sciendo.com/journal/forma

The Ring of Conway Numbers in Mizar

Karol Pąk
Faculty of Computer Science
University of Białystok
Poland

Abstract

Summary. Conway's introduction to algebraic operations on surreal numbers with a rather simple definition. However, he combines recursion with Conway's induction on surreal numbers, more formally he combines transfinite induc-tion-recursion with the properties of proper classes, which is difficult to introduce formally.

This article represents a further step in our ongoing efforts to investigate the possibilities offered by Mizar with Tarski-Grothendieck set theory [4] to introduce the algebraic structure of Conway numbers and to prove their ring character.

MSC: 03H05 12J15 68V20
Keywords: surreal numbers; Conway's game
MML identifier: SURREALR version: 8.1.14 5.76.1456

Introduction

We present a formal analysis of the contents of Chapter 1, The Class No is a Field of John Conway's seminal book [5]. We formalised four sections, namely Properties of Addition, Properties of Negation, Properties of Addition and Order and Properties of Multiplication. We begin our exploration by formulating and proving two schemes (i.e., second-order theorems) for defining arithmetic operations on surreal numbers using a technique that mimics induction-infinite recursion. Then, we examine the applicability of this solution by defining the opposite surreal number but also the sum and product of surreal numbers. We prove for each such operator simultaneously its correctness and crucial properties, in particular the preservation of pre-order under the operator. For this
purpose, we use transfinite induction with respect to successive generations of surreal numbers. Notice that we express the Conway induction using the transfinite induction with the Heisenberg sum of two ordinals [3, 6], formalised in [7].

The most important result is the formalisation of the following properties of the surreal numbers

$$
\begin{aligned}
& \begin{array}{rrr}
(-x) \cdot y=-x \cdot y=x \cdot(-y) & (-x) \cdot(-y)=x \cdot y \\
x \cdot(y+z) \approx x \cdot y+x \cdot z & (x, 6), & (x \cdot y) \cdot z \approx x \cdot(y \cdot z) \\
0_{\text {No }}<x \wedge 0_{\text {No }}<y \Rightarrow 0_{\text {No }}<x \cdot y & \boxed{62}, & y \leqslant z \Leftrightarrow x+y \leqslant x+z
\end{array}
\end{aligned}
$$

The formalisation is mainly based on [1, 2, 5, 10.

1. Preliminaries

From now on α, β, γ denote ordinal numbers, o denotes an object, x, y, z, t, r, l denote surreal numbers, and X, Y denote sets.

Let f be a function. One can check that f is function yielding if and only if the condition (Def. 1) is satisfied.
(Def. 1) $\operatorname{rng} f$ is functional.
One can check that there exists a transfinite sequence which is \subseteq-monotone and function yielding. Let f be a \subseteq-monotone function and X be a set. Let us observe that $f \upharpoonright X$ is \subseteq-monotone. Let f be a \subseteq-monotone, function yielding transfinite sequence. Let us note that $\bigcup \operatorname{rng} f$ is function-like and relation-like. Now we state the propositions:
(1) Let us consider a \subseteq-monotone, function yielding transfinite sequence f, and an object o. Suppose $o \in \operatorname{dom}(\bigcup \operatorname{rng} f)$. Then there exists α such that
(i) $\alpha \in \operatorname{dom} f$, and
(ii) $o \in \operatorname{dom}(f(\alpha))$.
(2) Let us consider a \subseteq-monotone, function yielding transfinite sequence f, and α. Suppose $\alpha \in \operatorname{dom} f$. Then
(i) $\operatorname{dom}(f(\alpha)) \subseteq \operatorname{dom}(\bigcup \operatorname{rng} f)$, and
(ii) for every o such that $o \in \operatorname{dom}(f(\alpha))$ holds $f(\alpha)(o)=(\bigcup \operatorname{rng} f)(o)$.

Proof: Set $U=\bigcup \operatorname{rng} f . \operatorname{dom}(f(\alpha)) \subseteq \operatorname{dom} U$.
(3) Let us consider a \subseteq-monotone, function yielding transfinite sequence f, an ordinal number α, and a set X. Suppose for every o such that $o \in X$ there exists an ordinal number β such that $o \in \operatorname{dom}(f(\beta))$ and $\beta \in \alpha$. Then $\left(\bigcup \operatorname{rng}(f\lceil\alpha))^{\circ} X=(\bigcup \operatorname{rng} f)^{\circ} X\right.$. The theorem is a consequence of (2).

2. Surreal Number Operators - Schemes

The scheme MonoFvSExists deals with an ordinal number θ and a unary functor δ yielding a set and a binary functor \mathcal{H} yielding an object and states that
(Sch. 1) There exists a \subseteq-monotone, function yielding transfinite sequence S such that $\operatorname{dom} S=\operatorname{succ} \theta$ and for every ordinal number α such that $\alpha \in \operatorname{succ} \theta$ there exists a many sorted set S_{3} indexed by $\delta(\alpha)$ such that $S(\alpha)=S_{3}$ and for every o such that $o \in \delta(\alpha)$ holds $S_{3}(o)=\mathcal{H}(o, S \upharpoonright \alpha)$
provided

- for every \subseteq-monotone, function yielding transfinite sequence S such that for every ordinal number α such that $\alpha \in \operatorname{dom} S$ holds $\operatorname{dom}(S(\alpha))=\delta(\alpha)$ for every ordinal number α for every o such that $o \in \operatorname{dom}(S(\alpha))$ holds $\mathcal{H}(o, S\lceil\alpha)=\mathcal{H}(o, S)$ and
- for every ordinal numbers α, β such that $\alpha \subseteq \beta$ holds $\delta(\alpha) \subseteq \delta(\beta)$.

The scheme MonoFvSUniq deals with an ordinal number θ and a unary functor δ yielding a set and \subseteq-monotone, function yielding transfinite sequences S_{1}, S_{2} and a binary functor \mathcal{H} yielding an object and states that
(Sch. 2) $\quad S_{1} \upharpoonright \theta=S_{2} \upharpoonright \theta$
provided

- $\theta \subseteq \operatorname{dom} S_{1}$ and $\theta \subseteq \operatorname{dom} S_{2}$ and
- for every ordinal number α such that $\alpha \in \theta$ there exists a many sorted set S_{3} indexed by $\delta(\alpha)$ such that $S_{1}(\alpha)=S_{3}$ and for every o such that $o \in \delta(\alpha)$ holds $S_{3}(o)=\mathcal{H}\left(o, S_{1} \upharpoonright \alpha\right)$ and
- for every ordinal number α such that $\alpha \in \theta$ there exists a many sorted set S_{3} indexed by $\delta(\alpha)$ such that $S_{2}(\alpha)=S_{3}$ and for every o such that $o \in \delta(\alpha)$ holds $S_{3}(o)=\mathcal{H}\left(o, S_{2} \upharpoonright \alpha\right)$.

3. The Opposite Surreal Number

Let us consider α. The functor opposite ${ }_{\text {No }}(\alpha)$ yielding a many sorted set indexed by Day α is defined by
(Def. 2) there exists a \subseteq-monotone, function yielding transfinite sequence S such that $\operatorname{dom} S=\operatorname{succ} \alpha$ and $i t=S(\alpha)$ and for every β such that $\beta \in \operatorname{succ} \alpha$ there exists a many sorted set S_{5} indexed by Day β such that $S(\beta)=S_{5}$ and for every o such that $o \in \operatorname{Day} \beta$ holds $S_{5}(o)=\left\langle(\bigcup \operatorname{rng}(S \upharpoonright \beta))^{\circ}\left(\mathrm{R}_{o}\right)\right.$, $\left.(\bigcup \operatorname{rng}(S \upharpoonright \beta))^{\circ}\left(\mathrm{L}_{o}\right)\right\rangle$.
Now we state the propositions:
(4) Let us consider a \subseteq-monotone, function yielding transfinite sequence S. Suppose for every β such that $\beta \in \operatorname{dom} S$ there exists a many sorted set S_{5} indexed by Day β such that $S(\beta)=S_{5}$ and for every o such that $o \in \operatorname{Day} \beta$ holds $S_{5}(o)=\left\langle(\bigcup \operatorname{rng}(S \upharpoonright \beta))^{\circ}\left(\mathrm{R}_{o}\right),(\bigcup \operatorname{rng}(S \upharpoonright \beta))^{\circ}\left(\mathrm{L}_{o}\right)\right\rangle$. If $\alpha \in \operatorname{dom} S$, then $\operatorname{opposite}_{\mathbf{N o}}(\alpha)=S(\alpha)$.
Proof: Define δ (ordinal number) $=$ Day $\$_{1}$. Define \mathcal{H} (object, \subseteq-monotone, function yielding transfinite sequence $)=\left\langle\left(\bigcup \mathrm{rng} \$_{2}\right)^{\circ}\left(\mathrm{R} \$_{1}\right),\left(\bigcup \mathrm{rng} \$_{2}\right)^{\circ}\right.$ $\left.\left(\mathrm{L}_{\$_{1}}\right)\right\rangle$. Consider S_{2} being a \subseteq-monotone, function yielding transfinite sequence such that $\operatorname{dom} S_{2}=\operatorname{succ} \alpha$ and $S_{2}(\alpha)=\operatorname{opposite}_{\mathbf{N o}}(\alpha)$ and for every ordinal number β such that $\beta \in \operatorname{succ} \alpha$ there exists a many sorted set S_{5} indexed by $\delta(\beta)$ such that $S_{2}(\beta)=S_{5}$ and for every object x such that $x \in \delta(\beta)$ holds $S_{5}(x)=\mathcal{H}\left(x, S_{2} \upharpoonright \beta\right)$. $S_{1} \upharpoonright \operatorname{succ} \alpha=S_{2} \upharpoonright \operatorname{succ} \alpha$.
(5) Let us consider a \subseteq-monotone, function yielding transfinite sequence f. Suppose $o \in \operatorname{dom}(f(\beta))$ and $\beta \in \alpha$. Then
(i) $o \in \operatorname{dom}(\bigcup \operatorname{rng}(f\lceil\alpha))$, and
(ii) $(\bigcup \operatorname{rng}(f\lceil\alpha))(o)=(\bigcup \operatorname{rng} f)(o)$.

The theorem is a consequence of (2).
(6) Let us consider a \subseteq-monotone, function yielding transfinite sequence f, and ordinal numbers α, β. Suppose $o \in \operatorname{dom}(f(\beta))$ and $\beta \in \alpha$. Then $(\bigcup \operatorname{rng}(f\lceil\alpha))(o)=(\bigcup \operatorname{rng} f)(o)$. The theorem is a consequence of (2).
Let us consider x. The functor $-x$ yielding a set is defined by the term
(Def. 3) (opposite $\left.{ }_{\mathbf{N o}}(\mathfrak{b o r n} x)\right)(x)$.
Let X be a set. The functor $\ominus X$ yielding a set is defined by
(Def. 4) $\quad o \in$ it iff there exists a surreal number x such that $x \in X$ and $o=-x$.
Now we state the proposition:
(7) $-x=\left\langle\ominus \mathrm{R}_{x}, \ominus \mathrm{~L}_{x}\right\rangle$.

Proof: Set $\alpha=\mathfrak{b o r n} x$. Consider S being a \subseteq-monotone, function yielding transfinite sequence such that $\operatorname{dom} S=\operatorname{succ} \alpha$ and opposite ${ }_{\mathbf{N o}}(\alpha)=S(\alpha)$
and for every ordinal number β such that $\beta \in \operatorname{succ} \alpha$ there exists a many sorted set S_{5} indexed by Day β such that $S(\beta)=S_{5}$ and for every object x such that $x \in \operatorname{Day} \beta$ holds $S_{5}(x)=\left\langle(\cup \operatorname{rng}(S \upharpoonright \beta))^{\circ}\left(\mathrm{R}_{x}\right)\right.$, $\left.(\bigcup \operatorname{rng}(S \upharpoonright \beta))^{\circ}\left(\mathrm{L}_{x}\right)\right\rangle$. Consider S_{3} being a many sorted set indexed by Day α such that $S(\alpha)=S_{3}$ and for every object x such that $x \in$ Day α holds $S_{3}(x)=\left\langle\left(\bigcup \operatorname{rng}(S\lceil\alpha))^{\circ}\left(\mathrm{R}_{x}\right),\left(\bigcup \operatorname{rng}(S\lceil\alpha))^{\circ}\left(\mathrm{L}_{x}\right)\right\rangle\right.\right.$. Set $U=\bigcup \operatorname{rng}(S\lceil\alpha)$. $\ominus \mathrm{R}_{x} \subseteq U^{\circ}\left(\mathrm{R}_{x}\right) . U^{\circ}\left(\mathrm{R}_{x}\right) \subseteq \ominus \mathrm{R}_{x} . \ominus \mathrm{L}_{x} \subseteq U^{\circ}\left(\mathrm{L}_{x}\right) . U^{\circ}\left(\mathrm{L}_{x}\right) \subseteq \ominus \mathrm{L}_{x}$.
Let us consider x. One can check that $-x$ is surreal. Let X be a set. Let us note that $\ominus X$ is surreal-membered. Now we state the propositions:
(8) (i) $\mathrm{L}_{(-x)}=\ominus \mathrm{R}_{x}$, and
(ii) $\mathrm{R}_{(-x)}=\ominus \mathrm{L}_{x}$.

The theorem is a consequence of (7).
(9) Conway Ch. 1 Th. 4(it):

$$
--x=x
$$

Let us consider x. Let us observe that $--x$ reduces to x. Now we state the propositions:
(10) $x \leqslant y$ if and only if $-y \leqslant-x$.
(11) Let us consider a surreal number x, and an ordinal number δ. If $x \in \operatorname{Day} \delta$, then $-x \in$ Day δ.
(12) $\mathfrak{b o r n} x=\mathfrak{b o r n}(-x)$.
(13) $\mathfrak{b o r n}_{\approx x=\mathfrak{b o r n}}^{\approx(-x) \text {. The theorem is a consequence of (10) and (12). }}$
(14) If $x \in \mathfrak{B o r n} \approx y$, then $-x \in \mathfrak{B o r n} \approx(-y)$. The theorem is a consequence of (10), (13), and (12).
(15) Let us consider a surreal-membered set X. Then $\ominus \ominus X=X$.
(16) $\overline{\overline{\ominus X}} \subseteq \overline{\bar{X}}$.

Proof: Define \mathcal{P} [object, object] \equiv for every x such that $x=\$_{1}$ holds $\$_{2}=-x$. If $o \in \ominus X$, then there exists an object u such that $\mathcal{P}[o, u]$. Consider f being a function such that $\operatorname{dom} f=\ominus X$ and for every object o such that $o \in \ominus X$ holds $\mathcal{P}[o, f(o)]$. rng $f \subseteq X . f$ is one-to-one.
(17) Let us consider a surreal-membered set X. Then $\overline{\bar{X}}=\overline{\overline{\ominus X}}$. The theorem is a consequence of (15) and (16).
Let us consider surreal-membered sets X, Y. Now we state the propositions:
(18) $X \preceq Y$ if and only if $\ominus Y \preceq \ominus X$. The theorem is a consequence of (15).
(19) $\quad X \ll Y$ if and only if $\ominus Y \ll \ominus X$. The theorem is a consequence of (15).

Now we state the propositions:
(20) Let us consider sets X_{1}, X_{2}. Then $\ominus\left(X_{1} \cup X_{2}\right)=\ominus X_{1} \cup \ominus X_{2}$.
(21) $\{-x\}=\ominus\{x\}$.
(22) $\ominus \emptyset=\emptyset$.
(23) $-\mathbf{0}_{\text {No }}=\mathbf{0}_{\text {No }}$. The theorem is a consequence of (7) and (22).

One can verify that $-\mathbf{0}_{\text {No }}$ reduces to $\mathbf{0}_{\mathbf{N o}}$. Now we state the proposition:
(24) $\quad x \approx \mathbf{0}_{\mathbf{N o}}$ if and only if $-x \approx \mathbf{0}_{\mathbf{N o}}$.

Let α be an ordinal number. The functor Triangle α yielding a subset of $\operatorname{Day} \alpha \times \operatorname{Day} \alpha$ is defined by
(Def. 5) for every surreal numbers $x, y,\langle x, y\rangle \in$ it iff $\mathfrak{b o r n} x \oplus \mathfrak{b o r n} y \subseteq \alpha$.
Observe that Triangle α is non empty. Now we state the proposition:
(25) Let us consider ordinal numbers α, β. Suppose $\alpha \subseteq \beta$. Then Triangle $\alpha \subseteq$ Triangle β.

4. The Sum of Surreal Numbers

Let α be an ordinal number. The functor $\operatorname{sum}_{\mathrm{No}}(\alpha)$ yielding a many sorted set indexed by Triangle α is defined by
(Def. 6) there exists a \subseteq-monotone, function yielding transfinite sequence S such that $\operatorname{dom} S=\operatorname{succ} \alpha$ and $i t=S(\alpha)$ and for every ordinal number β such that $\beta \in \operatorname{succ} \alpha$ there exists a many sorted set S_{5} indexed by Triangle β such that $S(\beta)=S_{5}$ and for every object x such that $x \in$ Triangle β holds $S_{5}(x)=\left\langle(\bigcup \operatorname{rng}(S \upharpoonright \beta))^{\circ}\left(\mathrm{L}_{\mathrm{L}_{x}} \times\left\{\mathrm{R}_{x}\right\} \cup\left\{\mathrm{L}_{x}\right\} \times \mathrm{L}_{\mathrm{R}_{x}}\right),(\bigcup \operatorname{rng}(S \upharpoonright \beta))^{\circ}\left(\mathrm{R}_{\mathrm{L}_{x}} \times\right.\right.$ $\left.\left.\left\{\mathrm{R}_{x}\right\} \cup\left\{\mathrm{L}_{x}\right\} \times \mathrm{R}_{\mathrm{R}_{x}}\right)\right\rangle$.
Now we state the proposition:
(26) Let us consider a \subseteq-monotone, function yielding transfinite sequence S. Suppose for every ordinal number β such that $\beta \in \operatorname{dom} S$ there exists a many sorted set S_{5} indexed by Triangle β such that $S(\beta)=S_{5}$ and for every object x such that $x \in$ Triangle β holds $S_{5}(x)=\left\langle(\bigcup \operatorname{rng}(S \upharpoonright \beta))^{\circ}\left(\mathrm{L}_{\mathrm{L} x} \times\right.\right.$ $\left.\left.\left\{\mathrm{R}_{x}\right\} \cup\left\{\mathrm{L}_{x}\right\} \times \mathrm{L}_{\mathrm{R}_{x}}\right),(\cup \operatorname{rng}(S \upharpoonright \beta))^{\circ}\left(\mathrm{R}_{\mathrm{L}_{x}} \times\left\{\mathrm{R}_{x}\right\} \cup\left\{\mathrm{L}_{x}\right\} \times \mathrm{R}_{\mathrm{R}_{x}}\right)\right\rangle$. Let us consider an ordinal number α. If $\alpha \in \operatorname{dom} S$, then $\operatorname{sum}_{\mathrm{No}}(\alpha)=S(\alpha)$.
Proof: Define δ (ordinal number) $=$ Triangle $\$_{1}$. Define \mathcal{H} (object, \subseteq-monotone, function yielding transfinite sequence $)=\left\langle\left(\bigcup \text { rng } \$_{2}\right)^{\circ}\left(\mathrm{L}_{\mathrm{L}_{1}} \times\left\{\mathrm{R}_{\$_{1}}\right\} \cup\right.\right.$ $\left.\left.\left\{\mathrm{L}_{\$_{1}}\right\} \times \mathrm{L}_{\mathrm{R}_{\$_{1}}}\right),\left(\bigcup \mathrm{rng} \$_{2}\right)^{\circ}\left(\mathrm{R}_{\mathrm{L}_{\Phi_{1}}} \times\left\{\mathrm{R}_{\$_{1}}\right\} \cup\left\{\mathrm{L}_{\$_{1}}\right\} \times \mathrm{R}_{\mathrm{R}_{\Phi_{1}}}\right)\right\rangle$. Consider S_{1} being a \subseteq-monotone, function yielding transfinite sequence such that $\operatorname{dom} S_{1}=$ $\operatorname{succ} \alpha$ and $\operatorname{sum}_{\mathrm{No}}(\alpha)=S_{1}(\alpha)$ and for every ordinal number β such that $\beta \in \operatorname{succ} \alpha$ there exists a many sorted set S_{5} indexed by $\delta(\beta)$ such that $S_{1}(\beta)=S_{5}$ and for every object x such that $x \in \delta(\beta)$ holds $S_{5}(x)=$ $\mathcal{H}\left(x, S_{1} \upharpoonright \beta\right) . S \upharpoonright \operatorname{succ} \alpha=S_{1} \upharpoonright \operatorname{succ} \alpha$.
Let x, y be surreal numbers. The functor $x+y$ yielding a set is defined by the term
(Def. 7) $\quad\left(\operatorname{sum}_{\mathrm{No}}(\mathfrak{b o r n} x \oplus \mathfrak{b o r n} y)\right)(\langle x, y\rangle)$.
Let X, Y be sets. The functor $X \oplus Y$ yielding a set is defined by
(Def. 8) $o \in$ it iff there exist surreal numbers x, y such that $x \in X$ and $y \in Y$ and $o=x+y$.
Now we state the propositions:
(27) Let us consider a set X. Then $X \oplus \emptyset=\emptyset$.
(28) Let us consider surreal numbers x, y. Then $x+y=\left\langle\left(\mathrm{L}_{x} \oplus\{y\}\right) \cup(\{x\} \oplus\right.$ $\left.\left.\mathrm{L}_{y}\right),\left(\mathrm{R}_{x} \oplus\{y\}\right) \cup\left(\{x\} \oplus \mathrm{R}_{y}\right)\right\rangle$.
Proof: Set $B_{3}=\mathfrak{b o r n} x$. Set $B_{5}=\mathfrak{b o r n} y$. Set $\alpha=B_{3} \oplus B_{5}$. Consider S being a \subseteq-monotone, function yielding transfinite sequence such that $\operatorname{dom} S=\operatorname{succ} \alpha$ and $\operatorname{sum}_{\mathbf{N o}}(\alpha)=S(\alpha)$ and for every ordinal number β such that $\beta \in \operatorname{succ} \alpha$ there exists a many sorted set S_{5} indexed by Triangle β such that $S(\beta)=S_{5}$ and for every object x such that $x \in$ Triangle β holds $S_{5}(x)=\left\langle(\bigcup \operatorname{rng}(S \upharpoonright \beta))^{\circ}\left(\mathrm{L}_{\mathrm{L}_{x}} \times\left\{\mathrm{R}_{x}\right\} \cup\left\{\mathrm{L}_{x}\right\} \times \mathrm{L}_{\mathrm{R}_{x}}\right)\right.$, $\left.(\bigcup \operatorname{rng}(S \upharpoonright \beta))^{\circ}\left(\mathrm{R}_{\mathrm{L}_{x}} \times\left\{\mathrm{R}_{x}\right\} \cup\left\{\mathrm{L}_{x}\right\} \times \mathrm{R}_{\mathrm{R}_{x}}\right)\right\rangle$. Consider S_{3} being a many sorted set indexed by Triangle α such that $S(\alpha)=S_{3}$ and for every object x such that $x \in$ Triangle α holds $S_{3}(x)=\left\langle\left(\cup \operatorname{rng}(S\lceil\alpha))^{\circ}\left(\mathrm{L}_{(x)_{1}} \times\right.\right.\right.$ $\left.\left\{\mathrm{R}_{x}\right\} \cup\left\{\mathrm{L}_{x}\right\} \times \mathrm{L}_{\mathrm{R}_{x}}\right),\left(\cup \operatorname{rng}(S\lceil\alpha))^{\circ}\left(\mathrm{R}_{\mathrm{L}_{x}} \times\left\{\mathrm{R}_{x}\right\} \cup\left\{\mathrm{L}_{x}\right\} \times \mathrm{R}_{\mathrm{R}_{x}}\right)\right\rangle$. Set $U=$ $\bigcup \operatorname{rng}(S \upharpoonright \alpha) . U^{\circ}\left(\mathrm{L}_{x} \times\{y\}\right) \subseteq \mathrm{L}_{x} \oplus\{y\} . \mathrm{L}_{x} \oplus\{y\} \subseteq U^{\circ}\left(\mathrm{L}_{x} \times\{y\}\right) . U^{\circ}\left(\mathrm{R}_{x} \times\right.$ $\{y\}) \subseteq \mathrm{R}_{x} \oplus\{y\} . \mathrm{R}_{x} \oplus\{y\} \subseteq U^{\circ}\left(\mathrm{R}_{x} \times\{y\}\right) . U^{\circ}\left(\{x\} \times \mathrm{L}_{y}\right) \subseteq\{x\} \oplus \mathrm{L}_{y}$. $\{x\} \oplus \mathrm{L}_{y} \subseteq U^{\circ}\left(\{x\} \times \mathrm{L}_{y}\right) . U^{\circ}\left(\{x\} \times \mathrm{R}_{y}\right) \subseteq\{x\} \oplus \mathrm{R}_{y} .\{x\} \oplus \mathrm{R}_{y} \subseteq U^{\circ}(\{x\} \times$ R_{y}).
(29) Commutativity of Addition for Surreal Number, Conway Ch. 1 Th. 3(II):
$x+y=y+x$.
Proof: Define \mathcal{P} [ordinal number] \equiv for every surreal numbers x, y such that $\mathfrak{b o r n} x \oplus \mathfrak{b o r n} y \subseteq \$_{1}$ holds $x+y=y+x$. For every ordinal number δ such that for every ordinal number γ such that $\gamma \in \delta$ holds $\mathcal{P}[\gamma]$ holds $\mathcal{P}[\delta]$. For every ordinal number $\delta, \mathcal{P}[\delta]$.
Let x, y be surreal numbers. Let us note that the functor $x+y$ is commutative. Now we state the proposition:
(30) Let us consider sets X, Y. Then $X \oplus Y=Y \oplus X$.

Let X, Y be sets. One can verify that the functor $X \oplus Y$ is commutative.
Let us consider x and y. Let us note that $x+y$ is surreal. Let x, y be surreal numbers. The functor $x-y$ yielding a surreal number is defined by the term
(Def. 9) $x+-y$.
Now we state the proposition:
(31) \mathfrak{b} orn $(x+y) \subseteq \mathfrak{b}$ orn $x \oplus \mathfrak{b}$ orn y.

Let X, Y be sets. Let us note that $X \oplus Y$ is surreal-membered. Now we state the propositions:
(32) Transitive Law of Addition for Surreal Number, Conway Ch. 1 Th. 5:
$x \leqslant y$ if and only if $x+z \leqslant y+z$.
(33) Let us consider sets X_{1}, X_{2}, Y. Then $\left(X_{1} \cup X_{2}\right) \oplus Y=\left(X_{1} \oplus Y\right) \cup\left(X_{2} \oplus Y\right)$.
(34) Let us consider sets X, Y_{1}, Y_{2}. Then $X \oplus\left(Y_{1} \cup Y_{2}\right)=\left(X \oplus Y_{1}\right) \cup\left(X \oplus Y_{2}\right)$.
(35) Let us consider sets $X_{1}, X_{2}, Y_{1}, Y_{2}$. Suppose $X_{1} \lessdot X_{2}$ and $Y_{1} \lessdot Y_{2}$. Then $X_{1} \oplus Y_{1} \lessdot X_{2} \oplus Y_{2}$. The theorem is a consequence of (32).
(36) $\{x\} \oplus\{y\}=\{x+y\}$.
(37) Associativity of Addition for Surreal Number, Conway Ch. 1 Th. 3(III):
$(x+y)+z=x+(y+z)$.
Proof: Define \mathcal{P} [ordinal number] \equiv for every surreal numbers x, y, z such that $(\mathfrak{b o r n} x \oplus \mathfrak{b o r n} y) \oplus \mathfrak{b o r n} z \subseteq \$_{1}$ holds $(x+y)+z=x+(y+z)$. For every ordinal number δ such that for every ordinal number γ such that $\gamma \in \delta$ holds $\mathcal{P}[\gamma]$ holds $\mathcal{P}[\delta]$. For every ordinal number $\delta, \mathcal{P}[\delta]$.
(38) Additive Identity for Surreal Number, Conway Ch. 1 Th. 3(i): $x+\mathbf{0}_{\mathrm{No}}=x$.
Proof: Set $y=\mathbf{0}_{\mathbf{N o}}$. Define \mathcal{P} [ordinal number] \equiv for every surreal number x such that born $x=\$_{1}$ holds $x+y=x$. For every ordinal number δ such that for every ordinal number γ such that $\gamma \in \delta$ holds $\mathcal{P}[\gamma]$ holds $\mathcal{P}[\delta]$. For every ordinal number $\delta, \mathcal{P}[\delta]$.
Let us consider x. Let us note that $x+\mathbf{0}_{\text {No }}$ reduces to x. Now we state the proposition:
(39) Property of The Aditive Inverse for Surreal Number, Conway Ch. 1 Th. 4(ini):
$x-x \approx \mathbf{0}_{\text {No }}$.
Proof: Set $y=\mathbf{0}_{\mathbf{N o}}$. Define \mathcal{P} [ordinal number] \equiv for every surreal number x such that born $x=\$_{1}$ holds $x+-x \approx y$. For every ordinal number δ such that for every ordinal number γ such that $\gamma \in \delta$ holds $\mathcal{P}[\gamma]$ holds $\mathcal{P}[\delta]$ by (7), (28), [8, (43)], [9, (1)]. For every ordinal number $\delta, \mathcal{P}[\delta]$.
(40) Conway Ch. 1 Th. 4(I):
$-(x+y)=-x+-y$.
Proof: Define \mathcal{P} [ordinal number] \equiv for every surreal numbers x, y such that born $x \oplus \mathfrak{b o r n} y \subseteq \$_{1}$ holds $-(x+y)=-x+-y$. For every ordinal number δ such that for every ordinal number γ such that $\gamma \in \delta$ holds $\mathcal{P}[\gamma]$ holds $\mathcal{P}[\delta]$. For every ordinal number $\delta, \mathcal{P}[\delta]$.
(41) $x+y \leqslant z$ if and only if $x \leqslant z-y$.

Proof: If $x+y \leqslant z$, then $x \leqslant z-y . x+y \leqslant z+-y+y . x+y \leqslant z+(-y+y)$. $y-y \approx \mathbf{0}_{\mathbf{N o}} \cdot z+(-y+y) \leqslant z+\mathbf{0}_{\mathbf{N o}}=z$.
(42) $x+y<z$ if and only if $x<z-y$.

Proof: If $x+y<z$, then $x<z-y . z+-y \leqslant x+y+-y . z+-y \leqslant$ $x+(y+-y) . y-y \approx \mathbf{0}_{\mathbf{N o}} \cdot x+(y+-y) \leqslant x+\mathbf{0}_{\text {No }}=x$.
(43) If $x \leqslant y$ and $z \leqslant t$, then $x+z \leqslant y+t$. The theorem is a consequence of (32).
(44) If $x \leqslant y$ and $z<t$, then $x+z<y+t$. The theorem is a consequence of (42), (39), (32), and (37).
(45) $x<y$ if and only if $\mathbf{0}_{\text {No }}<y-x$. The theorem is a consequence of (42).
(46) $x<y$ if and only if $x-y<\mathbf{0}_{\mathbf{N o}}$. The theorem is a consequence of (41).
(47) If $x-y \approx \mathbf{0}_{\mathbf{N o}}$, then $x \approx y$. The theorem is a consequence of (39), (37), and (43).
Let x be an object. Assume x is surreal. The functor $-^{\prime} x$ yielding a surreal number is defined by
(Def. 10) for every surreal number x_{1} such that $x_{1}=x$ holds it $=-x_{1}$.
Let a be a surreal number. We identify $-^{\prime} x$ with $-a$. Let x, y be objects. Assume x is surreal and y is surreal. The functor $x+{ }^{\prime} y$ yielding a surreal number is defined by
(Def. 11) for every surreal numbers x_{1}, y_{1} such that $x_{1}=x$ and $y_{1}=y$ holds it $=x_{1}+y_{1}$.
Let a, b be surreal numbers. We identify $x+{ }^{\prime} y$ with $a+b$.

5. The Product of Superreal Numbers

Let α be an ordinal number. The functor mult ${ }_{\text {No }}(\alpha)$ yielding a many sorted set indexed by Triangle α is defined by
(Def. 12) there exists a \subseteq-monotone, function yielding transfinite sequence S such that $\operatorname{dom} S=\operatorname{succ} \alpha$ and $i t=S(\alpha)$ and for every ordinal number β such that $\beta \in \operatorname{succ} \alpha$ there exists a many sorted set S_{5} indexed by Triangle β such that $S(\beta)=S_{5}$ and for every object x such that $x \in$ Triangle β holds $S_{5}(x)=\left\langle\left\{\left((\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle x_{6}, \mathrm{R}_{x}\right\rangle\right)+^{\prime}(\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle\mathrm{L}_{x}, y_{4}\right\rangle\right)\right)+^{\prime}\right.\right.$ $-^{\prime}(\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle x_{6}, y_{4}\right\rangle\right)$, where x_{6} is an element of $\mathrm{L}_{\mathrm{L}_{x}}, y_{4}$ is an element of $\mathrm{L}_{\mathrm{R}_{x}}: x_{6} \in \mathrm{~L}_{\mathrm{L}_{x}}$ and $\left.y_{4} \in \mathrm{~L}_{\mathrm{R}_{x}}\right\} \cup\left\{\left((\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle x_{7}, \mathrm{R}_{x}\right\rangle\right)+{ }^{\prime}(\bigcup \operatorname{rng}(S \upharpoonright \beta))\right.\right.$ $\left.\left(\left\langle\mathrm{L}_{x}, y_{5}\right\rangle\right)\right)+^{\prime}-^{\prime}(\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle x_{7}, y_{5}\right\rangle\right)$, where x_{7} is an element of $\mathrm{R}_{\mathrm{L}_{x}}, y_{5}$ is an element of $\mathrm{R}_{\mathrm{R}_{x}}: x_{7} \in \mathrm{R}_{\mathrm{L}_{x}}$ and $\left.y_{5} \in \mathrm{R}_{\mathrm{R}_{x}}\right\}$, $\left\{\left((\cup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle x_{6}\right.\right.\right.\right.$, $\left.\left.\left.\mathrm{R}_{x}\right\rangle\right)+^{\prime}(\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle\mathrm{L}_{x}, y_{5}\right\rangle\right)\right)+^{\prime}-^{\prime}(\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle x_{6}, y_{5}\right\rangle\right)$, where x_{6} is
an element of $\mathrm{L}_{\mathrm{L}_{x}}, y_{5}$ is an element of $\mathrm{R}_{\mathrm{R}_{x}}: x_{6} \in \mathrm{~L}_{\mathrm{L}_{x}}$ and $\left.y_{5} \in \mathrm{R}_{\mathrm{R}_{x}}\right\} \cup$ $\left\{\left((\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle x_{7}, \mathrm{R}_{x}\right\rangle\right)+^{\prime}(\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle\mathrm{L}_{x}, y_{4}\right\rangle\right)\right)+^{\prime}-^{\prime}(\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle x_{7}\right.\right.\right.$, $\left.\left.y_{4}\right\rangle\right)$, where x_{7} is an element of $\mathrm{R}_{\mathrm{L}_{x}}, y_{4}$ is an element of $\mathrm{L}_{\mathrm{R}_{x}}: x_{7} \in \mathrm{R}_{\mathrm{L}_{x}}$ and $\left.\left.y_{4} \in \mathrm{~L}_{\mathrm{R}_{x}}\right\}\right\rangle$.
Let x, y be surreal numbers. The functor $x \cdot y$ yielding a set is defined by the term
(Def. 13) $\quad\left(\right.$ mult $_{\mathbf{N o}}(\mathfrak{b o r n} x \oplus \mathfrak{b}$ orn $\left.y)\right)(\langle x, y\rangle)$.
Now we state the proposition:
(48) Let us consider a \subseteq-monotone, function yielding transfinite sequence S. Suppose for every ordinal number β such that $\beta \in \operatorname{dom} S$ there exists a many sorted set S_{5} indexed by Triangle β such that $S(\beta)=S_{5}$ and for every object x such that $x \in$ Triangle β holds $S_{5}(x)=\left\langle\left\{\left((\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle x_{6}\right.\right.\right.\right.\right.$, $\left.\left.\left.\mathrm{R}_{x}\right\rangle\right)+^{\prime}(\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle\mathrm{L}_{x}, y_{4}\right\rangle\right)\right)+^{\prime}-^{\prime}(\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle x_{6}, y_{4}\right\rangle\right)$, where x_{6} is an element of $\mathrm{L}_{\mathrm{L}_{x}}, y_{4}$ is an element of $\mathrm{L}_{\mathrm{R}_{x}}: x_{6} \in \mathrm{~L}_{\mathrm{L}_{x}}$ and $\left.y_{4} \in \mathrm{~L}_{\mathrm{R}_{x}}\right\} \cup$ $\left\{\left((\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle x_{7}, \mathrm{R}_{x}\right\rangle\right)+^{\prime}(\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle\mathrm{L}_{x}, y_{5}\right\rangle\right)\right)+^{\prime}-^{\prime}(\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle x_{7}\right.\right.\right.$, $\left.\left.y_{5}\right\rangle\right)$, where x_{7} is an element of $\mathrm{R}_{\mathrm{L}_{x}}, y_{5}$ is an element of $\mathrm{R}_{\mathrm{R}_{x}}: x_{7} \in \mathrm{R}_{\mathrm{L}_{x}}$ and $\left.y_{5} \in \mathrm{R}_{\mathrm{R}_{x}}\right\},\left\{\left((\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle x_{6}, \mathrm{R}_{x}\right\rangle\right)+^{\prime}(\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle\mathrm{L}_{x}, y_{5}\right\rangle\right)\right)+^{\prime}-^{\prime}(\bigcup \mathrm{rng}\right.$ $(S \upharpoonright \beta))\left(\left\langle x_{6}, y_{5}\right\rangle\right)$, where x_{6} is an element of $\mathrm{L}_{\mathrm{L}_{x}}, y_{5}$ is an element of $\mathrm{R}_{\mathrm{R}_{x}}$: $x_{6} \in \mathrm{~L}_{\mathrm{L}_{x}}$ and $\left.y_{5} \in \mathrm{R}_{\mathrm{R}_{x}}\right\} \cup\left\{\left((\cup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle x_{7}, \mathrm{R}_{x}\right\rangle\right)+^{\prime}(\cup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle\mathrm{L}_{x}\right.\right.\right.\right.$, $\left.\left.\left.y_{4}\right\rangle\right)\right)++^{\prime}-^{\prime}(\bigcup \operatorname{rng}(S \upharpoonright \beta))\left(\left\langle x_{7}, y_{4}\right\rangle\right)$, where x_{7} is an element of $\mathrm{R}_{\mathrm{L} x}, y_{4}$ is an element of $\mathrm{L}_{\mathrm{R}_{x}}: x_{7} \in \mathrm{R}_{\mathrm{L}_{x}}$ and $\left.\left.y_{4} \in \mathrm{~L}_{\mathrm{R}_{x}}\right\}\right\rangle$. Let us consider an ordinal number α. If $\alpha \in \operatorname{dom} S$, then mult ${ }_{\text {No }}(\alpha)=S(\alpha)$.
Proof: Define δ (ordinal number) $=$ Triangle $\$_{1}$. Define \mathcal{H} (object, \subseteq-monotone, function yielding transfinite sequence $)=\left\langle\left\{\left(\left(\cup \mathrm{rng} \$_{2}\right)\left(\left\langle x_{6}, \mathrm{R} \$_{1}\right\rangle\right)+^{\prime}\right.\right.\right.$ $\left.\left(\bigcup \operatorname{rng} \$_{2}\right)\left(\left\langle\mathrm{L}_{1}, y_{4}\right\rangle\right)\right)+^{\prime}-^{\prime}\left(\bigcup \operatorname{rng} \$_{2}\right)\left(\left\langle x_{6}, y_{4}\right\rangle\right)$, where x_{6} is an element of $\mathrm{L}_{\mathrm{L}_{\Phi_{1}}}, y_{4}$ is an element of $\mathrm{L}_{\mathrm{R}_{\Phi_{1}}}: x_{6} \in \mathrm{~L}_{\mathrm{L}_{夕_{1}}}$ and $\left.y_{4} \in \mathrm{~L}_{\mathrm{R}_{\Phi_{1}}}\right\} \cup\left\{\left(\left(\bigcup \mathrm{rng} \$_{2}\right)\left(\left\langle x_{7}\right.\right.\right.\right.$, $\left.\left.\left.\mathrm{R}_{\$_{1}}\right\rangle\right)+^{\prime}\left(\bigcup \mathrm{rng} \$_{2}\right)\left(\left\langle\mathrm{L}_{\$_{1}}, y_{5}\right\rangle\right)\right)+^{\prime}-^{\prime}\left(\bigcup \mathrm{rng} \$_{2}\right)\left(\left\langle x_{7}, y_{5}\right\rangle\right)$, where x_{7} is an element of $\mathrm{R}_{\mathrm{L}_{\Phi_{1}}}, y_{5}$ is an element of $\mathrm{R}_{\mathrm{R}_{\$_{1}}}: x_{7} \in \mathrm{R}_{\mathrm{L}_{\Phi_{1}}}$ and $\left.y_{5} \in \mathrm{R}_{\mathrm{R}_{\$_{1}}}\right\}$, $\left\{\left(\left(\bigcup \mathrm{rng} \$_{2}\right)\left(\left\langle x_{6}, \mathrm{R} \$_{1}\right\rangle\right)+^{\prime}\left(\bigcup \operatorname{rng} \$_{2}\right)\left(\left\langle\mathrm{L}_{\$_{1}}, y_{5}\right\rangle\right)\right)+^{\prime}-^{\prime}\left(\bigcup \mathrm{rng} \$_{2}\right)\left(\left\langle x_{6}, y_{5}\right\rangle\right)\right.$, where x_{6} is an element of $\mathrm{L}_{\mathrm{L}_{\Phi_{1}}}, y_{5}$ is an element of $\mathrm{R}_{\mathrm{R}_{\Phi_{1}}}: x_{6} \in \mathrm{~L}_{\mathrm{L}_{\Phi_{1}}}$ and $\left.y_{5} \in \mathrm{R}_{\mathrm{R}_{\Phi_{1}}}\right\} \cup\left\{\left(\left(\bigcup \mathrm{rng} \$_{2}\right)\left(\left\langle x_{7}, \mathrm{R}_{\$_{1}}\right\rangle\right)+^{\prime}\left(\cup \mathrm{rng} \$_{2}\right)\left(\left\langle\mathrm{L}_{\$_{1}}, y_{4}\right\rangle\right)\right)+^{\prime}-^{\prime}\left(\mathrm{U}^{1} \mathrm{rng} \$_{2}\right)\right.$ $\left(\left\langle x_{7}, y_{4}\right\rangle\right)$, where x_{7} is an element of $\mathrm{R}_{\mathrm{L}_{1}}, y_{4}$ is an element of $\mathrm{L}_{\mathrm{R}_{s_{1}}}: x_{7} \in$ $\mathrm{R}_{\mathrm{L}_{\$_{1}}}$ and $\left.\left.y_{4} \in \mathrm{~L}_{\mathrm{R}_{1}}\right\}\right\rangle$. Consider S_{1} being a \subseteq-monotone, function yielding transfinite sequence such that $\operatorname{dom} S_{1}=\operatorname{succ} \alpha$ and $\operatorname{mult}_{\mathrm{No}}(\alpha)=S_{1}(\alpha)$ and for every ordinal number β such that $\beta \in \operatorname{succ} \alpha$ there exists a many sorted set S_{5} indexed by $\delta(\beta)$ such that $S_{1}(\beta)=S_{5}$ and for every object x such that $x \in \delta(\beta)$ holds $S_{5}(x)=\mathcal{H}\left(x, S_{1} \upharpoonright \beta\right) . S \upharpoonright \operatorname{succ} \alpha=S_{1} \upharpoonright \operatorname{succ} \alpha$. \square
Let x, y be surreal numbers and X, Y be sets. The functor $\operatorname{comp}(X, x, y, Y)$ yielding a set is defined by
(Def. 14) $o \in i t$ iff there exist surreal numbers x_{1}, y_{1} such that $o=\left(x_{1} \cdot y+^{\prime} x\right.$. $\left.y_{1}\right)+{ }^{\prime}-^{\prime} x_{1} \cdot y_{1}$ and $x_{1} \in X$ and $y_{1} \in Y$.
Now we state the propositions:
(49) Let us consider a set X. Then $\operatorname{comp}(X, x, y, \emptyset)=\emptyset$.
(50) Let us consider surreal numbers x, y. Then $x \cdot y=\left\langle\operatorname{comp}\left(\mathrm{L}_{x}, x, y, \mathrm{~L}_{y}\right)\right.$ $\left.\cup \operatorname{comp}\left(\mathrm{R}_{x}, x, y, \mathrm{R}_{y}\right), \operatorname{comp}\left(\mathrm{L}_{x}, x, y, \mathrm{R}_{y}\right) \cup \operatorname{comp}\left(\mathrm{R}_{x}, x, y, \mathrm{~L}_{y}\right)\right\rangle$.
Proof: Set $B_{3}=\mathfrak{b o r n} x$. Set $B_{5}=\mathfrak{b o r n} y$. Set $\alpha=B_{3} \oplus B_{5}$. Define $\mathcal{H}($ object,\subseteq-monotone, function yielding transfinite sequence $)=$ $\left\langle\left\{\left(\left(\bigcup \mathrm{rng} \$_{2}\right)\left(\left\langle x_{6}, \mathrm{R}_{\$_{1}}\right\rangle\right)+^{\prime}\left(\bigcup \mathrm{rng} \$_{2}\right)\left(\left\langle\mathrm{L}_{\$_{1}}, y_{4}\right\rangle\right)\right)+^{\prime}-^{\prime}\left(\bigcup \mathrm{rng} \$_{2}\right)\left(\left\langle x_{6}, y_{4}\right\rangle\right)\right.\right.$, where x_{6} is an element of $\mathrm{L}_{\mathrm{Ls}_{1}}, y_{4}$ is an element of $\mathrm{L}_{\mathrm{R}_{\Phi_{1}}}: x_{6} \in \mathrm{~L}_{\mathrm{Ls}_{1}}$ and $\left.y_{4} \in \mathrm{~L}_{\mathrm{R}_{\$_{1}}}\right\} \cup\left\{\left(\left(\bigcup \mathrm{rng} \$_{2}\right)\left(\left\langle x_{7}, \mathrm{R}_{\$_{1}}\right\rangle\right)+^{\prime}\left(\bigcup \mathrm{rng} \$_{2}\right)\left(\left\langle\mathrm{L}_{\$_{1}}, y_{5}\right\rangle\right)\right)+^{\prime}-^{\prime}\left(\bigcup \mathrm{rng} \$_{2}\right)\right.$ $\left(\left\langle x_{7}, y_{5}\right\rangle\right)$, where x_{7} is an element of $\mathrm{R}_{\mathrm{L}_{1}}, y_{5}$ is an element of $\mathrm{R}_{\mathrm{R}_{s_{1}}}: x_{7} \in$ $\mathrm{R}_{\mathrm{L}_{\delta_{1}}}$ and $\left.y_{5} \in \mathrm{R}_{\mathrm{R}_{\$_{1}}}\right\},\left\{\left(\left(\bigcup \mathrm{rng} \$_{2}\right)\left(\left\langle x_{6}, \mathrm{R}_{\$_{1}}\right\rangle\right)+^{\prime}\left(\bigcup \mathrm{rng} \$_{2}\right)\left(\left\langle\mathrm{L}_{\$_{1}}, y_{5}\right\rangle\right)\right)+^{\prime}\right.$ $-^{\prime}\left(\bigcup \operatorname{rng} \$_{2}\right)\left(\left\langle x_{6}, y_{5}\right\rangle\right)$, where x_{6} is an element of $\mathrm{L}_{\mathrm{L}_{\$_{1}}}, y_{5}$ is an element of $\mathrm{R}_{\mathrm{R}_{\$_{1}}}: x_{6} \in \mathrm{~L}_{\mathrm{L}_{\Phi_{1}}}$ and $\left.y_{5} \in \mathrm{R}_{\mathrm{R}_{\$_{1}}}\right\} \cup\left\{\left(\left(\bigcup \mathrm{rng} \$_{2}\right)\left(\left\langle x_{7}, \mathrm{R}_{\$_{1}}\right\rangle\right)+^{\prime}\left(\bigcup \mathrm{rng} \$_{2}\right)\right.\right.$ $\left.\left(\left\langle\mathrm{L}_{\$_{1}}, y_{4}\right\rangle\right)\right)+^{\prime}-^{\prime}\left(\bigcup \mathrm{rng} \$_{2}\right)\left(\left\langle x_{7}, y_{4}\right\rangle\right)$, where x_{7} is an element of $\mathrm{R}_{\mathrm{L}_{1}}, y_{4}$ is an element of $\mathrm{L}_{\mathrm{R}_{\Phi_{1}}}: x_{7} \in \mathrm{R}_{\mathrm{L}_{\$_{1}}}$ and $\left.\left.y_{4} \in \mathrm{~L}_{\mathrm{R}_{\Phi_{1}}}\right\}\right\rangle$. Consider S being a \subseteq monotone, function yielding transfinite sequence such that dom $S=\operatorname{succ} \alpha$ and $\operatorname{mult}_{\mathrm{No}}(\alpha)=S(\alpha)$ and for every ordinal number β such that $\beta \in$ $\operatorname{succ} \alpha$ there exists a many sorted set S_{5} indexed by Triangle β such that $S(\beta)=S_{5}$ and for every object x such that $x \in$ Triangle β holds $S_{5}(x)=$ $\mathcal{H}(x, S \upharpoonright \beta)$. Consider S_{3} being a many sorted set indexed by Triangle α such that $S(\alpha)=S_{3}$ and for every object x such that $x \in$ Triangle α holds $S_{3}(x)=\mathcal{H}(x, S\lceil\alpha)$. Set $U=\bigcup \operatorname{rng}(S\lceil\alpha)$. For every surreal-membered sets X, Y such that $X \subseteq \mathrm{~L}_{x} \cup \mathrm{R}_{x}$ and $Y \subseteq \mathrm{~L}_{y} \cup \mathrm{R}_{y}$ holds $\left\{\left(U\left(\left\langle x_{6}, y\right\rangle\right)+{ }^{\prime} U(\langle x\right.\right.$, $\left.\left.\left.y_{4}\right\rangle\right)\right)+{ }^{\prime}-^{\prime} U\left(\left\langle x_{6}, y_{4}\right\rangle\right)$, where x_{6} is an element of X, y_{4} is an element of $Y: x_{6} \in X$ and $\left.y_{4} \in Y\right\}=\operatorname{comp}(X, x, y, Y)$.
(51) (i) for every x and $y, x \cdot y$ is a surreal number, and
(ii) for every x and $y, x \cdot y=y \cdot x$, and
(iii) for every surreal numbers $x_{1}, x_{2}, y, x_{4}, x_{5}$ such that $x_{1} \approx x_{2}$ and $x_{4}=x_{1} \cdot y$ and $x_{5}=x_{2} \cdot y$ holds $x_{4} \approx x_{5}$, and
(iv) for every surreal numbers $x_{1}, x_{2}, y_{1}, y_{2}, x_{12}, x_{21}, x_{11}, x_{22}$ such that $x_{11}=x_{1} \cdot y_{1}$ and $x_{12}=x_{1} \cdot y_{2}$ and $x_{21}=x_{2} \cdot y_{1}$ and $x_{22}=x_{2} \cdot y_{2}$ and $x_{1}<x_{2}$ and $y_{1}<y_{2}$ holds $x_{12}+x_{21}<x_{11}+x_{22}$.
Proof: Define \mathcal{P} [ordinal number, surreal number, surreal number] \equiv if $\mathfrak{b o r n} \$_{2} \oplus \mathfrak{b}$ orn $\$_{3} \subseteq \$_{1}$, then $\$_{2} \cdot \$_{3}=\$_{3} \cdot \$_{2}$. Define \mathcal{S} [ordinal number, surreal number, surreal number $] \equiv$ if $\mathfrak{b o r n} \$_{2} \oplus \mathfrak{b o r n} \$_{3} \subseteq \$_{1}$, then $\$_{2} \cdot \$_{3}$ is a surreal number. Define \mathcal{T} [ordinal number, surreal number, surreal number, surreal number $] \equiv$ for every surreal numbers x_{4}, x_{5} such that $\mathfrak{b o r n} \$_{2} \oplus \mathfrak{b o r n} \$_{4} \subseteq \$_{1}$
and born $\$_{3} \oplus \mathfrak{b o r n} \$_{4} \subseteq \$_{1}$ and $\$_{2} \approx \$_{3}$ and $x_{4}=\$_{2} \cdot \$_{4}$ and $x_{5}=$ $\$_{3} \cdot \$_{4}$ holds $x_{4} \approx x_{5}$. Define \mathcal{V} [ordinal number, surreal number, surreal number, surreal number, surreal number] \equiv for every surreal numbers x_{12}, x_{21}, x_{11}, x_{22} such that $\mathfrak{b o r n} \$_{2} \oplus \mathfrak{b}$ orn $\$_{4} \subseteq \$_{1}$ and $\mathfrak{b o r n} \$_{3} \oplus \mathfrak{b}$ orn $\$_{4} \subseteq \$_{1}$ and born $\$_{2} \oplus \mathfrak{b}$ orn $\$_{5} \subseteq \$_{1}$ and born $\$_{3} \oplus \mathfrak{b}$ orn $\$_{5} \subseteq \$_{1}$ and $x_{11}=\$_{2} \cdot \$_{4}$ and $x_{12}=\$_{2} \cdot \$_{5}$ and $x_{21}=\$_{3} \cdot \$_{4}$ and $x_{22}=\$_{3} \cdot \$_{5}$ and $\$_{2}<\$_{3}<\$_{5}$ holds $x_{12}+x_{21}<x_{11}+x_{22}$. Define \mathcal{F} [ordinal number] \equiv for every x and y, $\mathcal{P}\left[\$_{1}, x, y\right]$. Define \mathcal{G} [ordinal number] \equiv for every x and $y, \mathcal{S}\left[\$_{1}, x, y\right]$. Define $\mathcal{H}[$ ordinal number $] \equiv$ for every surreal numbers $x_{1}, x_{2}, y, \mathcal{T}\left[\${ }_{1}, x_{1}, x_{2}, y\right]$. Define \mathcal{I} [ordinal number] \equiv for every surreal numbers $x_{1}, x_{2}, y_{1}, y_{2}$, $\mathcal{V}\left[\$ 1, x_{1}, x_{2}, y_{1}, y_{2}\right]$. Define $\theta[$ ordinal number $] \equiv \mathcal{F}[\$ 1]$ and $\mathcal{G}[\$ 1]$ and $\mathcal{H}\left[\$ \$_{1}\right]$ and $\mathcal{I}\left[\$_{1}\right]$. For every ordinal number δ such that for every ordinal number γ such that $\gamma \in \delta$ holds $\theta[\gamma]$ holds $\theta[\delta]$. For every ordinal number E, $\theta[E]$. For every surreal numbers $x_{1}, x_{2}, y, x_{4}, x_{5}$ such that $x_{1} \approx x_{2}$ and $x_{4}=x_{1} \cdot y$ and $x_{5}=x_{2} \cdot y$ holds $x_{4} \approx x_{5}$.
Let a, b be surreal numbers. Observe that $a \cdot b$ is surreal. Let a, b be surreal numbers. One can check that the functor $a \cdot b$ is commutative. Let x, y be surreal numbers and X, Y be sets. Observe that $\operatorname{comp}(X, x, y, Y)$ is surreal-membered. Let us observe that the functor $\operatorname{comp}(X, x, y, Y)$ is defined by
(Def. 15) $\quad o \in$ it iff there exist surreal numbers x_{1}, y_{1} such that $o=x_{1} \cdot y+x \cdot y_{1}-$ $x_{1} \cdot y_{1}$ and $x_{1} \in X$ and $y_{1} \in Y$.
Now we state the propositions:
$\operatorname{comp}(\{z\}, x, y,\{t\})=\{z \cdot y+x \cdot t-z \cdot t\}$.
(53) Let us consider sets X, Y. Then $\operatorname{comp}(X, x, y, Y)=\operatorname{comp}(Y, y, x, X)$.
(54) Conway Ch. 1 Th. 8(I):

Let us consider surreal numbers x_{1}, x_{2}, y. If $x_{1} \approx x_{2}$, then $x_{1} \cdot y \approx x_{2} \cdot y$.
(55) Conway Ch. 1 Th. 8(iII):

Let us consider surreal numbers $x_{1}, x_{2}, y_{1}, y_{2}$. Suppose $x_{1}<x_{2}$ and $y_{1}<y_{2}$. Then $x_{1} \cdot y_{2}+x_{2} \cdot y_{1}<x_{1} \cdot y_{1}+x_{2} \cdot y_{2}$.
(56) Conway Ch. 1 Th. 7(I):
$x \cdot\left(\mathbf{0}_{\text {No }}\right)=\mathbf{0}_{\text {No }}$. The theorem is a consequence of (49) and (50).
(57) Multiplicative Identity for Surreal Number, Conway Ch. 1 Th. 7(iı):
$x \cdot\left(\mathbf{1}_{\mathrm{No}}\right)=x$.
Proof: Define \mathcal{P} [ordinal number] \equiv for every x such that born $x \subseteq \$_{1}$ holds $x \cdot\left(\mathbf{1}_{\mathbf{N o}}\right)=x$. For every ordinal number δ such that for every ordinal number γ such that $\gamma \in \delta$ holds $\mathcal{P}[\gamma]$ holds $\mathcal{P}[\delta]$. For every ordinal number $\delta, \mathcal{P}[\delta]$.

Let us consider x. Observe that $x \cdot\left(\mathbf{0}_{\mathbf{N o}}\right)$ reduces to $\mathbf{0}_{\text {No }}$ and $x \cdot\left(\mathbf{1}_{\mathrm{No}}\right)$ reduces to x. Now we state the proposition:
(58) Conway Ch. 1 Th. 7(Iv):
(i) $x \cdot(-y)=-x \cdot y$, and
(ii) $(-x) \cdot y=-x \cdot y$, and
(iii) $(-x) \cdot(-y)=x \cdot y$.

Let us consider sets X, Y_{1}, Y_{2}. Now we state the propositions:
(59) If $Y_{1} \subseteq Y_{2}$, then $\operatorname{comp}\left(X, x, y, Y_{1}\right) \subseteq \operatorname{comp}\left(X, x, y, Y_{2}\right)$.
(60) $\operatorname{comp}\left(X, x, y, Y_{1} \cup Y_{2}\right)=\operatorname{comp}\left(X, x, y, Y_{1}\right) \cup \operatorname{comp}\left(X, x, y, Y_{2}\right)$. The theorem is a consequence of (59).
(61) Let us consider sets X, Y. Suppose for every x such that $x \in X$ there exists y such that $y \in Y$ and $x \approx y$. Then $X \lessdot Y$.

Let us consider sets X_{1}, X_{2}. Now we state the propositions:
(62) If $X_{1} \lessdot X_{2}$, then $\ominus X_{1} \lessdot \ominus X_{2}$. The theorem is a consequence of (10).
(63) $\ominus\left(X_{1} \oplus X_{2}\right)=\ominus X_{1} \oplus \ominus X_{2}$. The theorem is a consequence of (40).
(64) Let us consider a surreal-membered set X. Then $X \oplus\left\{\mathbf{0}_{\text {No }}\right\}=X$.
(65) If $x \approx y$, then $-x \approx-y$.
(66) Let us consider surreal numbers $x_{1}, x_{2}, y_{1}, y_{2}$. If $x_{1} \approx x_{2}$ and $y_{1} \approx y_{2}$, then $x_{1}+y_{1} \approx x_{2}+y_{2}$.
(67) Distributivity of Multiplication Over Addition for Surreal Numbers, Conway Ch. 1 Th. 7(v):
$x \cdot(y+z) \approx x \cdot y+x \cdot z$.
Proof: Define \mathcal{P} [ordinal number] \equiv for every surreal numbers x, y, z such that $(\mathfrak{b o r n} x \oplus \mathfrak{b}$ orn $y) \oplus \mathfrak{b}$ orn $z \subseteq \$_{1}$ holds $x \cdot(y+z) \approx x \cdot y+x \cdot z$. For every ordinal number δ such that for every ordinal number γ such that $\gamma \in \delta$ holds $\mathcal{P}[\gamma]$ holds $\mathcal{P}[\delta]$. For every ordinal number $\delta, \mathcal{P}[\delta]$.
(68) Let us consider sets X_{1}, X_{2}, Y. Then $\operatorname{comp}\left(X_{1} \cup X_{2}, x, y, Y\right)=$ $\operatorname{comp}\left(X_{1}, x, y, Y\right) \cup \operatorname{comp}\left(X_{2}, x, y, Y\right)$. The theorem is a consequence of (53) and (60).
(69) Associativity of Multiplication for Surreal Numbers, Conway Ch. 1 Th. 7(vi):
$(x \cdot y) \cdot z \approx x \cdot(y \cdot z)$.
Proof: Define \mathcal{P} [ordinal number] \equiv for every surreal numbers x, y, z such that $(\mathfrak{b}$ orn $x \oplus \mathfrak{b o r n} y) \oplus \mathfrak{b}$ orn $z \subseteq \$_{1}$ holds $(x \cdot y) \cdot z \approx x \cdot(y \cdot z)$. For every ordinal number δ such that for every ordinal number γ such that $\gamma \in \delta$ holds $\mathcal{P}[\gamma]$ holds $\mathcal{P}[\delta]$. For every ordinal number $\delta, \mathcal{P}[\delta]$.
(70) If $\mathbf{0}_{\text {No }}<x$ and $y<z$, then $y \cdot x<z \cdot x$. The theorem is a consequence of (51).
(71) If $x<\mathbf{0}_{\text {No }}$ and $y<z$, then $z \cdot x<y \cdot x$. The theorem is a consequence of (51).
(72) Conway Ch. 1 Th. 9:
$\mathbf{0}_{\text {No }}<x \cdot y$ if and only if $x<\mathbf{0}_{\text {No }}$ and $y<\mathbf{0}_{\text {No }}$ or $\mathbf{0}_{\text {No }}<x$ and $\mathbf{0}_{\text {No }}<y$. The theorem is a consequence of (51), (10), (58), and (23).
(73) If $\mathbf{0}_{\text {No }}<z$ and $x \cdot z<y \cdot z$, then $x<y$. The theorem is a consequence of (51) and (70).
(74) $\quad x \cdot y<\mathbf{0}_{\text {No }}$ if and only if $x<\mathbf{0}_{\mathbf{N o}}<y$ or $\mathbf{0}_{\mathbf{N o}}<x$ and $y<\mathbf{0}_{\mathbf{N o}}$. The theorem is a consequence of (23), (10), (58), and (72).
(75) If $\mathbf{0}_{\mathrm{No}} \leqslant x$ and $y \leqslant z$, then $y \cdot x \leqslant z \cdot x$. The theorem is a consequence of (51) and (70).
(76) $(x+y) \cdot(x+y) \approx x \cdot x+y \cdot y+(x \cdot y+y \cdot x)$. The theorem is a consequence of $(67),(43)$, and (37).
(77) $\quad x \cdot y \approx \mathbf{0}_{\mathbf{N o}}$ if and only if $x \approx \mathbf{0}_{\mathbf{N o}}$ or $y \approx \mathbf{0}_{\mathbf{N o}}$.

References

[1] Maan T. Alabdullah, Essam El-Seidy, and Neveen S. Morcos. On numbers and games. International Journal of Scientific and Engineering Research, 11:510-517, February 2020.
[2] Norman L. Alling. Foundations of Analysis Over Surreal Number Fields. Number 141 in Annals of Discrete Mathematics. North-Holland, 1987. ISBN 9780444702265.
[3] Heinz Bachmann. Transfinite Zahlen. Ergebnisse der Mathematik und ihrer Grenzgebiete, (1). Springer, Berlin, 2., neubearb. aufl. edition, 1967.
[4] Chad E. Brown and Karol Pak. A tale of two set theories. In Cezary Kaliszyk, Edwin Brady, Andrea Kohlhase, and Claudio Sacerdoti Coen, editors, Intelligent Computer Mathematics - 12th International Conference, CICM 2019, CIIRC, Prague, Czech Republic, July 8-12, 2019, Proceedinqs, volume 11617 of Lecture Notes in Computer Science, pages 44-60. Springer, 2019. doi 10.1007/978-3-030-23250-4_4
[5] John Horton Conway. On Numbers and Games. A K Peters Ltd., Natick, MA, second edition, 2001. ISBN 1-56881-127-6.
[6] Oliver Deiser. Einführung in die Mengenlehre: die Mengenlehre Georg Cantors und ihre Axiomatisierung durch Ernst Zermelo. Springer, Berlin, 2., verb. und erw. aufl. edition, 2004. ISBN 3-540-20401-6.
[7] Sebastian Koch. Natural addition of ordinals. Formalized Mathematics, 27(2):139-152, 2019. doi 10.2478/forma-2019-0015
[8] Karol Pąk. Conway numbers - formal introduction. Formalized Mathematics, 31(1): 193-203, 2023. doi 10.2478/forma-2023-0018
[9] Karol Pakk. Integration of game theoretic and tree theoretic approaches to Conway numbers. Formalized Mathematics, 31(1):205-213, 2023. doi 10.2478/forma-2023-0019.
[10] Dierk Schleicher and Michael Stoll. An introduction to Conway's games and numbers. Moscow Mathematical Journal, 6:359-388, 2006. doi 10.17323/1609-4514-2006-6-2-359388.

