every
object x such that x ∈ Triangleβ holds S5(x) = 〈〈{((

⋃
rng(S�β))(〈〈x6,

Rx 〉〉)+′ (
⋃

rng(S�β))(〈〈Lx, y4〉〉))+′−′(
⋃

rng(S�β))(〈〈x6, y4〉〉), where x6 is
an element of LLx , y4 is an element of LRx : x6 ∈ LLx and y4 ∈ LRx} ∪
{((
⋃

rng(S�β))(〈〈x7, Rx 〉〉)+′(
⋃

rng(S�β))(〈〈Lx, y5〉〉))+′−′(
⋃

rng(S�β))(〈〈x7,
y5〉〉), where x7 is an element of RLx , y5 is an element of RRx : x7 ∈ RLx and
y5 ∈ RRx}, {((

⋃
rng(S�β))(〈〈x6, Rx 〉〉)+′(

⋃
rng(S�β))(〈〈Lx, y5〉〉))+′−′(

⋃
rng

(S�β))(〈〈x6, y5〉〉), where x6 is an element of LLx , y5 is an element of RRx :
x6 ∈ LLx and y5 ∈ RRx}∪{((

⋃
rng(S�β))(〈〈x7, Rx 〉〉)+′ (

⋃
rng(S�β))(〈〈Lx,

y4〉〉)) +′−′(
⋃

rng(S�β))(〈〈x7, y4〉〉), where x7 is an element of RLx , y4 is an
element of LRx : x7 ∈ RLx and y4 ∈ LRx}〉〉. Let us consider an ordinal
number α. If α ∈ domS, then multNo(α) = S(α).
Proof: Define δ(ordinal number) = Triangle $1. DefineH(object,⊆-mono-
tone, function yielding transfinite sequence) = 〈〈{((

⋃
rng $2)(〈〈x6, R$1 〉〉)+′

(
⋃

rng $2)(〈〈L$1 , y4〉〉))+′−′(
⋃

rng $2)(〈〈x6, y4〉〉), where x6 is an element of
LL$1 , y4 is an element of LR$1 : x6 ∈ LL$1 and y4 ∈ LR$1}∪{((

⋃
rng $2)(〈〈x7,

R$1 〉〉)+′(
⋃

rng $2)(〈〈L$1 , y5〉〉))+′−′(
⋃

rng $2)(〈〈x7, y5〉〉), where x7 is an ele-
ment of RL$1 , y5 is an element of RR$1 : x7 ∈ RL$1 and y5 ∈ RR$1},
{((
⋃

rng $2)(〈〈x6, R$1 〉〉) +′ (
⋃

rng $2)(〈〈L$1 , y5〉〉)) +′−′(
⋃

rng $2)(〈〈x6, y5〉〉),
where x6 is an element of LL$1 , y5 is an element of RR$1 : x6 ∈ LL$1 and
y5 ∈ RR$1}∪{((

⋃
rng $2)(〈〈x7, R$1 〉〉)+′(

⋃
rng $2)(〈〈L$1 , y4〉〉))+′−′(

⋃
rng $2)

(〈〈x7, y4〉〉), where x7 is an element of RL$1 , y4 is an element of LR$1 : x7 ∈
RL$1 and y4 ∈ LR$1}〉〉. Consider S1 being a ⊆-monotone, function yielding
transfinite sequence such that domS1 = succα and multNo(α) = S1(α)
and for every ordinal number β such that β ∈ succα there exists a many
sorted set S5 indexed by δ(β) such that S1(β) = S5 and for every object
x such that x ∈ δ(β) holds S5(x) = H(x, S1�β). S� succα = S1� succα. �

Let x, y be surreal numbers and X, Y be sets. The functor comp(X,x, y, Y )
yielding a set is defined by
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(Def. 14) o ∈ it iff there exist surreal numbers x1, y1 such that o = (x1 · y +′ x ·
y1) +′ −′x1 · y1 and x1 ∈ X and y1 ∈ Y.

Now we state the propositions:

(49) Let us consider a set X. Then comp(X,x, y, ∅) = ∅.
(50) Let us consider surreal numbers x, y. Then x · y = 〈〈 comp(Lx, x, y,Ly)
∪ comp(Rx, x, y,Ry), comp(Lx, x, y,Ry) ∪ comp(Rx, x, y,Ly)〉〉.
Proof: Set B3 = bornx. Set B5 = born y. Set α = B3 ⊕ B5. Define
H(object,⊆-monotone, function yielding transfinite sequence) =
〈〈{((
⋃

rng $2)(〈〈x6, R$1 〉〉)+′(
⋃

rng $2)(〈〈L$1 , y4〉〉))+′−′(
⋃

rng $2)(〈〈x6, y4〉〉),
where x6 is an element of LL$1 , y4 is an element of LR$1 : x6 ∈ LL$1 and
y4 ∈ LR$1}∪{((

⋃
rng $2)(〈〈x7, R$1 〉〉)+′(

⋃
rng $2)(〈〈L$1 , y5〉〉))+′−′(

⋃
rng $2)

(〈〈x7, y5〉〉), where x7 is an element of RL$1 , y5 is an element of RR$1 : x7 ∈
RL$1 and y5 ∈ RR$1}, {((

⋃
rng $2)(〈〈x6, R$1 〉〉) +′ (

⋃
rng $2)(〈〈L$1 , y5〉〉)) +′

−′(
⋃

rng $2)(〈〈x6, y5〉〉), where x6 is an element of LL$1 , y5 is an element
of RR$1 : x6 ∈ LL$1 and y5 ∈ RR$1}∪{((

⋃
rng $2)(〈〈x7, R$1 〉〉)+′ (

⋃
rng $2)

(〈〈L$1 , y4〉〉))+′−′(
⋃

rng $2)(〈〈x7, y4〉〉), where x7 is an element of RL$1 , y4 is
an element of LR$1 : x7 ∈ RL$1 and y4 ∈ LR$1}〉〉. Consider S being a ⊆-
monotone, function yielding transfinite sequence such that domS = succα
and multNo(α) = S(α) and for every ordinal number β such that β ∈
succα there exists a many sorted set S5 indexed by Triangleβ such that
S(β) = S5 and for every object x such that x ∈ Triangleβ holds S5(x) =
H(x, S�β). Consider S3 being a many sorted set indexed by Triangleα
such that S(α) = S3 and for every object x such that x ∈ Triangleα holds
S3(x) = H(x, S�α). Set U =

⋃
rng(S�α). For every surreal-membered sets

X, Y such that X ⊆ Lx ∪Rx and Y ⊆ Ly ∪Ry holds {(U(〈〈x6, y〉〉)+′U(〈〈x,
y4〉〉)) +′ −′U(〈〈x6, y4〉〉), where x6 is an element of X, y4 is an element of
Y : x6 ∈ X and y4 ∈ Y } = comp(X,x, y, Y ). �

(51) (i) for every x and y, x · y is a surreal number, and

(ii) for every x and y, x · y = y · x, and

(iii) for every surreal numbers x1, x2, y, x4, x5 such that x1 ≈ x2 and
x4 = x1 · y and x5 = x2 · y holds x4 ≈ x5, and

(iv) for every surreal numbers x1, x2, y1, y2, x12, x21, x11, x22 such that
x11 = x1 · y1 and x12 = x1 · y2 and x21 = x2 · y1 and x22 = x2 · y2 and
x1 < x2 and y1 < y2 holds x12 + x21 < x11 + x22.

Proof: Define P[ordinal number, surreal number, surreal number] ≡ if
born $2⊕born $3 ⊆ $1, then $2·$3 = $3·$2. Define S[ordinal number, surreal
number, surreal number] ≡ if born $2⊕born $3 ⊆ $1, then $2 ·$3 is a surreal
number. Define T [ordinal number, surreal number, surreal number, surreal
number] ≡ for every surreal numbers x4, x5 such that born $2⊕born $4 ⊆ $1
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and born $3 ⊕ born $4 ⊆ $1 and $2 ≈ $3 and x4 = $2 · $4 and x5 =
$3 · $4 holds x4 ≈ x5. Define V[ordinal number, surreal number, surreal
number, surreal number, surreal number] ≡ for every surreal numbers x12,
x21, x11, x22 such that born $2 ⊕ born $4 ⊆ $1 and born $3 ⊕ born $4 ⊆ $1
and born $2 ⊕ born $5 ⊆ $1 and born $3 ⊕ born $5 ⊆ $1 and x11 = $2 · $4
and x12 = $2 · $5 and x21 = $3 · $4 and x22 = $3 · $5 and $2 < $3 < $5
holds x12+x21 < x11+x22. Define F [ordinal number] ≡ for every x and y,
P[$1, x, y]. Define G[ordinal number] ≡ for every x and y, S[$1, x, y]. Define
H[ordinal number] ≡ for every surreal numbers x1, x2, y, T [$1, x1, x2, y].
Define I[ordinal number] ≡ for every surreal numbers x1, x2, y1, y2,
V[$1, x1, x2, y1, y2]. Define θ[ordinal number] ≡ F [$1] and G[$1] and H[$1]
and I[$1]. For every ordinal number δ such that for every ordinal num-
ber γ such that γ ∈ δ holds θ[γ] holds θ[δ]. For every ordinal number E,
θ[E]. For every surreal numbers x1, x2, y, x4, x5 such that x1 ≈ x2 and
x4 = x1 · y and x5 = x2 · y holds x4 ≈ x5. �

Let a, b be surreal numbers. Observe that a · b is surreal. Let a, b be surreal
numbers. One can check that the functor a ·b is commutative. Let x, y be surreal
numbers and X, Y be sets. Observe that comp(X,x, y, Y ) is surreal-membered.
Let us observe that the functor comp(X,x, y, Y ) is defined by

(Def. 15) o ∈ it iff there exist surreal numbers x1, y1 such that o = x1 · y+x · y1−
x1 · y1 and x1 ∈ X and y1 ∈ Y.

Now we state the propositions:

(52) comp({z}, x, y, {t}) = {z · y + x · t− z · t}.
(53) Let us consider sets X, Y. Then comp(X,x, y, Y ) = comp(Y, y, x,X).

(54) Conway Ch. 1 Th. 8(i):
Let us consider surreal numbers x1, x2, y. If x1 ≈ x2, then x1 · y ≈ x2 · y.

(55) Conway Ch. 1 Th. 8(iii):
Let us consider surreal numbers x1, x2, y1, y2. Suppose x1 < x2 and
y1 < y2. Then x1 · y2 + x2 · y1 < x1 · y1 + x2 · y2.

(56) Conway Ch. 1 Th. 7(i):
x · (0No) = 0No. The theorem is a consequence of (49) and (50).

(57) Multiplicative Identity for Surreal Number, Conway Ch. 1
Th. 7(ii):
x · (1No) = x.
Proof: Define P[ordinal number] ≡ for every x such that bornx ⊆ $1
holds x ·(1No) = x. For every ordinal number δ such that for every ordinal
number γ such that γ ∈ δ holds P[γ] holds P[δ]. For every ordinal number
δ, P[δ]. �
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Let us consider x. Observe that x·(0No) reduces to 0No and x·(1No) reduces
to x. Now we state the proposition:

(58) Conway Ch. 1 Th. 7(iv):

(i) x · (−y) = −x · y, and

(ii) (−x) · y = −x · y, and

(iii) (−x) · (−y) = x · y.

Let us consider sets X, Y1, Y2. Now we state the propositions:

(59) If Y1 ⊆ Y2, then comp(X,x, y, Y1) ⊆ comp(X,x, y, Y2).

(60) comp(X,x, y, Y1 ∪ Y2) = comp(X,x, y, Y1) ∪ comp(X,x, y, Y2). The the-
orem is a consequence of (59).

(61) Let us consider sets X, Y. Suppose for every x such that x ∈ X there
exists y such that y ∈ Y and x ≈ y. Then X l Y.

Let us consider sets X1, X2. Now we state the propositions:

(62) If X1 lX2, then 	X1 l	X2. The theorem is a consequence of (10).

(63) 	(X1 ⊕X2) = 	X1 ⊕	X2. The theorem is a consequence of (40).

(64) Let us consider a surreal-membered set X. Then X ⊕ {0No} = X.

(65) If x ≈ y, then −x ≈ −y.

(66) Let us consider surreal numbers x1, x2, y1, y2. If x1 ≈ x2 and y1 ≈ y2,
then x1 + y1 ≈ x2 + y2.

(67) Distributivity of Multiplication Over Addition for Surreal
Numbers, Conway Ch. 1 Th. 7(v):
x · (y + z) ≈ x · y + x · z.
Proof: Define P[ordinal number] ≡ for every surreal numbers x, y, z such
that (bornx ⊕ born y) ⊕ born z ⊆ $1 holds x · (y + z) ≈ x · y + x · z. For
every ordinal number δ such that for every ordinal number γ such that
γ ∈ δ holds P[γ] holds P[δ]. For every ordinal number δ, P[δ]. �

(68) Let us consider sets X1, X2, Y. Then comp(X1 ∪X2, x, y, Y ) =
comp(X1, x, y, Y ) ∪ comp(X2, x, y, Y ). The theorem is a consequence of
(53) and (60).

(69) Associativity of Multiplication for Surreal Numbers, Con-
way Ch. 1 Th. 7(vi):
(x · y) · z ≈ x · (y · z).
Proof: Define P[ordinal number] ≡ for every surreal numbers x, y, z such
that (bornx⊕ born y)⊕ born z ⊆ $1 holds (x · y) · z ≈ x · (y · z). For every
ordinal number δ such that for every ordinal number γ such that γ ∈ δ
holds P[γ] holds P[δ]. For every ordinal number δ, P[δ]. �
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(70) If 0No < x and y < z, then y · x < z · x. The theorem is a consequence
of (51).

(71) If x < 0No and y < z, then z · x < y · x. The theorem is a consequence
of (51).

(72) Conway Ch. 1 Th. 9:
0No < x · y if and only if x < 0No and y < 0No or 0No < x and 0No < y.
The theorem is a consequence of (51), (10), (58), and (23).

(73) If 0No < z and x · z < y · z, then x < y. The theorem is a consequence
of (51) and (70).

(74) x · y < 0No if and only if x < 0No < y or 0No < x and y < 0No. The
theorem is a consequence of (23), (10), (58), and (72).

(75) If 0No ¬ x and y ¬ z, then y · x ¬ z · x. The theorem is a consequence
of (51) and (70).

(76) (x+y) ·(x+y) ≈ x ·x+y ·y+(x ·y+y ·x). The theorem is a consequence
of (67), (43), and (37).

(77) x · y ≈ 0No if and only if x ≈ 0No or y ≈ 0No.
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